久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

2019考研數學:高數各章節重要考點匯總(★)

時間:2019-05-14 13:53:00下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關的《2019考研數學:高數各章節重要考點匯總》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《2019考研數學:高數各章節重要考點匯總》。

第一篇:2019考研數學:高數各章節重要考點匯總

一、函數極限連續

1、正確理解函數的概念,了解函數的奇偶性、單調性、周期性和有界性,理解復合函數、反函數及隱函數的概念。

2、理解極限的概念,理解函數左、右極限的概念以及極限存在與左右極限之間的關系。掌握利用兩個重要極限求極限的方法。理解無窮小、無窮大以及無窮小階的概念,會用等價無窮小求極限。

3、理解函數連續性的概念,會判別函數間斷點的類型。了解初等函數的連續性和閉區間上連續函數的性質(最大值、最小值定理和介值定理),并會應用這些性質。重點是數列極限與函數極限的概念,兩個重要的極限:lim(sinx/x)=1,lim(1+1/x)=e,連續函數的概念及閉區間上連續函數的性質。難點是分段函,復合函數,極限的概念及用定義證明極限的等式。二、一元函數微分學

1、理解導數和微分的概念,導數的幾何意義,會求平面曲線的切線方程,理解函數可導性與連續性之間的關系。

2、掌握導數的四則運算法則和一階微分的形式不變性。了解高階導數的概念,會求簡單函數的n階導數,分段函數的一階、二階導數。會求隱函數和由參數方程所確定的函數的一階、二階導數及反函數的導數。

3、理解并會用羅爾中值定理,拉格朗日中值定理,了解并會用柯西中值定理。

4、理解函數極值的概念,掌握函數最大值和最小值的求法及簡單應用,會用導數判斷函數的凹凸性和拐點,會求函數圖形水平鉛直和斜漸近線。

5、了解曲率和曲率半徑的概念,會計算曲率和曲率半徑及兩曲線的交角。

6、掌握用羅必塔法則求未定式極限的方法,重點是導數和微分的概念,平面曲線的切線和法線方程函數的可導性與連續性之間的關系,一階微分形式的不變性,分段函數的導數。羅必塔法則函數的極值和最大值、最小值的概念及其求法,函數的凹凸性判別和拐點的求法。難點是復合函數的求導法則隱函數以及參數方程所確定的函數的一階、二階導數的計算。三、一元函數積分學

1、理解原函數和不定積分和定積分的概念。

2、掌握不定積分的基本公式,不定積分和定積分的性質及定積分中值定理,掌握換元積分法和分部積分法。

3、會求有理函數、三角函數和簡單無理函數的積分。

4、理解變上限積分定義的函數,會求它的導數,掌握牛頓萊布尼茲公式。

5、了解廣義積分的概念并會計算廣義積分。

6、掌握用定積分計算一些幾何量和物理量(平面圖形的面積、平面曲線的弧長、旋轉體的體積及側面積、平行截面面積為已知的立體體積、變力作功、引力、壓力等。)重點是原函數與不定積分的概念及性質,基本積分公式及積分的換元法和分部積分法,定積分的性質、計算及應用。難點是第二類換元積分法,分部積分法。積分上限的函數及其導數,定積分元素法及定積分的應用。

四、向量代數與空間解析幾何

1、理解向量的概念及其表示。

2、掌握向量的運算(線性運算、數量積、向量積、混合積),了解兩個向量垂直、平行的條件;掌握單位向量、方向數與方向余弦、向量的坐標表達式以及用坐標表達式進行向量運算的方法。

3、掌握平面方程和直線方程及其求法,會利用平面直線的相互關系解決有關問題。

4、理解曲面方程的概念,了解常用二次曲面的方程及其圖形,會求以坐標軸為旋轉軸的旋轉曲面及母線平行于坐標軸的柱面方程。

5、了解空間曲線的參數方程和一般方程;了解空間曲線在坐標平面上的投影,并會求其方程。

五、多元函數微分學

1、了解二元函數的極限與連續性的概念,以及有界閉區域上連續函數的性質。

2、理解多元函數偏導數和全微分的概念,會求全微分。

3、理解方向導數與梯度的概念并掌握其計算方法。

4、掌握多元復合函數偏導數的求法,會求隱函數的偏導數。

5、了解曲線的切線和法平面及曲面的切平面和法線的概念,掌握二元函數極值存在的充分條件,會求二元函數的極值,會用拉格朗日乘數法求條件極值,會求多元函數的最大值和最小值及一些簡單的應用問題。

重點是二元函數的極限和連續的概念,偏導數與全重點是二元函數的極限和連續的概念,偏導數與全微分的概念及計算復合函數、隱函數的求導法,二階偏導數,方向導數和梯度的概念及其計算。空間曲線的切線和法平面,曲面的切平面和法線,二元函數極值。難點是多元復合函數的求導法,二函數的泰勒公式。

