第一篇:2018年經數高數下模擬題2
高等數學下經數模擬題二
一、選擇題30分
?x2y2?
1、曲線?4?9?1繞y軸旋轉而成的旋轉曲面的方程為()
??z?02、函數f(x,y)?x2?y2在點(0,0)處()。(A)不連續
(B)可微
(C)連續,偏導數不存在(D)不連續,偏導數存在
3、設I?x(e???siny?ztanx?2)dv,則I?()。2x2?y2?z2?a24、設L是由y?x,y?0,x?1所圍成區域的正向邊界,則?L(x?2y)dx?(5x?2y)dy?()。
5、下列級數中條件收斂的級數是()
A.?n?1?B.n1(?1)C.?n2n?1n?1
D.(?1)?2nn?1n?n?1(?1)?nn?1?
6、x2?y2?z2?9,x?z?1的交線在XOY坐標面上的投影方程().7、由二重積分的幾何意義知
2x?y2?1??1?x2?y2dxdy?()。
8、極限limtan?xy?=()。
x?2yy?09、二階常系數線性齊次微分方程y"?4y'?4y?0的通解為()。
10、設函數z?f(x,y)在點(0,0)的某鄰域內有定義,且。fx(0,0)?3,fy(0,0)??1,則有()
A.dz|(0,0)?3dx?dy, B.曲面z?f(x,y)在(0,0,f(0,0))個法向量為(3,-1,1),?z?f(x,y)C.曲線?在(0,0,f(0,0))點的一個切向量為(1,0,3),?y?0?z?f(x,y)D.曲線?在(0,0,f(0,0))點的一個切向量為(3,0,1).?y?0
二、填空題15分
1、極限lim2?xy?4=()。
x?0xyy?0?x??eD22、設D是由圓心在原點、半徑為1的圓周所圍的區域,則()。
?y2dxdy=
3、三元函數u?ln(x2?y2?z2)在點M(1,2,?2)處的梯度向量graduM為()。
4、設L是由直線y?2x,y?2和x?0所圍成的三角形區域邊界,則?Lxyds=()。
2225、設?為x?y?a的柱面在z?0到z?5的部分,則
??(x?2?y2)dS=()。
6、交換積分次序:?10。dx?f(x,y)dy=()
x?x
1三、求解一階線性非齊次微分方程y'?y?e的通解。(6分)
22xy
四、設z?f(x?y,e)其中f是可導函數,則
?z?z,。(6分)?x?yxyz
五、設方程x?y?z?e確定了函數z?z(x,y),求全微分。(8分)
六、曲面x?xy?8x?z?5?0在點M?2,?3,1?處的切平面及法線方程。(8分)2
(?1)n?1(x?2)n
七、求冪級數?的收斂域。(8分)
nn?1?
八、驗證2xydx?x2dy在整個xOy平面內為某一函數的全微分,并求一個這樣的函數u(x,y)。(9分)
九、教材134,19(10分)
第二篇:高數(下)復習要點
高等數學(下)復習要點
(對經管及文科類學生不要求帶“*”的內容)
第七章
1、空間曲線在坐標面的投影,P8,例5,P9,92、向量的模、方向角、方向余弦、單位化,P19,例7,P20,10.。
3、數量積、向量積。P27,84、平面方程、平面夾角,點到平面的距離。P35,3..5、空間直線及方程。P41,10
*
6、旋轉曲面P43,例2.第八章
*
1、二元函數極限不存在的證明P54,例7.2、求二元函數的極限P58, 5(2),(4),P56,例93、偏導計算。P80,例9,P82,14(2),P88,2(4),P89,7,8*(4)
4、全微分。P74,2。4(2)。
*5熟悉可微,可導,連續和極限存在之間的關系。P74(B)16、幾何應用。P94例3.7、方向導數與梯度P100例4.8、條件極值P111,7.第九章
1、二重積分計算。P124例3,P133 4(4),8(2),P134,13(1)
2、曲面面積。P141,3.*
3、三重積分。P151,4(2)。
4、曲線積分。P166,1(6),3(2)。
5、格林公式,,與路徑無關的條件。P176,3(4),5(2)。*
6、曲面積分。P188,1(1),5(1)。
*
7、高斯公式。P194,1(4)。
第十章
1、收斂級數性質。
2、正項級數斂散性的判別。P211,2(8),3(6)。
