第一篇:數學五下《郵票的張數》教學設計及反思
《郵票的張數》教學設計
岳莊小學
解小麗
教學目標:
1.通過解決姐、弟二人的郵票的張數問題,進一步理解方程的意義。
2.通過解決問題的過程,學會解形如2x-x=3這樣的方程。
3.在列方程的過程中,發展抽象概括能力。
教學重難點:
1.尋找等量關系,畫出合理的線段圖。
2.解方程的書寫格式。教材分析:
教材首先呈現了一家人交流姐弟二人集郵的情況的情境圖,并提供了三個數學信息和一個問題,以引導學生根據有關信息解決問題。然后,選用兩個信息“姐姐郵票的張數是弟弟的3倍”和“我和姐姐一共180張郵票”,來引導學生通過畫線段圖分析數量關系,找出“姐姐的張數+弟弟的張數=180”的等量關系。
教學過程:
一、課程導入:
師:同學們,在上課之前我想調查一下你們都有哪些興趣愛好呢? 生:我的興趣是……
師:今天老師要向同學們介紹一家人,他們家人的興趣愛好呢,就是集郵。其中的姐姐和弟弟都收集了一些有票,現在就來考考大家,幫忙算一算。
出示教學情景圖。
師:從圖上你們能夠得出哪些數學信息呢?
生:我能夠的得出的數學信息是:
1、姐姐的郵票張數是弟弟的3倍;
2、姐姐和弟弟一共有180張郵票。
師:那根據這些數學信息你能夠提出什么數學問題呢? 生:我想知道姐姐和弟弟各有多少張郵票?
那好,這節課我們就來一起探究怎么來解決這個問題。
二、自主學習:
請同學們根據你找出的數學信息,找出等量關系,完成導學單第一題。(1)
根據姐姐的郵票數量是弟弟郵票數量的3倍,寫出數量關系: 姐姐的郵票數量=弟弟的郵票數量×3 根據姐姐和弟弟一共有180張郵票,寫出數量關系: 姐姐的郵票數量+弟弟的郵票數量=180(2)你能用線段圖表示數量關系嗎?(學生嘗試用線段圖來表示等量關系)
三、小組討論:
剛才同學們都通過自學找出了等量關系,現在同學們就小組間交流一下你們找出的數量關系,比一比誰的等量關系更準確,總結出你們小組的等量關系。
(學生小組之間討論自己找出的等量關系,交流想法。)
四、交流展示。
師:剛才同學們通過自學和小組之間的討論,已經得出了自己的等量關系,現在就請一個小組的同學來把你們小組的討論結果向大家展示一下。
(學生交流自己找出的等量關系,包括文字和圖形的等量關系。)師:能不能根據等量關系找出解決這個問題的方法呢?小組之間繼續交流。把你們的方法寫在導學單第二題上。
五、歸納總結:
師:現在請同學們來說一說你選擇的解題方法。
學生先說自己的想法,教師帶著學生板書解方程的過程,提出注意事項。生:因為姐姐和弟弟的郵票張數都不知道,所以設弟弟的郵票有X張,那么姐姐的郵票就有3X張。根據姐姐的郵票張數+弟弟的郵票張數=180張,可以列出方程:X+3X=180。
師:對于這個方程你們會解嗎?3X就是3個X,加上1個X,就是4個X。所以就是4X=180,X=180÷4,X=45。現在我們求出了X,相當于求出了誰的郵票張數?
生:弟弟的。
師:那我們還要求出姐姐的郵票張數該怎么來求呢? 生:姐姐的郵票張數是3X=3×45=135 師:注意一下,這里的135后面有沒有單位? 生:沒有。
師:為什么呢?因為我們設X的時候就已經設了單位了,所以在最后的結果的時候就不需要再帶單位了。
師:解完方程之后,我們怎么判斷我們算得對不對呢?這就需要我們多做一步,叫做方程的檢驗。所以,養成好習慣,把你計算出來的未知數的之代入方程中去檢驗一次。(口頭檢驗)
師:剛才那個小組選擇了解方程,同時也說了他們的想法是設弟弟的郵票張數有X張,有沒有同學有不同的想法呢?
生;可以。(學生可能提出設姐姐的為X張。帶著學生理解這個思路,比較兩種設未知數的方式,總結出怎樣設未知數更好解方程。)
(師:那如果設姐姐的郵票有X張,那弟弟又有多少張呢? 生:弟弟有
X張。師:你們列出方程是: 生:
師:比較一下這兩個方程,覺得哪一個方程更簡單? 生:第一個。因為都是整數,更好計算。
師:所以,以后我們在遇到這種類似的問題的時候,一般設1分的量為X,方便我們來解方程。)
師:剛才我們一起探索了用方程來解決問題的過程,現在你們能總結出來嗎?