六、多元函數積分學

1、理解二重積分與三重積分的概念,了解重積分的性質。

2、掌握二重積分(直角坐標、極坐標)的計算方法,會計算三重積分(直角坐標、柱面坐標、球面坐標)。

3、理解兩類曲線積分的概念,了解兩類曲線積分的性質及兩類曲線積分的關系;掌握計算兩類曲線積分的方法;掌握格林公式并會運用平面曲線積分與路徑無關的條件。

4、了解兩類曲面積分的概念、性質及兩類曲面積分的關系,掌握計算兩類曲面積分的方法。

5、會用重積分、曲線積分和曲面積分求一些幾何量和物理量。重點是利用直角坐標、極坐標計算二重積分。利用直角坐標、柱面坐標、球面坐標計算三重積分。兩類曲線積分的概念、性質及計算,格林公式。兩類曲面積分的概念、性質及計算,高斯公式。難點是化二重積分為二次積分、改換二次積分的積分次序以及三重積分計算。第二類曲面積分與斯托克斯公式。

七、無窮級數

1、掌握級數的基本性質及其級數收斂的必要條件,掌握幾何級數與p級數的收斂性;掌握比值審斂法,會用正項級數的比較與根值審斂法。

2、會用交錯級數的萊布尼茲定理,了解絕對收斂和條件收斂的概念及它們的關系。

3、會求冪級數的和函數以及數項級數的和,掌握冪級數收斂域的求法。

4、掌握e的x次方、sinx、cosx、ln(1+x),(1+x)的a次方的馬克勞林展開式,會用它們將簡單函數作間接展開;會將定義在[-L,L]上的函數展開為傅立葉級數,會將定義在上的函數展開為正弦級數和余弦函數。重點是數項級數的概念與性質,正項級數的審斂法,交錯級數及其審斂法,絕對收斂與條件收斂的概念。冪級數的收斂半徑、收斂區間的求法,將函數展成傅立葉級數。難點是求冪級數的和函數,將函數展成冪級數、傅立葉級數。

八、常微分方程

1、了解微分方程及其解、階、通解、初始條件和特解等概念;掌握變量可分離方程及一階線性方程的解法。

2、會用降階法解y(n)=f(x),y″=f(x,y),y″=f(y,y')類的方程;理解線性微分方程解的性質和解的結構。

3、掌握二階常系數齊次線性微分方程的解法,并會解某些高于二階的常系數齊次線性微分方程。

4、會解包含兩個未知函數的一階常系數線性微分方程組。重點是微分方程的概念,變量可分離方程,一階線性微分方程及二階的常系數線性微分方程的解法。難點是由實際問題建立微分方程及確定定解條件。

第二篇:考研數學高數重要知識點

考研數學高數重要知識點

摘要:從整個學科上來看,高數實際上是圍繞著、導數和積分這三種基本的運算展開的。對于每一種運算,我們首先要掌握它們主要的計算方法;熟練掌握計算方法后,再思考利用這種運算我們還可以解決哪些問題,比如會計算以后:那么我們就能解決函數的連續性,函數間斷點的分類,導數的定義這些問題。這樣一梳理,整個高數的邏輯體系就會比較清晰。

函數部分:

函數的計算方法很多,總結起來有十多種,這里我們只列出主要的:四則運算,等價無窮小替換,洛必達法則,重要,泰勒公式,中值定理,夾逼定理,單調有界收斂定理。每種方法具體的形式教材上都有詳細的講述,考生可以自己回顧一下,不太清晰的地方再翻到對應的章節看一看。

接下來,我們來說說直接通過定義的基本概念:

通過,我們定義了函數的連續性:函數在處連續的定義是,根據的定義,我們知道該定義又等價于。所以討論函數的連續性就是計算。然后是間斷點的分類,討論函數間斷點的分類,需要計算左右。

再往后就是導數的定義了,函數在處可導的定義是存在,也可以寫成存在。這里的式與前面相比要復雜一點,但本質上是一樣的。最后還有可微的定義,函數在處可微的定義是存在只與有關而與無關的常數使得時,有,其中。直接利用其定義,我們可以證明函數在一點可導和可微是等價的,它們都強于函數在該點連續。

以上就是這個體系下主要的知識點。

導數部分:

導數可以通過其定義計算,比如對分段函數在分段點上的導數。但更多的時候,我們是直接通過各種求導法則來計算的。主要的求導法則有下面這些:四則運算,復合函數求導法則,反函數求導法則,變上限積分求導。其中變上限積分求導公式本質上應該是積分學的內容,但出題的時候一般是和導數這一塊的知識點一起出的,所以我們就把它歸到求導法則里面了。

能熟練運用這些基本的求導法則之后,我們還需要掌握幾種特殊形式的函數導數的計算:隱函數求導,參數方程求導。我們對導數的要求是不能有不會算的導數。這一部分的題目往往不難,但計算量比較大,需要考生有較高的熟練度。

然后是導數的應用。導數主要有如下幾個方面的應用:切線,單調性,極值,拐點。每一部分都有一系列相關的定理,考生自行回顧一下。

這中間導數與單調性的關系是核心的考點,考試在考查這一塊時主要有三種考法:

①求單調區間或證明單調性;

②證明不等式;

③討論方程根的個數。

同時,導數與單調性的關系還是理解極值與拐點部分相關定理的基礎。另外,數學三的考生還需要注意導數的經濟學應用;數學一和數學二的考生還要掌握曲率的計算公式。

積分部分:

