第一篇:初三數學上冊知識點
初三數學上冊知識點
一、圓的基本性質
1.圓的定義(兩種)
2.有關概念:弦、直徑;弧、等弧、優弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。
3.“三點定圓”定理
4.垂徑定理及其推論
5.“等對等”定理及其推論
5. 與圓有關的角:⑴圓心角定義(等對等定理)
⑵圓周角定義(圓周角定理,與圓心角的關系)
⑶弦切角定義(弦切角定理)
二、直線和圓的位置關系
1.三種位置及判定與性質:
2.切線的性質(重點)
3.切線的判定定理(重點)。圓的切線的判定有⑴?⑵?
4.切線長定理
三、圓換圓的位置關系
1.五種位置關系及判定與性質:(重點:相切)
2.相切(交)兩圓連心線的性質定理
3.兩圓的公切線:⑴定義⑵性質
四、與圓有關的比例線段
1.相交弦定理
2.切割線定理
五、與和正多邊形
1.圓的內接、外切多邊形(三角形、四邊形)
2.三角形的外接圓、內切圓及性質
3.圓的外切四邊形、內接四邊形的性質
4.正多邊形及計算
中心角:
內角的一半:(右圖)
(解Rt△OAM可求出相關元素,、等)
六、一組計算公式
1.圓周長公式
2.圓面積公式
3.扇形面積公式
4.弧長公式
5.弓形面積的計算方法
6.圓柱、圓錐的側面展開圖及相關計算
七、點的軌跡
六條基本軌跡
八、有關作圖
1.作三角形的外接圓、內切圓
2.平分已知弧
3.作已知兩線段的比例中項
4.等分圓周:
4、8;
6、3等分
第二篇:初三數學上冊知識點總結
九年級數學上冊知識點
(為重中之重)
第一章
二次根式
二次根式:形如()的式子為二次根式;
性質:()是一個非負數;
。
二次根式的乘除:
。
二次根式的加減:二次根式加減時,先將二次根式華為最簡二次根式,再將被開方數相同的二次根式進行合并。
二次根式的混合運算
第二章
一元二次方程
一元二次方程:等號兩邊都是整式,且只有一個未知數,未知數的最高次是2的方程。
一元二次方程的解法
①
配方法:將方程的一邊配成完全平方式,然后兩邊開方;
②
公式法:(其中當△=>0時,方程有兩個不同的實數根:;當△==0時方程有兩個相等的實數根:;當△=<0時,方程無實數根)
③
因式分解法:左邊是兩個因式的乘積,右邊為零。
一元二次方程在實際問題中的應用
韋達定理:設是方程的兩個根,那么有
第三章
旋轉
圖形的旋轉
旋轉:把一個平面圖形繞著平面內某一點O轉動一個角度,就叫做圖形的旋轉。
性質:①對應點到旋轉中心的距離相等;
②對應點與旋轉中心所連的線段的夾角等于旋轉角
③旋轉前后的圖形全等。
會畫出一個圖形順時針或逆時針旋轉30°、60°、90°后的圖形。
中心對稱:把一個圖形繞著某一點旋轉180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形中心對稱。
中心對稱圖形:把一個圖形繞著某個點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形。
會畫出一個圖形關于原點對稱得圖形,也就是中心對稱圖形。
關于原點對稱的點的坐標
已知點P的坐標是(x,y):關于原點對稱的點的坐標是(-x,-y)
關于x軸對稱的點的坐標是(x,-y)
關于y軸對稱的點的坐標是(-x,y)
第四章
圓
圓、圓心、半徑、直徑、圓弧、弦、半圓的定義
垂直于弦的直徑
圓是軸對稱圖形,任何一條直徑所在的直線都是它的對稱軸;
垂直于弦的直徑平分弦,并且平方弦所對的兩條弧;
平分弦的直徑垂直弦,并且平分弦所對的兩條弧。
弧、弦、圓心角
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等。
圓周角
在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;
半圓(或直徑)所對的圓周角是直角,90度的圓周角所對的弦是直徑。
點和圓的位置關系
點在圓外
點在圓上
d=r
點在圓內