生:
1、找出等量關系;
2、設未知數;
3、根據等量關系列方程;
4、解方程;
5、寫答語。
六、變式訓練:
現在呢,在這個情景下,我們改變其中的一個條件,把“姐姐和弟弟一共有180張郵票”改成“姐姐比弟弟多90張”,現在你們能夠說出這是什么樣的一個問題了嗎?你們能夠仿照上一個問題的解題思路來解決這個問題嗎?請完成導學單第三題。
學生完成后,展示。
七、解方程訓練:
師:剛才經過我們的探索,我們了解了一種新的方程,就是類似于幾個x加、減幾個x的方程,你們都會解了嗎?現在就來試試吧。完成導學單第四題。
2χ+χ=3
4-= 完成后,請學生說出自己的解方程的思路。
八、拓展延伸:
剛才同學們經歷了探索用方程解決問題的方法,現在挑戰來了,你們能用今天學到的內容解決這個問題嗎?獨立完成導學單第五題。
籃球、足球、排球共有120個,籃球的個數是足球的2倍,排球的個數師足球的3倍,求籃球、足球、排球各有多少個?
八、課堂總結:
這節課咱們一起探索了列方程解有兩個未知量這類的問題,以后同學們解決數學問題呢又多了一種方法。所以在這里就祝愿同學們在學習的路上快樂成長,天天進步。
《郵票的張數》教學反思
岳莊小學
解小麗
數學課程標準在“解決問題”的課程目標中對“解決問題的策略”教學提出了明確要求:形成解決問題的一些基本策略,體驗解決問題策略的多樣性。任何教材都是繼承與創新的統一,任何先進的教學理念也都是在繼承的基礎上進行創新。“解決問題策略”的教學也是一次“揚棄”的過程。教師要深入解讀教材、領會教材意圖,尋找傳統與改革的最佳切合點,在充分了解學生已有的知識經驗與習慣的基礎上,找準提高學生解決問題能力的切入點,使學生積累起解決問題的策略,切實提高解決問題教學的實效。
1.充分發揮情境的作用,加強收集、整理信息和提出問題能力的培養。收集信息是解決問題的第一步,也是必需的環節。新世紀小學數學教材中的解決問題所呈現的形式是以圖畫式、對話式為主,學生面對的不再是現成的“題”,而是隱含著條件、問題的彩色圖片和人物對話。無疑,這增加了解決問題的吸引力,但同時更增加了學生審題的難度。因此,在充分利用情境圖的同時,必須處理好“觀察”與“收集”的關系:收集信息是觀察的目的,且信息的內容要跟數學有關。另外教材呈現的條件和所要解決的問題之間,往往并非一一對應的關系,常有多余的條件(如本案例)。因此,在整理信息時,要引導學生對信息進行選擇、判斷、比較,找到信息之間的聯系,引導學生有理、有序地思考,如第二次教學中教師一句簡單的提問“你準備借助哪兩個信息來解決這個問題”就能達到較好的效果。
2.重視解決問題的思路,把數量關系的形成過程和運用過程有機統一。理清解題思路是解決問題時的重要方法,它一方面是曾經的解題經驗,另一方面是繼續解題可遵循的途徑。數學教學中解決實際問題,其價值決不限于得出問題的結論或答案,更是通過解題思路的形成發展數學思維水平。因此,在解決問題策略的教學中,我們要注重分析數量關系和解題思路的訓練,使學生對問題的本質有清晰的理解,尋求解答問題的有效途徑。對數量關系的分析,傳統應用題教學中仍有許多經驗值得我們借鑒。例如,分析法、綜合法、作圖法等等,這些對提高學生思維能力和解決問題能力十分有幫助。并且,這些基本的方法有別于針對解決某類典型題的單項技能技巧,具有廣泛的基礎性、遷移性和普適性,是解決任何問題都需要具備的最基本的能力。因此,在教學中,我們仍要重視讓學生運用“綜合思維”及“分析思維”對一些常規問題進行比較完整的“說理訓練”,如第二次教學中學生的交流環節“誰來把你們組的想法與大家分享一下”,讓學生在對數量關系的分析中說出解題思路,通過這種“出聲的思維”來暴露學生的思維過程、強化思維成果,從而發展思維能力。
3.著力體驗和積累解決問題的策略,培養策略意識。