3、交錯級數斂散性的判別。P211,5(4)
4、冪級數的收斂半徑和收斂域。P221,1(5),2(3)
*
5、求和函數。P222,3(1),(3)。
*
6、展開為冪級數。P236,2(6)
*
7、傅里葉級數。P250,4
第三篇:高數下公式總結
高等數學下冊公式總結
1、N維空間中兩點之間的距離公式:p(x1,x2,...,xn),Q(y1,y2,...,yn)的距離
PQ?(x1?y1)2?(x2?y2)2?...?(xn?yn)2
2、多元函數z?f(x,y)求偏導時,對誰求偏導,就意味著其它的變量都暫時
看作常量。比如,就可以了。?z表示對x求偏導,計算時把y 當作常量,只對x求導 ?x?2z?2z3、二階混合偏導數在偏導數連續的條件下與求導次序無關,即。??x?y?y?x4、多元函數z?f(x,y)的全微分公式: dz??z?zdx?dy。?x?y5、復合函數z?f(u,v),u??(t),v??(t),其導數公式:
dz?zdu?zdv??。dt?udt?vdt?FXdy?,Fy?分別表示對x,y
6、隱函數F(x,y)=0的求導公式:,其中Fx???dXFy求偏導數。
方程組的情形:{F(x,y,u,v)?0的各個偏導數是: G(x,y,u,v)?0FFxvGG?u?vxv,?????x?xFFuvGGuvFFuxGG?uux??,?yFFuvGGuvFFyvGGyvFFuvGGuv,?v??。?yFFuvGGuvFFyuGGuy7、曲線?的參數方程是:x??(t),y??(t),z??(t),則該曲線過點
M(x0,y0,z0)的法平面方程是:
??(t0)(x?x0)???(t0)(y?y0)???(t0)(z?z0)?0
切線方程是:(x?x0)(y?y0)(z?z0)。??????(t0)?(t0)?(t0)
8、曲面方程F(x,y,z)=0在點M(x0,y0,z0)處的 法線方程是:(x?x0)(y?y0)(z?z0),????FxFyFz??(x?x0)?Fy?(y?y0)?Fz?(z?z0)?0。切平面方程是:Fx9、求多元函數z=f(x , y)極值步驟:
第一步:求出函數對x , y 的偏導數,并求出各個偏導數為零時的對應的x,y的值 第二步:求出fxx(x0,y0)?A,fxy(x0,y0)?B,fyy(x0,y0)?C
第三步:判斷AC-B2的符號,若AC-B2大于零,則存在極值,且當A小于零是極大值,當A大于零是極小值;若AC-B2小于零則無極值;若AC-B2等于零則無法判斷
10、二重積分的性質:(1)(2)(3)??kf(x,y)d??k??f(x,y)d?
DD??[f(x,y)?g(x,y)]d????f(x,y)d????g(x,y)d?
DDDDD1D2??f(x,y)d????f(x,y)d????f(x,y)d?
(4)若f(x,y)?g(x,y),則(5)
??f(x,y)d????g(x,y)d?
DD??d??s,其中s為積分區域D的面積
D(6)m?f(x,y)?M,則ms?(7)積分中值定理:
??f(x,y)d??Ms
D??f(x,y)d??sf(?,?),其中(?,?)是區域D中的點
DdP2(y)
11、雙重積分總可以化簡為二次積分(先對y,后對x的積分或先對x,后對y的積分形式)bP2(x)??f(x,y)d???dx?DaP1(x)f(x,y)dy??dycP1(y)?f(x,y)dx,有的積分可以隨意選擇積分次序,但是做題的復雜性會出現不同,這時選擇積分次序就比較重要,主要依據通過積分區域和被積函數來確定
12、雙重積分轉化為二次積分進行運算時,對誰積分,就把另外的變量都看成常量,可以按照求一元函數定積分的方法進行求解,包括湊微分、換元、分步等方法
13、曲線、曲面積分:
(1)對弧長的曲線積分的計算方法:設函數f(x,y)在曲線弧L上有定義且連續,L的參數方程為?x??(t)y??(t),(??t??),則
?Lf(x,y)ds??f[?(t),?(t)]??2(t)???2(t)dt
??(2)格林公式:??(D?Q?P?)dxdy??Pdx??Qdy ???x?yLL???