d 定理:不在同一條直線上的三個點確定一個圓。 三角形的外接圓:經過三角形的三個頂點的圓,外接圓的圓心是三角形的三條邊的垂直平分線的交點,叫做三角形的外心。 6直線和圓的位置關系 相交 d 相切 d=r 相離 d>r 切線的性質定理:圓的切線垂直于過切點的半徑; 切線的判定定理:經過圓的外端并且垂直于這條半徑的直線是圓的切線; 切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角。 三角形的內切圓:和三角形各邊都相切的圓為它的內切圓,圓心是三角形的三條角平分線的交點,為三角形的內心。 圓和圓的位置關系 外離 d>R+r 外切 d=R+r 相交 R-r 內切 d=R-r 內含 d 正多邊形和圓 正多邊形的中心:外接圓的圓心 正多邊形的半徑:外接圓的半徑 正多邊形的中心角:沒邊所對的圓心角 正多邊形的邊心距:中心到一邊的距離 弧長和扇形面積 弧長 扇形面積: 圓錐的側面積和全面積 側面積: 全面積 (附加)相交弦定理、切割線定理 第五章 概率初步 概率意義:在大量重復試驗中,事件A發生的頻率穩定在某個常數p附近,則常數p叫做事件A的概率。 用列舉法求概率 一般的,在一次試驗中,有n中可能的結果,并且它們發生的概率相等,事件A包含其中的m中結果,那么事件A發生的概率就是p(A)= 用頻率去估計概率 初三數學知識點 第一章 二次根式 二次根式:形如a(a?0)的式子為二次根式; 性質:a(a?0)是一個非負數; ?a??a?a?0?; a2?a?a?0?。 二次根式的乘除: a?b?ab?a?0,b?0?; ab?a?a?0,b?0?。b 3 二次根式的加減:二次根式加減時,先將二次根式化為最簡二次根式,再將被開方數相同的二次根式進行合并。海倫-秦九韶公式:S?p(p?a)(p?b)(p?c),S是三角形的面積,p為p?a?b?c,也稱半周長。2第二章 一元二次方程 一元二次方程:等號兩邊都是整式,且只有一個未知數,未知數的最高次是2的方程。一元二次方程的解法 配方法:將方程的一邊配成完全平方式,然后兩邊開方; ?b?b2?4ac 公式法:x? 2a 因式分解法:左邊是兩個因式的乘積,右邊為零。3 一元二次方程在實際問題中的應用 韋達定理:設x1,x2是方程ax2?bx?c?0的兩個根,那么有 x1?x2??,x1?x2? 第三章 旋轉 1 圖形的旋轉 旋轉:一個圖形繞某一點轉動一個角度的圖形變換 性質:對應點到旋轉中心的距離相等; 對應點與旋轉中心所連的線段的夾角等于旋轉角 旋轉前后的圖形全等。 中心對稱:一個圖形繞一個點旋轉180度,和另一個圖形重合,則兩個圖形關于這個點中心對稱; 中心對稱圖形:一個圖形繞某一點旋轉180度后得到的圖形能夠和原來的圖形重合,則說這個圖形是中心對稱圖形; 關于原點對稱的點的坐標 第四章 圓 圓、圓心、半徑、直徑、圓弧、弦、半圓的定義 2 垂直于弦的直徑 圓是軸對稱圖形,任何一條直徑所在的直線都是它的對稱軸; 垂直于弦的直徑平分弦,并且平方弦所對的兩條弧; 平分弦的直徑垂直弦,并且平分弦所對的兩條弧。3 弧、弦、圓心角 在同圓或等圓中,相等的圓心角所對的弧相等,所 baca對的弦也相等。 圓周角 在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半; 半圓(或直徑)所對的圓周角是直角,90度的圓周角所對的弦是直徑。 點和圓的位置關系 點在 d?r 點在圓上 d=r 點在圓內 d 三角形的外接圓:經過三角形的三個頂點的圓,外接圓的圓心是三角形的三條邊的垂直平分線的交點,叫做三角形的外心。 6直線和圓的位置關系 相交 d 切線的判定定理:經過圓的外端并且垂直于這條半徑的直線是圓的切線; 切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角。 三角形的內切圓:和三角形各邊都相切的圓為它的內切圓,圓心是三角形的三條角平分線的交點,為三角形的內心。 圓和圓的位置關系 外離 d>R+r 外切 d=R+r 相交 R-r 正多邊形的中心:外接圓的圓心 正多邊形的半徑:外接圓的半徑 正多邊形的中心角:沒邊所對的圓心角 正多邊形的邊心距:中心到一邊的距離 9 弧長和扇形面積 弧長 l?n?r 180n?r2 扇形面積:S? 36010 圓錐的側面積和全面積 側面積: 全面積(附加)相交弦定理、切割線定理 第五章 概率初步 概率意義:在大量重復試驗中,事件A發生的頻率某個常數p附近,則常數p叫做事件A的概率。用列舉法求概率 一般的,在一次試驗中,有n中可能的結果,并且它們發生的概率相等,事件A包含其中的m中結果,那么事件A發生的概率就是p(A)=m nm穩定在n 3 用頻率去估計概率 小編整理了關于初三數學知識點總結和歸納,包括三角形的定義、實數的概念運算、圓的知識點、代數、函數等有關知識點,初三數學知識點以供同學們參考和學習! 初三數學知識點 第一章 實數 ★重點★ 實數的有關概念及性質,實數的運算 ☆內容提要☆ 一、重要概念 1.