一元函數積分學首先可以分成不定積分和定積分,其中不定積分是計算定積分的基礎。對于不定積分,我們主要掌握它的計算方法:第一類換元法,第二類換元法,分部積分法。這三種方法要融會貫通,掌握各種常見形式函數的積分方法。

熟練掌握不定積分的計算技巧之后再來看一看定積分。定積分的定義考生需要稍微注意一下,考試對定積分的定義的要求其實就是兩個方面:會用定積分的定義計算一些簡單的;理解微元法(分割、近似、求和、取)。至于可積性的嚴格定義,考生沒有必要掌握。

然后是定積分這一塊相關的定理和性質,這中間我們就提醒考生注意兩個定理:積分中值定理和微積分基本定理。這兩個定理的條件要記清楚,證明過程也要掌握,考試都直接或間接地考過。

至于定積分的計算,我們主要的方法是利用牛頓—萊布尼茲公式借助不定積分進行計算,當然還可以利用一些定積分的特殊性質(如對稱區間上的積分)。

一般來說,只要不定積分的計算沒問題,定積分的計算也就不成問題。定積分之后還有個廣義積分,它實際上就是把積分過程和求的過程結合起來了。考試對這一部分的要求不太高,只要掌握常見的廣義積分收斂性的判別,再會進行一些簡單的計算就可以了。

會計算積分了,再來看一看定積分的應用。定積分的應用分為幾何應用和物理應用。其中幾何應用包括平面圖形面積的計算,簡單的幾何體(主要是旋轉體)體積的計算,曲線弧長的計算,旋轉曲面面積的計算。物理應用主要是一些常見物理量的計算,包括功,壓力,質心,引力,轉動慣量等。其中數學一和數學二的考生需要全部掌握;數學三的考生只需掌握平面圖形面積的計算,簡單的幾何體(主要是旋轉體)體積的計算。這一部分題目的綜合性往往比較強,對考生綜合能力要求較高。

這就是高等數學整個學科從三種基本運算的角度梳理出來的主要知識點。除此之外,考生需要掌握的知識點還有多元函數微積分,它實際上是將一元函數中的,連續,可導,可微,積分等概念推廣到了多元函數的情況,考生可以按照上面一樣的思路來總結。

第三篇:考研數學:高數重要公式總結(基本積分表)

凱程考研

歷史悠久,專注考研,科學應試,嚴格管理,成就學員!

考研數學:高數重要公式總結(基本積

分表)

考研數學中公式的理解、記憶是最基礎的,其次才能針對具體題型進行基礎知識運用、正確解答。凱程小編總結了高數中的重要公式,希望能幫助考研生更好的復習。

其實,考研數學大多題目考查的還是基礎知識的運用,難題異題并不多,只要大家都細心、耐心,都能取得不錯的成績。考研生加油哦!凱程考研,考研機構,10年高質量輔導,值得信賴!以學員的前途為已任,為學員提供高效、專業的服務,團隊合作,為學員服務,為學員引路。

凱程考研

歷史悠久,專注考研,科學應試,嚴格管理,成就學員!

凱程考研:

凱程考研成立于2005年,具有悠久的考研輔導歷史,國內首家全日制集訓機構考研,一直從事高端全日制輔導,由李海洋教授、張鑫教授、盧營教授、王洋教授、楊武金教授、張釋然教授、索玉柱教授、方浩教授等一批高級考研教研隊伍組成,為學員全程高質量授課、答疑、測試、督導、報考指導、方法指導、聯系導師、復試等全方位的考研服務。凱程考研的宗旨:讓學習成為一種習慣; 凱程考研的價值觀:凱旋歸來,前程萬里; 信念:讓每個學員都有好最好的歸宿;

使命:完善全新的教育模式,做中國最專業的考研輔導機構; 激情:永不言棄,樂觀向上;

敬業:以專業的態度做非凡的事業;

服務:以學員的前途為已任,為學員提供高效、專業的服務,團隊合作,為學員服務,為學員引路。

特別說明:凱程學員經驗談視頻在凱程官方網站有公布,同學們和家長可以查看。扎扎實實的輔導,真真實實的案例,凱程考研的價值觀:凱旋歸來,前程萬里。

如何選擇考研輔導班:

在考研準備的過程中,會遇到不少困難,尤其對于跨專業考生的專業課來說,通過報輔導班來彌補自己復習的不足,可以大大提高復習效率,節省復習時間,大家可以通過以下幾個方面來考察輔導班,或許能幫你找到適合你的輔導班。

師資力量:師資力量是考察輔導班的首要因素,考生可以針對輔導名師的輔導年限、輔導經

凱程考研,考研機構,10年高質量輔導,值得信賴!以學員的前途為已任,為學員提供高效、專業的服務,團隊合作,為學員服務,為學員引路。

凱程考研

歷史悠久,專注考研,科學應試,嚴格管理,成就學員!