14、向量的加法與數乘運算:a?(x1,y1,z1),b?(x2,y2,z2),則有ka?(kx1,ky1,kz1),????xyz?a??b?(?x1??x2,?y1??y2,?z1??z2),若a?b,則1?1?1
x2y2z2???
15、向量的模、數量積、向量積:若a?(x1,y1,z1),b?(x2,y2,z2),則向量a的模長???222a?x1?y1?z1;數量積(向量之間可以交換順序,其結果是一個數值)a?b=
????????????b?a?x1x2?y1y2?z1z2=b?a?abcos?a,b?,其中?a,b?表示向量b,a的夾角,且????若a?b,則有a?b=0;向量積(向量之間不可以交換順序,其結果仍是一個向量)???ijk????????a?b?x1y1z1?(y1z2?y2z1)i?(x2z1?x1z2)j?(x1y2?x2y1)k,其中i,j,k是x軸、x2y2z2y軸、z軸的方向向量
16、常數項無窮級數?un?u1?u2?u3?...?un?...,令sn?u1?u2?u3?...?un稱為無n?1?窮級數的部分和,若limsn?s,則稱改級數收斂,否則稱其為發散的。其中關于無窮級數x??的一個必要非充分地定理是:若?un收斂,則必有limun?0
n?1x???
17、三種特殊的無窮級數:(1)調和級數??1是發散的,無須證明就可以直接引用 n?1n?n(2)幾何級數?aq,當q?1時收斂,當q?1時發散
n?1(3)p級數?1,當p?1時收斂,當p?1時發散 pn?1n??n?118、正項級數?un的判斂方法:
(1)比較判斂法:若存在兩個正項級數?un,?vn,且有vn?un,若un收斂,則vn收
n?1n?1??斂;若vn發散,則un發散
(2)比較判斂法的極限形式:若limun?l,(l?0),則un和vn具有相同的斂散性
x??vnun?1?l,若l?1,則原級數收斂,若l?1,則原級
x??un(3)比值判斂法:對于?un,limn?1?數發散
19、交錯級數?(?1)n?1?n?1un的判斂方法:同時滿足un?un?1及limun?0,則級數收斂,否
x??則原級數發散
20、絕對收斂和條件收斂:對于?un,若?un收斂,則稱其絕對收斂;若?un發散,n?1n?
1n?1
??
?但是?un收斂,則稱其條件收斂
n?1?