數的分類及概念 數系表: 說明:“分類”的原則:1)相稱(不重、不漏) 2)有標準 2.非負數:正實數與零的統稱。(表為:x≥0) 常見的非負數有: 性質:若干個非負數的和為0,則每個非負擔數均為0。 3.倒數: ①定義及表示法 ②性質:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a>1時,1/a<1;D.積為1。 4.相反數: ①定義及表示法 ②性質:A.a≠0時,a≠-a;B.a與-a在數軸上的位置;C.和為0,商為-1。 5.數軸:①定義(“三要素”) ②作用:A.直觀地比較實數的大小;B.明確體現絕對值意義;C.建立點與實數的一一對應關系。 6.奇數、偶數、質數、合數(正整數—自然數) 定義及表示: 奇數:2n-1 偶數:2n(n為自然數) 7.絕對值:①定義(兩種): 代數定義: 幾何定義:數a的絕對值頂的幾何意義是實數a在數軸上所對應的點到原點的距離。 ②│a│≥0,符號“││”是“非負數”的標志;③數a的絕對值只有一個;④處理任何類型的題目,只要其中有“││”出現,其關鍵一步是去掉“││”符號。 二、實數的運算 1.運算法則(加、減、乘、除、乘方、開方) 2.運算定律(五個—加法[乘法]交換律、結合律;[乘法對加法的] 分配律) 3.運算順序:A.高級運算到低級運算;B.(同級運算)從“左” 到“右”(如5÷ 35);C.(有括號時)由“小”到“中”到“大”。 三、應用舉例(略) 附:典型例題 1.已知:a、b、x在數軸上的位置如下圖,求證:│x-a│+│x-b│ =b-a.2.已知:a-b=-2且ab<0,(a≠0,b≠0),判斷a、b的符號。 初三數學知識點 第二章 代數式 ★重點★代數式的有關概念及性質,代數式的運算 ☆內容提要☆ 一、重要概念 分類: 1.代數式與有理式 用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨 的一個數或字母也是代數式。 整式和分式統稱為有理式。 2.整式和分式 含有加、減、乘、除、乘方運算的代數式叫做有理式。 沒有除法運算或雖有除法運算但除式中不含有字母的有理式叫做整式。 有除法運算并且除式中含有字母的有理式叫做分式。 3.單項式與多項式 沒有加減運算的整式叫做單項式。(數字與字母的積—包括單獨的一個數或字母) 幾個單項式的和,叫做多項式。 說明:①根據除式中有否字母,將整式和分式區別開;根據整式中有否加減運算,把單項式、多項式區分開。②進行代數式分類時,是以所給的代數式為對象,而非以變形后的代數式為對象。劃分代數式類別時,是從外形來看。如,=x, =│x│等。 4.系數與指數 區別與聯系:①從位置上看;②從表示的意義上看 5.同類項及其合并 條件:①字母相同;②相同字母的指數相同 合并依據:乘法分配律 6.根式 表示方根的代數式叫做根式。 含有關于字母開方運算的代數式叫做無理式。 注意:①從外形上判斷;②區別:、是根式,但不是無理式(是無理數)。 7.算術平方根 ⑴正數a的正的平方根([a≥0—與“平方根”的區別]); ⑵算術平方根與絕對值 ① 聯系:都是非負數,=│a│ ②區別:│a│中,a為一切實數;中,a為非負數。 8.同類二次根式、最簡二次根式、分母有理化 化為最簡二次根式以后,被開方數相同的二次根式叫做同類二次根式。 滿足條件:①被開方數的因數是整數,因式是整式;②被開方數中不含有開得盡方的因數或因式。 把分母中的根號劃去叫做分母有理化。 9.指數 ⑴(—冪,乘方運算) ① a>0時,>0;②a<0時,>0(n是偶數),<0(n是奇數) ⑵零指數: =1(a≠0) 負整指數: =1/(a≠0,p是正整數) 二、運算定律、性質、法則 1.分式的加、減、乘、除、乘方、開方法則 2.分式的性質 ⑴基本性質: =(m≠0) ⑵符號法則: ⑶繁分式:①定義;②化簡方法(兩種) 3.整式運算法則(去括號、添括號法則) 4.冪的運算性質:① 2 =;② ÷ =;③ =;④ =;⑤ 技巧: 5.乘法法則:⑴單3單;⑵單3多;⑶多3多。 6.乘法公式:(正、逆用) (a+b)(a-b)= (a±b)= 7.除法法則:⑴單÷單;⑵多÷單。 8.因式分解:⑴定義;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分組分解法;E.求根公式法。 9.算術根的性質: =;;(a≥0,b≥0);(a≥0,b>0)(正用、逆用) 10.