驗、歷年輔導效果、學員評價等因素進行綜合評價,詢問往屆學長然后選擇。判斷師資力量關鍵在于綜合實力,因為任何一門課程,都不是由

一、兩個教師包到底的,是一批教師配合的結果。還要深入了解教師的學術背景、資料著述成就、輔導成就等。凱程考研名師云集,李海洋、張鑫教授、方浩教授、盧營教授、孫浩教授等一大批名師在凱程授課。而有的機構只是很普通的老師授課,對知識點把握和命題方向,欠缺火候。

對該專業有輔導歷史:必須對該專業深刻理解,才能深入輔導學員考取該校。在考研輔導班中,從來見過如此輝煌的成績:凱程教育拿下2015五道口金融學院狀元,考取五道口15人,清華經管金融碩士10人,人大金融碩士15個,中財和貿大金融碩士合計20人,北師大教育學7人,會計碩士保錄班考取30人,翻譯碩士接近20人,中傳狀元王園璐、鄭家威都是來自凱程,法學方面,凱程在人大、北大、貿大、政法、武漢大學、公安大學等院校斬獲多個法學和法碩狀元,更多專業成績請查看凱程網站。在凱程官方網站的光榮榜,成功學員經驗談視頻特別多,都是凱程戰績的最好證明。對于如此高的成績,凱程集訓營班主任邢老師說,凱程如此優異的成績,是與我們凱程嚴格的管理,全方位的輔導是分不開的,很多學生本科都不是名校,某些學生來自二本三本甚至不知名的院校,還有很多是工作了多年才回來考的,大多數是跨專業考研,他們的難度大,競爭激烈,沒有嚴格的訓練和同學們的刻苦學習,是很難達到優異的成績。最好的辦法是直接和凱程老師詳細溝通一下就清楚了。

凱程考研歷年戰績輝煌,成就顯著!

在考研輔導班中,從來見過如此輝煌的成績:凱程教育拿下國內最高學府清華大學五道口金融學院金融碩士29人,占五道口金融學院錄取總人數的約50%,五道口金融學院歷年狀元均出自凱程.例如,2014年狀元武玄宇,2013年狀元李少華,2012年狀元馬佳偉,2011年狀元陳玉倩;考入北大經院、人大、中財、外經貿、復旦、上財、上交、社科院、中科院金融碩士的同學更是喜報連連,總計達到150人以上,此外,還有考入北大清華人大法碩的張博等10人,北大法學考研王少棠,北大法學經濟法狀元王yuheng等5人成功考入北大法學院,另外有數10人考入人大貿大政法公安大學等名校法學院。北師大教育學和全日制教育碩士輔導班學員考入15人,創造了歷年最高成績。會計碩士保錄班考取30多人,中傳鄭家威勇奪中傳新聞傳播碩士狀元,王園璐勇奪中傳全日制藝術碩士狀元,(他們的經驗談視頻在凱程官方網站有公布,隨時可以查看播放。)對于如此優異的成績,凱程輔導班班主任邢老師說,凱程如此優異的成績,是與我們凱程嚴格的管理,全方位的輔導是分不開的,很多學生本科都不是名校,某些學生來自二本三本甚至不知名的院校,還有很多是工作了多年才回來考的,大多數是跨專業考研,他們的難度大,競爭激烈,沒有嚴格的訓練和同學們的刻苦學習,是很難達到優異的成績。

考研路上,拼搏和堅持,是我們成功的必備要素。

凱程考研,考研機構,10年高質量輔導,值得信賴!以學員的前途為已任,為學員提供高效、專業的服務,團隊合作,為學員服務,為學員引路。

凱程考研

歷史悠久,專注考研,科學應試,嚴格管理,成就學員!

王少棠

本科學校:南開大學法學

錄取學校:北大法學國際經濟法方向第一名 總分:380+ 在來到凱程輔導之前,王少棠已經決定了要拼搏北大法學院,他有自己的理想,對法學的癡迷的追求,決定到最高學府北大進行深造,他的北大的夢想一直激勵著他前進,在凱程輔導班的每一刻,他都認真聽課、與老師溝通,每一個重點知識點都不放過,對于少棠來說,無疑是無比高興的是,圓夢北大法學院。在復試之后,王少棠與凱程老師進行了深入溝通,講解了自己的考研經驗,與廣大考北大法學,人大法學、貿大法學等同學們進行了交流,錄制為經驗談,在凱程官方網站能夠看到。

王少棠參加的是凱程考研輔導班,回憶自己的輔導班的經歷,他說:“這是我一輩子也許學習最投入、最踏實的地方,我有明確的復習目標,有老師制定的學習計劃、有生活老師、班主任、授課老師的管理,每天6點半就起床了,然后是吃早餐,進教室里早讀,8點開始單詞與長難句測試,9點開始上課,中午半小時吃飯,然后又回到教室里學習了,夏天比較困了就在桌子上睡一會,下午接著上課,晚上自習、測試、答疑之類,晚上11點30熄燈睡覺。”