21、函數項無窮級數形如:?un(x)?u1(x)?u2(x)?u3(x)?...?un(x)?...,通常討論的是
n?1?冪級數形如:?anx?a0?a1x?a2x?a3x?...?anx?...,n?0?n23n(1)收斂半徑及收斂區間:liman?11??,則收斂半徑R?,收斂區間則為(?R,R),但
x??a?n是要注意的是,收斂區間的端點是否收斂需要用常數項級數判斂方法驗證
(2n?1)?xnn-1x(2)幾種常見函數的冪級數展開式:e??,sinx??,(-1)n?0n!n?1(2n?1)!x???11x2nn??x,??(?1)nxn,cosx??(?1)n?01?xn?0(2n)!1?xn?0?n22、常微分方程的類型及解題方法:
(1)可分離變量的微分方程:y??f(x,y),總是可以分離變量化簡為式,然后等式兩邊同時積分,即可求出所需的解
(2)齊次方程:y??f(x,y),不同的是,等式右端的式子總是可以化簡為f()的形式,令
dydx?的形f(y)f(x)yxy?u,則原方程化簡為可分離變量方程形式u?xu??f(u)來求解 x(3)一階線性微分方程:形如y??p(x)y?f(x)的方程,求解時首先求出該方程對應的齊次方程y??p(x)y?0的解y?cQ(x),然后使用常熟變易法,令c?u(x),把原方程的解y?u(x)Q(x)帶入原方程,求出u(x),再帶入y?u(x)Q(x)中,即求出所需的解
(4)全微分方程:形如p(x,y)dx?Q(x,y)dy?0的方程,只要滿足
xy?p(x,y)?Q(x,y)?,?y?x則稱其為全微分方程,其解為u??0p(x,y)dx??Q(x,y)dy
0(5)二階微分方程的可降階的三種微分方程:
第一種:y???f(x)的形式,只需對方程連續兩次積分就可以求出方程的解
第二種:y???f(x,y?)的形式,首先令y??z,則原方程降階為可分離變量的一階微分方程z??f(x,z)的形式,繼續求解即可
第三種:y???f(y,y?)的形式,同樣令y??z,由于y???z??dzdzdydz??y?,所以dxdydxdy原方程轉化為一階微分方程
dzz?f(y,z)的形式,繼續求解即可 dy(6)二階常系數齊次微分方程:y???py??qy?0,求解時首先求出該方程對應的特征方
r1x程r2?pr?q?0的解r1,r2,若實根r?c2er2x;若實根r1?r2,則解1?r2,則解為y?c1e為y?(c1?c2x)e1;若為虛根a?bi,則解為y?eax(c1cosbx?c2sinbx)
rx(8)二階常系數非齊次微分方程:y???py??qy?Pm(x)e,求解時先按(7)的方法求其rx對應的齊次微分方程的通解y1,然后設出原方程的特解y?=xQm(x)erx,其中Qm(x)是和P含有相應的未知系數,而k根據特征方程的解r1,r2與r的關系取值,m(x)同次的多項式,若r與特征根不相等,則k取0;若r和一個特征根相等,則k取1;若r和特征根都相等,則k取2,將特解代入原方程求出相應的未知系數,最終原方程的解即通解加上特解,即
ky?y1?y?
第四篇:高數下知識點總結
總結是社會團體、企業單位和個人在自身的某一時期、某一項目或某些工作告一段落或者全部完成后進行回顧檢查、分析評價,從而肯定成績,得到經驗,找出差距,得出教訓和一些規律性認識的一種書面材料。下面是小編為大家帶來的高數下知識點總結,希望能夠幫到大家!
初中數學知識點全總結(一)
1.有理數:
(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;
(2)有理數的分類: ① ②
2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.3.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)相反數的和為0 ? a+b=0 ? a、b互為相反數.4.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(2)絕對值可表示為:或;絕對值的問題經常分類討論;
5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大于一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數> 0,小數-大數< 0.6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若 a≠0,那么的倒數是;若ab=1? a、b互為倒數;若ab=-1? a、b互為負倒數.7.有理數加法法則:
(1)同號兩數相加,取相同的符號,并把絕對值相加;
(2)異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.8.有理數加法的運算律:
(1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c).9.有理數減法法則:減去一個數,等于加上這個數的相反數;即a-b=a+(-b).有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,并把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.有理數乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.12.有理數除法法則:除以一個數等于乘以這個數的倒數;注意:零不能做除數,.13.有理數乘方的法則:
(1)正數的任何次冪都是正數;
(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:(-a)n=-an或(a-b)n=-(b-a)n , 當n為正偶數時:(-a)n =an 或(a-b)n=(b-a)n.14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;
15.科學記數法:把一個大于10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法.16.近似數的精確位:一個近似數,四舍五入到那一位,就說這個近似數的精確到那一位.17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.18.混合運算法則:先乘方,后乘除,最后加減.本章內容要求學生正確認識有理數的概念,在實際生活和學習數軸的基礎上,理解正負數、相反數、絕對值的意義所在。重點利用有理數的運算法則解決實際問題.體驗數學發展的一個重要原因是生活實際的需要.激發學生學習數學的興趣,教師培養學生的觀察、歸納與概括的能力,使學生建立正確的數感和解決實際問題的能力。教師在講授本章內容時,應該多創設情境,充分體現學生學習的主體性地位。
初中數學知識點全總結(二)
1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式.2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數.3.多項式:幾個單項式的和叫多項式.4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數。
通過本章學習,應使學生達到以下學習目標:
1.理解并掌握單項式、多項式、整式等概念,弄清它們之間的區別與聯系。
2.理解同類項概念,掌握合并同類項的方法,掌握去括號時符號的變化規律,能正確地進行同類項的合并和去括號。在準確判斷、正確合并同類項的基礎上,進行整式的加減運算。
3.理解整式中的字母表示數,整式的加減運算建立在數的運算基礎上;理解合并同類項、去括號的依據是分配律;理解數的運算律和運算性質在整式的加減運算中仍然成立。
4.能夠分析實際問題中的數量關系,并用還有字母的式子表示出來。
在本章學習中,教師可以通過讓學生小組討論、合作學習等方式,經歷概念的形成過程,初步培養學生觀察、分析、抽象、概括等思維能力和應用意識。
初中數學知識點全總結(三)
1.一元一次方程:只含有一個未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程.2.一元一次方程的標準形式: ax+b=0(x是未知數,a、b是已知數,且a≠0).3.一元一次方程解法的一般步驟:整理方程 …… 去分母 …… 去括號 …… 移項 …… 合并同類項 …… 系數化為1 ……(檢驗方程的解).4.列一元一次方程解應用題:
(1)讀題分析法:………… 多用于“和,差,倍,分問題”
仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關鍵字列出文字等式,并且據題意設出未知數,最后利用題目中的量與量的關系填入代數式,得到方程.(2)畫圖分析法: ………… 多用于“行程問題”
利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最后利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎.11.列方程解應用題的常用公式:
(1)行程問題: 距離=速度·時間;
(2)工程問題: 工作量=工效·工時;
(3)比率問題: 部分=全體·比率;
(4)順逆流問題: 順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;
(5)商品價格問題: 售價=定價·折·,利潤=售價-成本,;