根式運算法則:⑴加法法則(合并同類二次根式);⑵乘、除法法則;⑶分母有理化:A.;B.;C..11.科學記數法:(1≤a<10,n是整數= 三、應用舉例(略) 四、數式綜合運算(略)初三數學知識點:第三章 統計初步 ★重點★ ☆ 內容提要☆ 一、重要概念 1.總體:考察對象的全體。 2.個體:總體中每一個考察對象。 3.樣本:從總體中抽出的一部分個體。 4.樣本容量:樣本中個體的數目。 5.眾數:一組數據中,出現次數最多的數據。 6.中位數:將一組數據按大小依次排列,處在最中間位置的一個數(或最中間位置的兩個數據的平均數) 二、計算方法 1.樣本平均數:⑴;⑵若,?,,則(a—常數,,?,接近較整的常數a);⑶加權平均數:;⑷平均數是刻劃數據的集中趨勢(集中位置)的特征數。通常用樣本平均數去估計總體平均數,樣本容量越大,估計越準確。 2.樣本方差:⑴;⑵若 , ,?, ,則(a—接近、、?、的平均數的較“整”的常數);若、、?、較“小”較“整”,則;⑶樣本方差是刻劃數據的離散程度(波動大小)的特征數,當樣本容量較大時,樣本方差非常接近總體方差,通常用樣本方差去估計總體方差。 3.樣本標準差: 三、應用舉例(略) 初三數學知識點:第四章 直線形 ★重點★相交線與平行線、三角形、四邊形的有關概念、判定、性質。 ☆ 內容提要☆ 一、直線、相交線、平行線 1.線段、射線、直線三者的區別與聯系 從“圖形”、“表示法”、“界限”、“端點個數”、“基本性質”等方面加以分析。 2.線段的中點及表示 3.直線、線段的基本性質(用“線段的基本性質”論證“三角形兩邊之和大于第三邊”) 4.兩點間的距離(三個距離:點-點;點-線;線-線) 5.角(平角、周角、直角、銳角、鈍角) 6.互為余角、互為補角及表示方法 7.角的平分線及其表示 8.垂線及基本性質(利用它證明“直角三角形中斜邊大于直角邊”) 9.對頂角及性質 10.平行線及判定與性質(互逆)(二者的區別與聯系) 11.常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條直線平行。 12.定義、命題、命題的組成 13.公理、定理 14.逆命題二、三角形 分類:⑴按邊分; ⑵按角分 1.定義(包括內、外角) 2.三角形的邊角關系:⑴角與角:①內角和及推論;②外角和;③n邊形內角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中,3.三角形的主要線段 討論:①定義②33線的交點—三角形的3心③性質 ① 高線②中線③角平分線④中垂線⑤中位線 ⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形 4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質 5.全等三角形 ⑴一般三角形全等的判定(SAS、ASA、AAS、SSS) ⑵特殊三角形全等的判定:①一般方法②專用方法 6.三角形的面積 ⑴一般計算公式⑵性質:等底等高的三角形面積相等。 7.重要輔助線 ⑴中點配中點構成中位線;⑵加倍中線;⑶添加輔助平行線 8.證明方法 ⑴直接證法:綜合法、分析法 ⑵間接證法—反證法:①反設②歸謬③結論 ⑶證線段相等、角相等常通過證三角形全等 ⑷證線段倍分關系:加倍法、折半法 ⑸證線段和差關系:延結法、截余法 ⑹證面積關系:將面積表示出來三、四邊形 分類表: 1.一般性質(角) ⑴內角和:360° ⑵順次連結各邊中點得平行四邊形。 推論1:順次連結對角線相等的四邊形各邊中點得菱形。 推論2:順次連結對角線互相垂直的四邊形各邊中點得矩形。 ⑶外角和:360° 2.特殊四邊形 ⑴研究它們的一般方法: ⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質和判定 ⑶判定步驟:四邊形→平行四邊形→矩形→正方形 ┗→菱形——↑ ⑷對角線的紐帶作用: 3.對稱圖形 ⑴軸對稱(定義及性質);⑵中心對稱(定義及性質) 4.有關定理:①平行線等分線段定理及其推論1、2 ②三角形、梯形的中位線定理 ③平行線間的距離處處相等。(如,找下圖中面積相等的三角形) 5.重要輔助線:①常連結四邊形的對角線;②梯形中常“平移一腰”、“平移對角線”、“作高”、“連結頂點和對腰中點并延長與底邊相交”轉化為三角形。 6.作圖:任意等分線段。 