這樣的生活,貫穿了我在輔導班的整個過程,王少棠對他的北大夢想是如此的堅持,無疑,讓他忘記了在考研路上的辛苦,只有堅持的信念,只有對夢想的勇敢追求。

龔輝堂

本科西北工業大學物理

考入:五道口金融學院金融碩士(原中國人民銀行研究生部)作為跨地區跨校跨專業的三凱程生,在凱程輔導班里經常遇到的,五道口金融學院本身公平的的傳統,讓他對五道口充滿了向往,所以他來到了凱程輔導班,在這里嚴格的訓練,近乎嚴苛的要求,使他一個跨專業的學生,成功考入金融界的黃埔軍校,成為五道口金融學院一名優秀的學生,實現了人生的重大轉折。

在凱程考研輔導班,雖然學習很辛苦,但是每天他都能感覺到自己在進步,改變了自己以往在大學期間散漫的學習狀態,進入了高強度學習狀態。在這里很多課程讓他收獲巨大,例如公司理財老師,推理演算,非常純熟到位,也是每個學生學習的榜樣,公司理財老師帶過很多學生,考的非常好。在學習過程中,拿下了這塊知識,去食堂午餐時候加一塊雞翅,經常用小小的獎勵激勵自己,尋找學習的樂趣。在輔導班里,學習成績顯著上升。

在暑期,輔導班的課程排得非常滿,公共課、專業課、晚自習、答疑、測試,一天至少12個小時及以上。但是他們仍然特別認真,在這個沒有任何干擾的考研氛圍里,充實地學習。

在經過暑期嚴格的訓練之后,龔對自己考入五道口更有信心了。在與老師溝通之后,最終確定了五道口金融學院作為自己最后的抉擇,決定之后,讓他更加發奮努力。

五道口成績公布,龔輝堂成功了。這個封閉的考研集訓,優秀的學習氛圍,讓他感覺有

凱程考研,考研機構,10年高質量輔導,值得信賴!以學員的前途為已任,為學員提供高效、專業的服務,團隊合作,為學員服務,為學員引路。

凱程考研

歷史悠久,專注考研,科學應試,嚴格管理,成就學員!

質的飛躍,成功的喜悅四處飛揚。

另外,在去年,石繼華,本科安徽大學,成功考入五道口金融學院,也就是說,我們只要努力,方向正確,就能取得優異的成績。師弟師妹們加油,五道口、人大、中財、貿大這些名校等著你來。

黃同學(女生)本科院校:中國青年政治學院 報考院校:中國人民大學金融碩士 總分:跨專業380+ 初試成績非常理想,離不開老師的辛勤輔導,離不開班主任的鼓勵,離不開她的努力,離不開所有關心她的人,圓夢人大金融碩士,實現了跨專業跨校的金融夢。

黃同學是一個非常靦腆的女孩子,英語基礎算是中等,專業課是0基礎開始復習,剛剛開始有點吃力,但是隨著課程的展開,完全能夠跟上了節奏。

初試成績公布下來,雖然考的不錯,班主任老師沒有放松對復試的輔導,確保萬無一失,拿到錄取通知書才是最終的塵埃落地,開始了緊張的復試指導,反復的模擬訓練,常見問題、禮儀訓練,專業知識訓練,每一個細節都訓練好之后,班主任終于放心地讓她去復試,果然,她以高分順利通過復試,拿到了錄取通知書。這是所有凱程輔導班班主任、授課老師、生活老師的成功。

張博,從山東理工大學考入北京大學法律碩士,我復習的比較晚,很慶幸選擇了凱程,法碩老師講的很到位,我復習起來減輕了不少負擔。愿大家在考研中馬到成功,也祝愿凱程越辦越好。

張亞婷,海南師范大學小學數學專業,考入了北京師范大學教育學部課程與教學論方向,成功實現了自己的北師大夢想。特別感謝凱程的徐影老師全方面的指導。

孫川川,西南大學考入中國傳媒大學藝術碩士,播音主持專業。在考研輔導班,進步飛快,不受其他打擾,能夠全心全意投入到學習中。凱程老師也很負責,真的很感謝他們。

在凱程考研輔導班,他們在一起創造了一個又一個奇跡。從河南理工大學考入人大會計碩士的李夢說:考取人大,是我的夢想,我一直努力,肯定能夠成功的,只要我們不放棄,不拋棄,并且一直在努力前進創造成功的條件,每個人都能夠成功。正確的方法+不懈的努力+良好的環境+嚴格的管理=成功。我相信,每個人都能夠成功。

凱程考研,考研機構,10年高質量輔導,值得信賴!以學員的前途為已任,為學員提供高效、專業的服務,團隊合作,為學員服務,為學員引路。

第四篇:考研.數學 高數總結3

定積分理論

一、實際應用背景

1、運動問題—設物體運動速度為v?v(t),求t?[a,b]上物體走過的路程。

(1)取a?t0?t1???tn?b,[a,b]?[t0,t1]?[t1,t2]???[tn?1,tn],其中?ti?ti?ti?1(1?i?n);

(2)任取?i?[xi?1,xi](1?i?n),S?

n?f(?)?t; iii?1

iin(3)取??max{?xi},則S?lim1?i?n??0?f(?)?x i?12、曲邊梯形的面積—設曲線L:y?f(x)?0(a?x?b),由L,x?a,x?b及x軸圍成的區域稱為曲邊梯形,求其面積。