(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,S正方形=a2,S環形=π(R2-r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐= πR2h.本章內容是代數學的核心,也是所有代數方程的基礎。豐富多彩的問題情境和解決問題的快樂很容易激起學生對數學的樂趣,所以要注意引導學生從身邊的問題研究起,進行有效的數學活動和合作交流,讓學生在主動學習、探究學習的過程中獲得知識,提升能力,體會數學思想方法。
初中數學知識點全總結(四)
一、知識框架
本章的主要內容是圖形的初步認識,從生活周圍熟悉的物體入手,對物體的形狀的認識從感性逐步上升到抽象的幾何圖形.通過從不同方向看立體圖形和展開立體圖形,初步認識立體圖形與平面圖形的聯系.在此基礎上,認識一些簡單的平面圖形——直線、射線、線段和角.二、本章書涉及的數學思想:
1.分類討論思想。在過平面上若干個點畫直線時,應注意對這些點分情況討論;在畫圖形時,應注意圖形的各種可能性。
2.方程思想。在處理有關角的大小,線段大小的計算時,常需要通過列方程來解決。
3.圖形變換思想。在研究角的概念時,要充分體會對射線旋轉的認識。在處理圖形時應注意轉化思想的應用,如立體圖形與平面圖形的互相轉化。
4.化歸思想。在進行直線、線段、角以及相關圖形的計數時,總要劃歸到公式n(n-1)/2的具體運用上來。
七年級數學(下)知識點
人教版七年級數學下冊主要包括相交線與平行線、平面直角坐標系、三角形、二元一次方程組、不等式與不等式組和數據的收集、整理與表述六章內容。
初中數學知識點全總結(五)
1.鄰補角:兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角。
2.對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角互為對頂角。
3.垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。
4.平行線:在同一平面內,不相交的兩條直線叫做平行線。
5.同位角、內錯角、同旁內角:
同位角:∠1與∠5像這樣具有相同位置關系的一對角叫做同位角。
內錯角:∠2與∠6像這樣的一對角叫做內錯角。
同旁內角:∠2與∠5像這樣的一對角叫做同旁內角。
6.命題:判斷一件事情的語句叫命題。
7.平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。
8.對應點:平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應點。
9.定理與性質
對頂角的性質:對頂角相等。
10垂線的性質:
性質1:過一點有且只有一條直線與已知直線垂直。
性質2:連接直線外一點與直線上各點的所有線段中,垂線段最短。
11.平行公理:經過直線外一點有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
12.平行線的性質:
性質1:兩直線平行,同位角相等。
性質2:兩直線平行,內錯角相等。
性質3:兩直線平行,同旁內角互補。
13.平行線的判定:
判定1:同位角相等,兩直線平行。
判定2:內錯角相等,兩直線平行。
判定3:同旁內角相等,兩直線平行。
本章使學生了解在平面內不重合的兩條直線相交與平行的兩種位置關系,研究了兩條直線相交時的形成的角的特征,兩條直線互相垂直所具有的特性,兩條直線平行的長期共存條件和它所有的特征以及有關圖形平移變換的性質,利用平移設計一些優美的圖案.重點:垂線和它的性質,平行線的判定方法和它的性質,平移和它的性質,以及這些的組織運用.難點:探索平行線的條件和特征,平行線條件與特征的區別,運用平移性質探索圖形之間的平移關系,以及進行圖案設計。
初中數學知識點全總結(六)
1.有序數對:有順序的兩個數a與b組成的數對叫做有序數對,記做(a,b)
2.平面直角坐標系:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。
3.橫軸、縱軸、原點:水平的數軸稱為x軸或橫軸;豎直的數軸稱為y軸或縱軸;兩坐標軸的交點為平面直角坐標系的原點。
4.坐標:對于平面內任一點P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應的數a,b分別叫點P的橫坐標和縱坐標。
5.象限:兩條坐標軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向一次叫第二象限、第三象限、第四象限。坐標軸上的點不在任何一個象限內。
平面直角坐標系是數軸由一維到二維的過渡,同時它又是學習函數的基礎,起到承上啟下的作用。另外,平面直角坐標系將平面內的點與數結合起來,體現了數形結合的思想。掌握本節內容對以后學習和生活有著積極的意義。教師在講授本章內容時應多從實際情形出發,通過對平面上的點的位置確定發展學生創新能力和應用意識。
初中數學知識點全總結(七)
1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2.三邊關系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