四、應用舉例(略)初三數學知識點 第五章 方程(組) ★重點★一元一次、一元二次方程,二元一次方程組的解法;方程的有關應用題(特別是行程、工程問題) ☆ 內容提要☆ 一、基本概念 1.方程、方程的解(根)、方程組的解、解方程(組) 2.分類: 二、解方程的依據—等式性質 1.a=b←→a+c=b+c 2.a=b←→ac=bc(c≠0) 三、解法 1.一元一次方程的解法:去分母→去括號→移項→合并同類項→ 系數化成1→解。 2.元一次方程組的解法:⑴基本思想:“消元”⑵方法:①代入法 ②加減法四、一元二次方程 1.定義及一般形式: 2.解法:⑴直接開平方法(注意特征) ⑵配方法(注意步驟—推倒求根公式) ⑶公式法: ⑷因式分解法(特征:左邊=0) 3.根的判別式: 4.根與系數頂的關系: 逆定理:若,則以 為根的一元二次方程是:。 5.常用等式: 五、可化為一元二次方程的方程 1.分式方程 ⑴定義 ⑵基本思想: ⑶基本解法:①去分母法②換元法(如,) ⑷驗根及方法 2.無理方程 ⑴定義 ⑵基本思想: ⑶基本解法:①乘方法(注意技巧!)②換元法(例,)⑷驗根及方法 3.簡單的二元二次方程組 由一個二元一次方程和一個二元二次方程組成的二元二次方程組都可用代入法解。 初三數學知識點 六、列方程(組)解應用題 一概述 列方程(組)解應用題是中學數學聯系實際的一個重要方面。其具體步驟是: ⑴審題。理解題意。弄清問題中已知量是什么,未知量是什么,問題給出和涉及的相等關系是什么。 ⑵設元(未知數)。①直接未知數②間接未知數(往往二者兼用)。一般來說,未知數越多,方程越易列,但越難解。 ⑶用含未知數的代數式表示相關的量。 ⑷尋找相等關系(有的由題目給出,有的由該問題所涉及的等量關系給出),列方程。一般地,未知數個數與方程個數是相同的。 ⑸解方程及檢驗。 ⑹答案。 綜上所述,列方程(組)解應用題實質是先把實際問題轉化為數學問題(設元、列方程),在由數學問題的解決而導致實際問題的解決(列方程、寫出答案)。在這個過程中,列方程起著承前啟后的作用。因此,列方程是解應用題的關鍵。 二常用的相等關系 1.行程問題(勻速運動) 基本關系:s=vt ⑴相遇問題(同時出發): + =; ⑵追及問題(同時出發): 若甲出發t小時后,乙才出發,而后在B處追上甲,則 ⑶水中航行:; 2.配料問題:溶質=溶液3濃度 溶液=溶質+溶劑 3.增長率問題: 4.工程問題:基本關系:工作量=工作效率3工作時間(常把工作量看著單位“1”)。 5.幾何問題:常用勾股定理,幾何體的面積、體積公式,相似形及有關比例性質等。 三注意語言與解析式的互化 如,“多”、“少”、“增加了”、“增加為(到)”、“同時”、“擴大為(到)”、“擴大了”、?? 又如,一個三位數,百位數字為a,十位數字為b,個位數字為c,則這個三位數為:100a+10b+c,而不是abc。 四注意從語言敘述中寫出相等關系。 如,x比y大3,則x-y=3或x=y+3或x-3=y。又如,x與y的差為3,則x-y=3。五注意單位換算 如,“小時”“分鐘”的換算;s、v、t單位的一致等。 七、應用舉例(略) 初三數學知識點:第六章 一元一次不等式(組) ★重點★一元一次不等式的性質、解法 ☆ 內容提要☆ 1.定義:a>b、a 2.一元一次不等式:ax>b、ax 3.一元一次不等式組: 4.不等式的性質:⑴a>b←→a+c>b+c ⑵a>b←→ac>bc(c>0) ⑶a>b←→ac ⑷(傳遞性)a>b,b>c→a>c ⑸a>b,c>d→a+c>b+d.5.一元一次不等式的解、解一元一次不等式 6.一元一次不等式組的解、解一元一次不等式組(在數軸上表示解集) 7.應用舉例(略)初三數學知識點 第七章 相似形 ★重點★相似三角形的判定和性質 ☆內容提要☆ 一、本章的兩套定理 第一套(比例的有關性質): 涉及概念:①第四比例項②比例中項③比的前項、后項,比的內項、外項④黃金分割等。 第二套: 注意:①定理中“對應”二字的含義; ②平行→相似(比例線段)→平行。 二、相似三角形性質 1.對應線段?;2.對應周長?;3.對應面積?。 三、相關作圖 ①作第四比例項;②作比例中項。 四、證(解)題規律、輔助線 1.“等積”變“比例”,“比例”找“相似”。 2.找相似找不到,找中間比。方法:將等式左右兩邊的比表示出來。⑴ ⑵ ⑶ 3.添加輔助平行線是獲得成比例線段和相似三角形的重要途徑。 4.對比例問題,常用處理方法是將“一份”看著k;對于等比問題,常用處理辦法是設“公比”為k。 5.對于復雜的幾何圖形,采用將部分需要的圖形(或基本圖形)“抽”出來的辦法處理。 