解決問題的策略是解決問題的計策與謀略,是對解決問題方法、手段的思考與選擇運用,是在解決問題的活動中形成和積累的。因此,在教學時應充分挖掘教材的思維因素,鼓勵學生用自己的方法進行思考,著力引導學生體驗和積累解決問題的方法與經驗,從而幫助學生形成策略。如本案例中的“估一估,姐姐和弟弟各有多少張郵票”“說一說,你是怎樣想的”“為了解決這個問題,你準備采用哪些方法”“問題的解符合實際嗎”。
課程標準提倡“回顧與再認”,給我們指出了形成解題思路的教學方法。我們要把它作為解決實際問題教學的一個重要環節,經常組織學生回顧再認,如:“請大家認真想想:解決這個問題,我們用到了哪些方法?這些方法之間有什么聯系嗎?你從中發現了什么?”讓學生對知識的形成過程進行梳理、反思與提升,使學生在梳理與反思的過程中逐步學會自我監控,從學會上升到會學與求新。
第二篇:郵票的張數教學反思
《郵票的張數》教學反思
一、循循善誘,做好解題思路的引導工作.人人都應獲得地探究問題的方法。課堂上,學生經歷了閱讀數學信息——提出數學問題——尋找數量關系——嘗試用線段圖表示情境圖信息——思考設哪個未知量為x最合適——列方程、解方程、口頭驗證、作答的解題過程。解題策略力求做到引導學生數形結合(線段圖表示關系式);引領學生解方程,要求學生對每一步做解釋,學生通過口頭的表達,理解3X +X=180是根據前面尋找的數量關系“姐姐的張數+弟弟的張數=180”列出的方程,并且突破3X +X表示3個X加上一個X等于4個X即4X,這樣4X=180就是前一節課學習的內容了。如果課上,我能指導學生抓住關鍵條件“姐姐的郵票是弟弟的3倍”先讓學生思考:怎樣用線段圖表示這句話的意思?當學生口述自己的想法后,我再放手讓學生自己嘗試畫一畫,學生匯報時能及時追問學生你是怎樣想的,讓生把自己的想法說出來,及時點撥:畫線段圖理解題意是解決求兩個未知數的應用題的好方法。這樣學生對于等下理解為什么用X表示一倍量的弟弟的張數,3X就是幾倍量的姐姐的張數就會簡單多了,達到數形緊密配合。
二、積極調動,創造和諧輕松的課堂氛圍。
整節課,我能夠做到及時評價,并且評價語多樣,針對性強。當學生主動地獲得信息和發現問題,這時正是引導學生獨立思考與自主探究的最佳時機,因此我評價到:老師發現同學們從一家人的對話中獲得非常有價值觀的信息,也提出了很值得我們去探究的問題;當學生畫出不同的線段圖時,我讓學生之間互相評價,學生提出了要注意標明線段圖表示的是什么;當學生解題過程中遇到困難時,我就鼓勵他們可以同桌交流,還不確定時可以前后桌討論,給他們一個自己解決問題的空間。
三、人文滲透,豐富數學課堂的內涵與外延。
學生知道郵票在寄信時候發揮作用,但本節課學生欣賞了幾組圖案精美、富有紀念意義的郵票,滲透郵票還具有觀賞和收藏的價值,因此吸引了不少郵票愛好者收集郵票;課堂上學生不敢大膽發言,我并不責備他們,而是親切的鼓勵:回答錯了也沒關系,我們有很多同學可以幫助你。教學不足:
首先,教學過程時間分配把握不到位,致使前松后緊,不利于知識的拓展與延伸,學生并沒有完全掌握求兩個未知數的應用題的方法,這主要是我課堂教學經驗還不夠熟練和豐富,收放做得不夠好。
再次,用方程解決實際問題,學生剛剛接觸,比較陌生,數量關系對于用方程解決數學問題很重要,但是如何尋找這個關系式,我點撥得不夠好,導致學生解決這類問題仍有一定難度。
第三篇:《郵票的張數》教學反思
《郵票的張數》教學反思
《數學課程標準》在“課程實施建議”中明確指出:“數學教學要緊密聯系學生的生活實際,從學生的生活經驗和已有知識出發,創設有趣的情境?”《郵票的張數》這一課,我首先從學生熟悉的一家人談話—集郵情況出發,創設了問題情境,讓學生在這個問題情境獲得必要的信息,然后根據問題選擇能解決這個問題所必須的條件。然后針對不同學生的生活經驗,我讓他們自主選擇,然后再讓學生來決定哪些題是能解決這個問題的?將“問題情境”置于學生的最近發展區,這樣學生的興趣被激發了,思維更加活躍,同時也為進一步探究新知是做好了知識上和心理上的準備。
在本節課,我充分尊重了學生的個性差異,為學生的交流、研討提供了充裕的時間;對學生列方程的方法的選擇,不是強求一致,而是通過列不同的等量關系式,然后進行交流、比較等,讓學生經歷、體會、感悟,再讓學生自主選擇合適的列方程的方法。這樣設計有利于暴露學生思維過程,從而使不同的學生都能得到發展。