3.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
4.中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。
5.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
6.三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。
6.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
7.多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。
8.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
9.多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
10.正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。
11.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
12.公式與性質
三角形的內角和:三角形的內角和為180°
三角形外角的性質:
性質1:三角形的一個外角等于和它不相鄰的兩個內角的和。
性質2:三角形的一個外角大于任何一個和它不相鄰的內角。
多邊形內角和公式:n邊形的內角和等于(n-2)·180°
多邊形的外角和:多邊形的內角和為360°。
多邊形對角線的條數:(1)從n邊形的一個頂點出發可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形。
(2)n邊形共有條對角線。
三角形是初中數學中幾何部分的基礎圖形,在學習過程中,教師應該多鼓勵學生動腦動手,發現和探索其中的知識奧秘。注重培養學生正確的數學情操和幾何思維能力。
初中數學知識點全總結(八)
1.二元一次方程:含有兩個未知數,并且未知數的指數都是1,像這樣的方程叫做二元一次。方程,一般形式是 ax+by=c(a≠0,b≠0)。
2.二元一次方程組:把兩個二元一次方程合在一起,就組成了一個二元一次方程組。
3.二元一次方程的解:一般地,使二元一次方程兩邊的值相等的未知數的值叫做二元一次方程組的解。
4.二元一次方程組的解:一般地,二元一次方程組的兩個方程的公共解叫做二元一次方程組。
5.消元:將未知數的個數由多化少,逐一解決的想法,叫做消元思想。
6.代入消元:將一個未知數用含有另一個未知數的式子表示出來,再代入另一個方程,實現消元,進而求得這個二元一次方程組的解,這種方法叫做代入消元法,簡稱代入法。
7.加減消元法:當兩個方程中同一未知數的系數相反或相等時,將兩個方程的兩邊分別相加或相減,就能消去這個未知數,這種方法叫做加減消元法,簡稱加減法。
本章通過實例引入二元一次方程,二元一次方程組以及二元一次方程組的概念,培養學生對概念的理解和完整性和深刻性,使學生掌握好二元一次方程組的兩種解法.重點:二元一次方程組的解法,列二元一次方程組解決實際問題.難點:二元一次方程組解決實際問題
初中數學知識點全總結(九)
1.用符號“<”“>”“≤ ”“≥”表示大小關系的式子叫做不等式。
2.不等式的解:使不等式成立的未知數的值,叫做不等式的解。
3.不等式的解集:一個含有未知數的不等式的所有解,組成這個不等式的解集。
4.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數,并且未知數的最高次數是1,像這樣的不等式,叫做一元一次不等式。
5.一元一次不等式組:一般地,關于同一未知數的幾個一元一次不等式合在一起,就組成6.了一個一元一次不等式組。
7.定理與性質
不等式的性質:
不等式的基本性質1:不等式的兩邊都加上(或減去)同一個數(或式子),不等號的方向不變。
不等式的基本性質2:不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變。
不等式的基本性質3:不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變。
本章內容要求學生經歷建立一元一次不等式(組)這樣的數學模型并應用它解決實際問題的過程,體會不等式(組)的特點和作用,掌握運用它們解決問題的一般方法,提高分析問題、解決問題的能力,增強創新精神和應用數學的意識。
初中數學知識點全總結(十)
1.全面調查:考察全體對象的調查方式叫做全面調查。
2.抽樣調查:調查部分數據,根據部分來估計總體的調查方式稱為抽樣調查。
3.總體:要考察的全體對象稱為總體。
4.個體:組成總體的每一個考察對象稱為個體。