五、應用舉例(略) 初三數學知識點 第八章 函數及其圖象 ★重點★正、反比例函數,一次、二次函數的圖象和性質。 ☆ 內容提要☆ 一、平面直角坐標系 1.各象限內點的坐標的特點 2.坐標軸上點的坐標的特點 3.關于坐標軸、原點對稱的點的坐標的特點 4.坐標平面內點與有序實數對的對應關系 二、函數 1.表示方法:⑴解析法;⑵列表法;⑶圖象法。 2.確定自變量取值范圍的原則:⑴使代數式有意義;⑵使實際問題有 意義。 3.畫函數圖象:⑴列表;⑵描點;⑶連線。 三、幾種特殊函數 (定義→圖象→性質) 1.正比例函數 ⑴定義:y=kx(k≠0)或y/x=k。 ⑵圖象:直線(過原點) ⑶性質:①k>0,?②k<0,? 2.一次函數 ⑴定義:y=kx+b(k≠0) ⑵圖象:直線過點(0,b)—與y軸的交點和(-b/k,0)—與x軸的交點。 ⑶性質:①k>0,?②k<0,? ⑷圖象的四種情況: 3.二次函數 ⑴定義: 特殊地,都是二次函數。 ⑵圖象:拋物線(用描點法畫出:先確定頂點、對稱軸、開口方向,再對稱地描點)。用配方法變為,則頂點為(h,k);對稱軸為直線x=h;a>0時,開口向上;a<0時,開口向下。 ⑶性質:a>0時,在對稱軸左側?,右側?;a<0時,在對稱軸左側?,右側?。 4.反比例函數 ⑴定義: 或xy=k(k≠0)。 ⑵圖象:雙曲線(兩支)—用描點法畫出。 ⑶性質:①k>0時,圖象位于?,y隨x?;②k<0時,圖象位于?,y隨x?;③兩支曲線無限接近于坐標軸但永遠不能到達坐標軸。 四、重要解題方法 1.用待定系數法求解析式(列方程[組]求解)。對求二次函數的解析式,要合理選用一般式或頂點式,并應充分運用拋物線關于對稱軸對稱的特點,尋找新的點的坐標。如下圖: 2.利用圖象一次(正比例)函數、反比例函數、二次函數中的k、b;a、b、c的符號。 六、應用舉例(略) 初三數學知識點 第九章 解直角三角形 ★重點★解直角三角形 ☆ 內容提要☆ 一、三角函數 1.定義:在Rt△ABC中,∠C=Rt∠,則sinA=;cosA=;tgA=;ctgA=.2.特殊角的三角函數值: 0° 30° 45° 60° 90° sinα cosα tgα / ctgα / 3.互余兩角的三角函數關系:sin(90°-α)=cosα;? 4.三角函數值隨角度變化的關系 5.查三角函數表 二、解直角三角形 1.定義:已知邊和角(兩個,其中必有一邊)→所有未知的邊和角。 2.依據:①邊的關系: ②角的關系:A+B=90° ③邊角關系:三角函數的定義。 注意:盡量避免使用中間數據和除法。 三、對實際問題的處理 1.俯、仰角: 2.方位角、象限角: 3.坡度: 4.在兩個直角三角形中,都缺解直角三角形的條件時,可用列方程的辦法解決。 四、應用舉例(略) 初三數學知識點 第十章 圓 ★重點★①圓的重要性質;②直線與圓、圓與圓的位置關系;③與圓有關的角的定理;④與圓有關的比例線段定理。 ☆ 內容提要☆ 一、圓的基本性質 1.圓的定義(兩種) 2.有關概念:弦、直徑;弧、等弧、優弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。 3.“三點定圓”定理 4.垂徑定理及其推論 5.“等對等”定理及其推論 5.與圓有關的角:⑴圓心角定義(等對等定理) ⑵圓周角定義(圓周角定理,與圓心角的關系) ⑶弦切角定義(弦切角定理) 二、直線和圓的位置關系 1.三種位置及判定與性質: 2.切線的性質(重點) 3.切線的判定定理(重點)。圓的切線的判定有⑴?⑵? 4.切線長定理 三、圓換圓的位置關系 1.五種位置關系及判定與性質:(重點:相切) 2.相切(交)兩圓連心線的性質定理 3.兩圓的公切線:⑴定義⑵性質 四、與圓有關的比例線段 1.相交弦定理 2.切割線定理 五、與和正多邊形 1.圓的內接、外切多邊形(三角形、四邊形) 2.三角形的外接圓、內切圓及性質 3.圓的外切四邊形、內接四邊形的性質 4.正多邊形及計算 中心角: 內角的一半:(右圖) (解Rt△OAM可求出相關元素,、等) 六、一組計算公式 1.圓周長公式 2.圓面積公式 3.扇形面積公式 4.弧長公式 5.弓形面積的計算方法 6.圓柱、圓錐的側面展開圖及相關計算 七、點的軌跡 六條基本軌跡 八、有關作圖 1.作三角形的外接圓、內切圓 2.平分已知弧 3.作已知兩線段的比例中項 4.等分圓周: 4、8; 6、3等分 九、基本圖形 十、重要輔助線 1.作半徑 2.見弦往往作弦心距 3.見直徑往往作直徑上的圓周角 4.