(1)取a?x0?x1???xn?b,[a,b]?[x0,x1]?[x1,x2]???[xn?1,xn],其中?xi?xi?xi?1(1?i?n);

(2)任取?i?[xi?1,xi](1?i?n),A?

n?f(?)?x; iii?1

iin(3)取??max{?xi},則A?lim1?i?n??0?f(?)?x。i?1

二、定積分理論

(一)定積分的定義—設f(x)為[a,b]上的有界函數,(1)取a?x0?x1???xn?b,[a,b]?[x0,x1]?[x1,x2]???[xn?1,xn],其中?xi?xi?xi?1(1?i?n);

(2)任取?i?[xi?1,xi](1?i?n),作

n?f(?)?x; iii?1

inax{?xi},(3)取??m若lim1?i?n??0?f(?)?x存在,稱f(x)在[a,b]上可積,極限稱為f(x)i

i?1

在[a,b]上的定積分,記?b

af(x)dx,即?f(x)dx?lim?f(?i)?xi。abn??0i?1

【注解】

(1)極限與區間的劃分及?i的取法無關。

n

?1,x?Q

【例題】當x?[a,b]時,令f(x)??,對lim?f(?i)?xi,??0

i?1?0,x?RQ

n

n

情形一:取所有?i?Q(1?i?n),則lim

??0

?f(?)?x

i

i?1

n

i

?lim??xi?b?a;

??0

i?1

情形二:取所有?i?RQ(1?i?n),則lim

??0

n

?f(?)?x

i

i?1

i

?0,所以極限lim

??0

?f(?)?x不存在,于是f(x)在[a,b]上不可積。

i

i

i?1

(2)??0?n??,反之不對。

112n?1n1,],?xi?(1?i?n);

nnnnnn

i?1i

取法:取?i?或?i?(1?i?n),則

nn

分法:等分,即[0,1]?[0,]?[,]???[

?

1ni1ni?1

f(x)dx?lim?f()?lim?f()。

n??nn??nni?1ni?1

?

b

a

b?anif(x)dx?limf[a?(b?a)]。?n??ni?1n

1n2i【例題1】求極限lim??。

n??nni?1

11n2i

【解答】lim?????2xdx。

0n??nni?1

【例題2】求極限lim(n??

1n?1

?

?

1n?2

???

???

1n?n)。

22)

【解答】lim(n??

1n?1

?

1n?

21n?n1n

?()2

n

1?lim[n??n

11?()2

n

2?()2

n

???

]??

dx?x

三、定積分的普通性質1、2、3、4、?[f(x)?g(x)]dx??

a

bb

a

f(x)dx??g(x)dx。

a

b

?kf(x)dx?k?

a

bb

a

f(x)dx。

bc

?

b

a

f(x)dx??f(x)dx??f(x)dx。

a

c

?

b

a

dx?b?a。

5、設f(x)?0(a?x?b),則【證明】

?

b

a

f(x)dx?0。

?

b

a

f(x)dx?lim?f(?i)?xi,??0

i?1

n

因為f(x)?0,所以f(?i)?0,又因為a?b,所以?xi?0,于是

n

?f(?)?x

i

i?1

n

i

?0,由極限保號性得

lim?f(?i)?xi?0,即?f(x)dx?0。

??0

i?1

b

a

(1)

?

b

a

f(x)dx??|f(x)|dx(a?b)。

a

b

(2)設f(x)?g(x)(a?x?b),則

?

b

a

f(x)dx??g(x)dx。

a

b

6(積分中值定理)設f(x)?C[a,b],則存在??[a,b],使得

四、定積分基本理論

定理1 設f(x)?C[a,b],令?(x)?

?

b

a

f(x)dx?f(?)(b?a)。

?

x

a

f(t)dt,則?(x)為f(x)的一個原函數,即

??(x)?f(x)。

【注解】

(1)連續函數一定存在原函數。

dx

f(t)dt?f(x),(2)?adx

d?(x)

f(t)dt?f[?(x)]??(x)。?adx

d?2(x)

?(x)?f[?1(x)]?1?(x)。f(t)dt?f[?2(x)]?2(3)

dx??1(x)

【例題1】設f(x)連續,且?(x)?【解答】?(x)?

x

?(x?t)f(t)dt,求???(x)。

0x0

x

?(x?t)f(t)dt?x?

0f(t)dt??tf(t)dt,x

??(x)??f(t)dt?xf(x)?xf(x)??f(t)dt,???(x)?f(x)。

xx

【例題2】設f(x)為連續函數,且?(x)?【解答】?(x)?

x2?t2?u

?tf(x

x

?t2)dt,求??(x)。

?

x

tf(x2?t2)dt??

1x2222

f(x?t)d(x?t)2?0

101x2

???2f(u)du??f(u)du,2x20

f(x2)?2x?xf(x2)。2

??(x)?