5.樣本:被抽取的所有個體組成一個樣本。
6.樣本容量:樣本中個體的數目稱為樣本容量。
7.頻數:一般地,我們稱落在不同小組中的數據個數為該組的頻數。
8.頻率:頻數與數據總數的比為頻率。
9.組數和組距:在統計數據時,把數據按照一定的范圍分成若干各組,分成組的個數稱為組數,每一組兩個端點的差叫做組距。
本章要求通過實際參與收集、整理、描述和分析數據的活動,經歷統計的一般過程,感受統計在生活和生產中的作用,增強學習統計的興趣,初步建立統計的觀念,培養重視調查研究的良好習慣和科學態度。
第五篇:高數證明1+1=2
1+1為什么等于2?這個問題看似簡單卻又奇妙無比。在現代的精密科學中,特別在數學和數理邏輯中,廣泛地運用著公理法。什么叫公理法呢?從某一科學的許多原理中,分出一部分最基本的概念和命題,對這些基本概念不下定義,而這一學科的所有其它概念都必須直接或間接由它們下定義;對這些基本命題(也叫公理)也不給予論證,而這一學科中的所有其它命題卻必須直接或間接由它們中推出。這樣構成的理論體系就叫公理體系,構成這種公理體系的方法就叫公理法。1+1=2就是數學當中的公理,在數學中是不需要證明的。又因為1+1=2是一切數學定理的基礎,所以它也是無法用數學的方法證明的。至于“1+1為什么等于2?”作為一個問題,沒要求大家必須用數學的方法證明,其實只要說明為什么1+1=2就可以了,可以說這是定義,也可以說這是公理。不過用反證法還是可以證明的:假設1+1不等于2,則數學就是一鍋粥,凡是用到數學的地方都是一鍋粥,人類社會就亂了套了,所以1+1必須等于2。1+1=2看似簡單,卻對于人類認識世界有非同尋常的意義。人類認識世界的過程就像一個小孩滾雪球的過程:第一步,小孩先要用雙手捧一捧雪,這一捧雪就相當于人類對世界的感性認識。第二步,小孩把手里的雪捏緊,成為一個小雪球,這個小雪球就相當于人類對感性認識進行加工,形成了概念。于是就有了1。第三步,小孩把雪球放在地上,發現雪球可以粘地上的雪,這就相當于人類的理性認識。雪可以粘雪,相當于1+1=2。第四步,小孩把粘了雪的雪球在雪地上滾一下,發現雪球粘雪后越來越大,這就相當于人類認識世界的高級階段,可以進入良性循環了。相當于2+1=3。1,2,3可以排成一個最簡單的數列,但是可以演繹至無窮。有了1只是有了概念,有了1+1=2才有了數學,有了2+1=3才開始了數學的無窮變化。物理學與1+1=2的關系 人類認識世界的過程是一個由感性到理性,有已知到未知的過程。在數學當中已知1、2、3,則可以至于無窮,什么是物理學當中的1、2、3呢?我認為:質量、長度、時間等基本物理概念相當于1,它們是組成物理學宏偉大廈的磚和瓦;牛頓運動定律相當于2,它使我們有了真正的物理學和科學的物理分析方法;力學的相對性原理相當于3,使牛頓運動定律可以廣泛應用。在經典物理學中一切都是確定無疑的,有了已知條件,我們就可以推出未知。等到相對論的出現,一切都變了。現在相對論已經深入人心,即便是那些反對相對論的人,也基本上是認可相對論的結論的,什么時間可變、長度可變、質量可變、時空彎曲??經典物理學認為光速對于不同的觀測者是不同的(雖然牛頓是個唯心主義者)。相對論則認為光速對于不同的觀測者是不變的(雖然我們是唯物主義者)。我們丟掉了經典物理學所有不變的東西,換來的是相對論唯一不變的東西----光速。我覺得就象是用許多西瓜換來了一個芝麻一樣,而且這個芝麻是很抽象的,它在真空中,速度最快,讓你根本捉不到、摸不到。我認為牛頓三條運動定律是真理,是完美的,是不容置疑的。質疑牛頓運動定律的人開口閉口說不存在絕對靜止的物體,也不存在絕對不受外力的物體,卻忘了上學時用的物理教材,開頭都有緒論,緒論中都說:一切物質都在永恒不息地運動著,自然界一切現象就是物質運動的表現。運動是物質的存在形式、物質的固有屬性??還提到:抽象方法是根據問題的內容和性質,抓住主要因素,撇開次要的、局部的和偶然的因素,建立一個與實際情況差距不大的理想模型來研究。例如,“質點”和“剛體”都是物體的理想模型。把物體看作質點時,質量和點是主要因素,物體的形狀和大小時可以忽略不計的次要因素。把物體看作剛體——形狀和大小保持不變的物體時,物體的形狀、大小和質量分布時主要因素,物體的變形是可以忽略不計的次要因素。在物理學研究中,這種理想模型是十分必要的。研究機械
運動的規律時,就是從質點運動的規律入手,再研究剛體運動的規律而逐步深入的。有人在故意混淆視聽,有人在人云亦云,但聽的人自己要想一想,牛頓用抽象的方法來分析問題,是符合馬克思主義分析問題抓主要矛盾的指導思想的,否定了牛頓運動定律,我們拿什么來分析相對靜止狀態、勻速直線運動、自由落體運動??? 看來相對論不但搞亂了我們的基本概念,還搞亂了我們的分析方法,這才是最危險的,長此以往,物理學將不再是物理學,而是一鍋粥,一鍋發霉的粥!我認為物理學發展的正確思路是先要從質量、長度、時間、能量、速度等基本物理概念的理解上著手,在物理學界開展一場正名運動,然后討論牛頓運動定律是否錯了,錯的話錯在哪里,最后相對論的對錯也就不言自明了,也容易接受了。