切點圓心莫忘連 5.兩圓相切公切線(連心線) 6.兩圓相交公共弦 初三數學知識點歸納人教版有哪些?初中數學學習是對學生邏輯計算能力的培養,學好初三數學的關鍵就在于要適時適量地進行總結歸類,一起來看看初三數學知識點歸納人教版,歡迎查閱! 初三數學知識點總結 一、直線、相交線、平行線 1.線段、射線、直線三者的區別與聯系 從圖形、表示法、界限、端點個數、基本性質等方面加以分析。 2.線段的中點及表示 3.直線、線段的基本性質(用線段的基本性質論證三角形兩邊之和大于第三邊) 4.兩點間的距離(三個距離:點-點;點-線;線-線) 5.角(平角、周角、直角、銳角、鈍角) 6.互為余角、互為補角及表示方法 7.角的平分線及其表示 8.垂線及基本性質(利用它證明直角三角形中斜邊大于直角邊) 9.對頂角及性質 10.平行線及判定與性質(互逆)(二者的區別與聯系) 11.常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條直線平行。 12.定義、命題、命題的組成13.公理、定理 14.逆命題二、三角形 分類:⑴按邊分; ⑵按角分 1.定義(包括內、外角) 2.三角形的邊角關系:⑴角與角:①內角和及推論;②外角和;③n邊形內角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中,3.三角形的主要線段 討論:①定義②線的交點-三角形的心③性質 ① 高線②中線③角平分線④中垂線⑤中位線 ⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形 4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質 5.全等三角形 ⑴一般三角形全等的判定(SAS、ASA、AAS、SSS) ⑵特殊三角形全等的判定:①一般方法②專用方法 6.三角形的面積 ⑴一般計算公式⑵性質:等底等高的三角形面積相等。 7.重要輔助線 ⑴中點配中點構成中位線;⑵加倍中線;⑶添加輔助平行線 8.證明方法 ⑴直接證法:綜合法、分析法 ⑵間接證法-反證法:①反設②歸謬③結論 ⑶證線段相等、角相等常通過證三角形全等 ⑷證線段倍分關系:加倍法、折半法 ⑸證線段和差關系:延結法、截余法 ⑹證面積關系:將面積表示出來三、四邊形 分類表: 1.一般性質(角) ⑴內角和:360 ⑵順次連結各邊中點得平行四邊形。 推論1:順次連結對角線相等的四邊形各邊中點得菱形。 推論2:順次連結對角線互相垂直的`四邊形各邊中點得矩形。 ⑶外角和:360 2.特殊四邊形 ⑴研究它們的一般方法: ⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質和判定 ⑶判定步驟:四邊形平行四邊形矩形正方形 ⑷對角線的紐帶作用: 3.對稱圖形 ⑴軸對稱(定義及性質);⑵中心對稱(定義及性質) 4.有關定理:①平行線等分線段定理及其推論1、2 ②三角形、梯形的中位線定理 ③平行線間的距離處處相等。(如,找下圖中面積相等的三角形) 5.重要輔助線:①常連結四邊形的對角線;②梯形中常平移一腰、平移對角線、作高、連結頂點和對腰中點并延長與底邊相交轉化為三角形。 6.作圖:任意等分線段。 初三數學知識點歸納大全 第四章直線形 ★重點★相交線與平行線、三角形、四邊形的有關概念、判定、性質。 ☆內容提要☆ 一、直線、相交線、平行線 1.線段、射線、直線三者的區別與聯系 從“圖形”、“表示法”、“界限”、“端點個數”、“基本性質”等方面加以分析。 2.線段的中點及表示 3.直線、線段的基本性質(用“線段的基本性質”論證“三角形兩邊之和大于第三邊”) 4.兩點間的距離(三個距離:點-點;點-線;線-線) 5.角(平角、周角、直角、銳角、鈍角) 6.互為余角、互為補角及表示方法 7.角的平分線及其表示 8.垂線及基本性質(利用它證明“直角三角形中斜邊大于直角邊”) 9.對頂角及性質 10.平行線及判定與性質(互逆)(二者的區別與聯系) 11.常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條直線平行。 12.定義、命題、命題的組成13.公理、定理 14.逆命題二、三角形 分類:⑴按邊分; ⑵按角分 1.定義(包括內、外角) 2.三角形的邊角關系:⑴角與角:①內角和及推論;②外角和;③n邊形內角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中,3.