定理2(牛頓—萊布尼茲公式)設f(x)?C[a,b],且F(x)為f(x)的一個原函數,則

?

b

a

f(x)dx?F(b)?F(a)。

【證明】由F?(x)?f(x),??(x)?f(x)得[F(x)??(x)]??f(x)?f(x)?0,從而F(x)??(x)?constant,于是F(b)??(b)?F(a)??(a),注意到?(a)?0,所以?(b)?F(b)?F(a),即

五、定積分的積分法

(一)換元積分法—設f(x)?C[a,b],令x??(t),其中?(t)可導,且??(t)?0,其中

?

b

a

f(x)dx?F(b)?F(a)。

?(?)?a,?(?)?b,則?f(x)dx??f[?(t)]??(t)dt。

a

b?

?

(二)分部積分法—

?udv?uv??vdu。

a

a

a

b

b

b

六、定積分的特殊性質

1、對稱區間上函數的定積分性質 設f(x)?C[?a,a],則(1)則

?

a

?a

f(x)dx??[f(x)?f(?x)]dx。

a

(2)若f(?x)?f(x),則

?

a

?a

f(x)dx?2?f(x)dx。

a

(3)若f(?x)??f(x),則

?

a

?a

f(x)dx?0。

【例題1】設f(x),g(x)?C[?a,a],其中f(x)?f(?x)?A,g(x)為偶函數,證明:

?

a

?a

f(x)g(x)dx?A?g(x)dx。

a

【解答】

a

?

a

?a

f(x)g(x)dx??[f(x)g(x)?f(?x)g(?x)]dx

a0

a

??[f(x)?f(?x)]g(x)dx?A?g(x)dx。

?

(2)計算

??arctane

2?2

x

|sinx|dx。

?

?

【解答】

?

?

?

arctane|sinx|dx??2(arctanex?arctane?x)sinxdx,x

?x

x

exe?x

??0,因為(arctane?arctane)??2x?2x

1?e1?e

所以arctanex?arctane?x?C0,取x?0得C0?

?

?,于是

??arctane|sinx|dx?

2?2

x

?

?

2?

sinxdx?

?。

2、周期函數定積分性質 設f(x)以T為周期,則(1)

?

a?T

a

。f(x)dx??f(x)dx,其中a為任意常數(周期函數的平移性質)

T

?

3?

?

?

?

?

?

sinxdx??2?sinxdx?2?2sin2xdx。

(2)

?

nT

f(x)dx?n?f(x)dx。

T3、特殊區間上三角函數定積分性質

?

?

(1)設f(x)?C[0,1],則

?

?

f(sinx)dx??2f(cosx)dx,特別地,?

sinxdx??cosxdx?In,且In?

n

?

n

n?1?

In?2,I0?,I1?1。n2

sinx

【例題1】計算?2?dx。

?1?ex2

?

sin4xsin4xsin4x2【解答】??dx??(?)dx ?x01?ex?1?ex1?e2

??

1131?3?42sin4xdx?I???2(?)sinxdx????。4?x?01?ex0422161?e

??

【例題2】計算【解答】

?

?cos?xdx。

?

?cos?xdx?

??

?cos?xd(?x)?

??

100?

?cosxdx

?

?

?

?

2?

?cosxdx?

?

??

?

?

?cosxdx?

?

?

?

?cosxdx

?

?

?

?

1?cosx2?xx222

。dx?sind()?sinxdx???002?22??

第五篇:2018考研高數重要定理證明微積分基本定理

2018考研高數重要定理證明微積分基本定理

來源:智閱網

微積分基本定理是考研數學中的重要定理,考察的頻率較高,難度也比較大,下面詳細的講解一下,希望大家有所收獲。

微積分定理包括兩個定理:變限積分求導定理和牛頓-萊布尼茨公式。

變限積分求導定理的條件是變上限積分函數的被積函數在閉區間連續,結論可以形式地理解為變上限積分函數的導數為把積分號扔掉,并用積分上限替換被積函數的自變量。注意該求導公式對閉區間成立,而閉區間上的導數要區別對待:對應開區間上每一點的導數是一類,而區間端點處的導數屬單側導數。花開兩朵,各表一枝。我們先考慮變上限積分函數在開區間上任意點x處的導數。一點的導數仍用導數定義考慮。至于導數定義這個極限式如何化簡,筆者就不能剝奪讀者思考的權利了。單側導數類似考慮。

“牛頓-萊布尼茨公式是聯系微分學與積分學的橋梁,它是微積分中最基本的公式之一。它證明了微分與積分是可逆運算,同時在理論上標志著微積分完整體系的形成,從此微積分成為一門真正的學科。”這段話精彩地指出了牛頓-萊布尼茨公式在高數中舉足輕重的作用。而多數考生能熟練運用該公式計算定積分。不過,提起該公式的證明,熟悉的考生并不多。

該公式和變限積分求導定理的公共條件是函數f(x)在閉區間連續,該公式的另一個條件是F(x)為f(x)在閉區間上的一個原函數,結論是f(x)在該區間上的定積分等于其原函數在區間端點處的函數值的差。該公式的證明要用到變限積分求導定理。若該公式的條件成立,則不難判斷變限積分求導定理的條件成立,故變限積分求導定理的結論成立。