三角形的主要線段 討論:①定義②__線的交點―三角形的×心③性質 ①高線②中線③角平分線④中垂線⑤中位線 ⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形 4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質 5.全等三角形 ⑴一般三角形全等的判定(SAS、ASA、AAS、SSS) ⑵特殊三角形全等的判定:①一般方法②專用方法 6.三角形的面積 ⑴一般計算公式⑵性質:等底等高的三角形面積相等。 7.重要輔助線 ⑴中點配中點構成中位線;⑵加倍中線;⑶添加輔助平行線 8.證明方法 ⑴直接證法:綜合法、分析法 ⑵間接證法―反證法:①反設②歸謬③結論 ⑶證線段相等、角相等常通過證三角形全等 ⑷證線段倍分關系:加倍法、折半法 ⑸證線段和差關系:延結法、截余法 ⑹證面積關系:將面積表示出來三、四邊形 分類表: 1.一般性質(角) ⑴內角和:360° ⑵順次連結各邊中點得平行四邊形。 推論1:順次連結對角線相等的四邊形各邊中點得菱形。 推論2:順次連結對角線互相垂直的四邊形各邊中點得矩形。 ⑶外角和:360° 2.特殊四邊形 ⑴研究它們的一般方法: ⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質和判定 ⑶判定步驟:四邊形→平行四邊形→矩形→正方形 ┗→菱形――↑ ⑷對角線的紐帶作用: 3.對稱圖形 ⑴軸對稱(定義及性質);⑵中心對稱(定義及性質) 4.有關定理:①平行線等分線段定理及其推論1、2 ②三角形、梯形的中位線定理 ③平行線間的距離處處相等。(如,找下圖中面積相等的三角形) 5.重要輔助線:①常連結四邊形的對角線;②梯形中常“平移一腰”、“平移對角線”、“作高”、“連結頂點和對腰中點并延長與底邊相交”轉化為三角形。 6.作圖:任意等分線段。 初中數學知識點總結歸納 代數部分:有理數、無理數、實數整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程組、二元二次方程組、分式方程、一元一次不等式函數(一次函數、二次函數、反比例函數) 幾何部分:線段、角相交線、平行線三角形、四邊形、相似形、圓。 1、實數的分類 有理數:整數(包括:正整數、0、負整數)和分數(包括:有限小數和無限環循小數)都是有理數。如:-3,0.231,0.737373...無理數:無限不環循小數叫做無理數如:π,-,0.1010010001...(兩個1之間依次多1個0)。 實數:有理數和無理數統稱為實數。 2、無理數 在理解無理數時,要抓住“無限不循環”這一時之,它包含兩層意思:一是無限小數;二是不循環.二者缺一不可.歸納起來有四類: (1)開方開不盡的數,如等; (2)有特定意義的數,如圓周率π,或化簡后含有π的數,如+8等; (3)有特定結構的數,如0.1010010001...等; (4)某些三角函數,如sin60o等。 注意:判斷一個實數的屬性(如有理數、無理數),應遵循:一化簡,二辨析,三判斷.要注意:“神似”或“形似”都不能作為判斷的標準.3、非負數:正實數與零的統稱。(表為:x≥0) 常見的非負數有: 性質:若干個非負數的和為0,則每個非負擔數均為0。 4、數軸:規定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,要注意上述規定的三要素缺一不可)。 解題時要真正掌握數形結合的思想,理解實數與數軸的點是一一對應的,并能靈活運用。 ①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸(“三要素”)。 ②任何一個有理數都可以用數軸上的一個點來表示。 ③如果兩個數只有符號不同,那么我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。 作用:A.直觀地比較實數的大小;B.明確體現絕對值意義;C.建立點與實數的一一對應關系。 5、相反數 實數與它的相反數時一對數(只有符號不同的兩個數叫做互為相反數,零的相反數是零),從數軸上看,互為相反數的兩個數所對應的點關于原點對稱,如果a與b互為相反數,則有a+b=0,a=-b,反之亦成立。 即:(1)實數的相反數是。第三篇:西點課業--初三數學上冊知識點總結
第四篇:初三數學知識點總結和歸納
第五篇:初三數學知識點歸納人教版