注意到該公式的另一個條件提到了原函數,那么我們把變限積分求導定理的結論用原函數的語言描述一下,即f(x)對應的變上限積分函數為f(x)在閉區間上的另一個原函數。根據原函數的概念,我們知道同一個函數的兩個原函數之間只差個常數,所以F(x)等于f(x)的變上限積分函數加某個常數C。萬事俱備,只差寫一下。將該公式右側的表達式結合推出的等式變形,不難得出結論。

上面講述的微積分基本定理是考研數學的高頻考點,考生們要認真學習其解題方法,并且學會運用。湯神《考研數學接力題典1800》可以檢驗大家的復習效果,總結做題經驗,對我們現階段的復習幫助很大。

下載2019考研數學:高數各章節重要考點匯總(★)word格式文檔
下載2019考研數學:高數各章節重要考點匯總(★).doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點此處下載文檔

文檔為doc格式


聲明:本文內容由互聯網用戶自發貢獻自行上傳,本網站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發現有涉嫌版權的內容,歡迎發送郵件至:645879355@qq.com 進行舉報,并提供相關證據,工作人員會在5個工作日內聯系你,一經查實,本站將立刻刪除涉嫌侵權內容。

相關范文推薦

    考研數學高頻考點

    考研數學高頻考點 2011年05月20日 11:28來源:海天教育 第一,微分方程。高頻考點:一階微分方程的通解或特解;可降階方程;線性常系數齊次和非齊次方程的特解或通解;微分方程的建立與......

    2015考研數學高數真題解析

    凱程考研輔導班,中國最強的考研輔導機構,http://www.tmdps.cn 考研就找凱程考研,學生滿意,家長放心,社會認可! 2015考研數學高數真題解析 [摘要]2015年考研結束后,凱程考研......

    2018考研數學一:高數5大必考點重點分析

    凱程考研輔導班,中國最權威的考研輔導機構 2018考研數學一:高數5大必考點重點分析 考研數學分為數學一、數學二、數學三,這三者的考察也各有差別,2018考生要根據自己所選專業......

    考研高數復習大綱

    一、函數、極限與連續 1.求分段函數的復合函數;2.求極限或已知極限確定原式中的常數;3.討論函數的連續性,判斷間斷點的類型;4.無窮小階的比較;5.討論連續函數在給定區間上零點的......

    考研高數大綱(大全五篇)

    2014年考研數學一考試大綱 考試形式和試卷結構: 一、試卷滿分及考試時間 試卷滿分為150分,考試時間為180分鐘。 二、答題方式 答題方式為閉卷、筆試。 三、試卷內容結構 高等......

    2014年考研高數大綱

    第一章函數與極限 第十節中的“一致連續性”不用看; 其它內容是數一數二數三公共部分 第二章導數與微分 第四節參數方程求導及相關變化率為數一,數二考試內容,數三不要 求; 第五......

    2012年考研數學:高數中的重要定理與公式及其證明(一)

    高數中的重要定理與公式及其證明(一)文章來源:跨考教育考研數學中最讓考生頭疼的當屬證明題,而征服證明題的第一關就是教材上種類繁多的定理證明。如果本著嚴謹的對待數學的態度......

    2018中傳MJC考研重要考點整理

    2018中傳MJC考研重要考點整理 傳播學的奠基人及創立者 1、傳播學的四大奠基人是拉斯韋爾、盧因、霍夫蘭、拉扎斯菲爾德。傳播學學的學科創始人是威爾伯·施拉姆。 2、四大奠......

主站蜘蛛池模板: 亚洲人成欧美中文字幕| 亚洲自偷自偷在线制服| 成人无码h动漫在线网站免费| 欧美高清性色生活片免费观看| 国产亚洲精品久久久久婷婷瑜伽| 亚洲精品av中文字幕在线| 日韩人妻精品无码一区二区三区| 色综合久久久无码网中文| 欧美视频区高清视频播放| 国产福利一区二区三区在线视频| 日本熟妇人妻videos| 99精品视频69v精品视频| 人妻少妇看a偷人无码精品| 亚洲午夜私人影院在线观看| 日韩av无码中文无码不卡电影| 国产裸拍裸体视频在线观看| 久久精品国产99久久丝袜| 欧美成人www在线观看| 777精品久无码人妻蜜桃| 三上悠亚人妻中文字幕在线| 欧美性猛交xxx嘿人猛交| 国产乱理伦片在线观看| 亚洲线精品一区二区三八戒| 日韩一区二区三区无码人妻视频| 久久综合九色综合欧洲98| 国产亚洲一本大道中文在线| 国产无遮挡又黄又爽网站| 久久一本精品久久精品66| 爆爽久久久一区二区又大又黄又嫩| 97色偷偷色噜噜狠狠爱网站97| 久久精品99久久香蕉国产| 九九99久久精品在免费线18| 国产喷水1区2区3区咪咪爱av| 狠狠色狠狠色综合伊人| 亚洲成av人片天堂网久久| 国产成人精品免费视频网页大全| 人妻激情偷乱一区二区三区| 在线精品亚洲一区二区动态图| 久久久久久人妻精品一区二区三区| 日本一区午夜艳熟免费| 午夜精品久久久久久久四虎|