在本節課教學時,我并沒有為了一味體現新理念而開展合作學習,而是對學生能獨立解決的問題倡導自主探究,只有學生遇到困難需要幫助時,或在產生想法需要與他人探討時,才倡導合作與交流。教學列方程解應用題時,我是放手先讓學生自己嘗試列方程來解,在這個嘗試過程中,學生就會碰到不知是設弟弟的郵票張數還是設姐姐郵票張數為x張好,還有找怎樣的等量關系來列方程等問題,他們就需要別人的幫助,因此,他們就會自覺地進行合作交流。先有對立思考,合作與交流才顯得更有價值。
第四篇:郵票的張數教學設計
郵票的張數
教學目標:
1、引導學生根據教材中的具體情況,學會形如“aⅹ± ⅹ=b”的方程,進一步理解方程的意義。
2.會用方程解決簡單的實際問題。
教學重點:學會形如“aⅹ±ⅹ=b”的方程
進一步理解方程的意義,學會形如“aⅹ±ⅹ=b”的方程。
教學難點:
會用方程解決簡單的實際問題。
教學用具:
相應課件。
教學過程:
一、創設情境,引入新課。
師:同學們,你們都有什么愛好?(師生交流)
引出:有一對姐弟,他們的愛好是集郵,下面請同學們欣賞她們集的郵票。
課件出示主題圖:指生讀圖中信息。
二、探究新知。
1、獲取數學信息,提出問題。
1)提問:從這幅圖中,你了解了哪些數學信息?
2)根據這些信息,你能提出一個什么數學問題? 根據學生回答出示:弟弟和姐姐各有多少張郵票?
2、分析信息,尋找等量關系。
1)從圖中兩個信息中,你能用方程求出結果嗎?
師引導:列方程解決問題的關鍵是什么?(找出題中的等量關系式)你能用畫圖的方法找出題中的等量關系是嗎?學生嘗試畫圖。
3)匯報畫圖方法:(用方塊畫圖;用線段圖畫、、、、、)教師把學生的畫法展示到黑板。
3、你能根據上面的圖說出等量關系是嗎?
1)姐姐的郵票張數+弟弟的郵票張數=180張
2)姐姐的郵票張數=弟弟的郵票張數×3
4、師提問:在用方程解決這個問題時應該設誰為ⅹ,另一個量怎樣表示?
5、列方程解決問題。
1)選擇合適的等量關系式,列出方程,嘗試解答。學生獨立列方程。
2)小組交流,說出自己的解題思路。
3)匯報板書解題過程。
4)思考:想一想,解題時應注意什么? A、設少的為ⅹ。
B、解題時注意ⅹ和3ⅹ合并成4ⅹ.6、鞏固提升。
把“姐姐和弟弟一共有180張郵票”改為“姐姐比弟弟多90張郵票”,可以怎樣列方程?
學生獨立思考,分析數量關系,和同伴說說自己的解題思路。學生獨立列方程解決問題。反饋匯報。師板書解題過程。
三、鞏固練習。
1、完成教材70頁第1題。
2、完成第70頁第3題。
學生先獨立完成,根據做題情況講解。
3、完成第3題。
四、課堂小結。這節課你有什么收獲?
五、1)方塊圖
2)線段圖
解:設弟弟有ⅹ張郵票,階級有3ⅹ張郵票。
ⅹ+3ⅹ=180 4ⅹ=180 ⅹ=45
3ⅹ=3×45=135 答:-------------。
板書設計:
郵票的張數
第五篇:《郵票的張數》教學設計
新北師大版小學五年級下冊數學
《郵票的張數》教學設計
授課人:余水秀
教學目標:
1、通過解決姐弟二人的郵票的張數問題,理解方程的意義,學會列方程解決相關的實際問題。
2、通過解決實際問題過程,學會解形如 2x-x=3的方程。重點、難點 :
1、重點:學會解2x-x=3這樣形式的方程。
2、難點:列方程解決問題。教學步驟 :
一、談話引入
1、同學們,你們都有哪些愛好呢?能和老師交流一下嗎?(生自由說說)
2、師揭題并板書——郵票的張數。
二、創設情境,解決問題
1、出示姐弟談論郵票圖并讓學生說一說圖上告訴我們哪些信息?
(生答)
2、根據圖上信息你能提出什么數學問題?(生答)3、師出示問題,學生根據老師的要求小組討論,解決問題(1)、找等量關系:弟弟的郵票數×3=姐姐的郵票數
姐姐的張數+弟弟的張數=180(2)、列方程解決問題:
解:設弟弟有x張郵票,姐姐有3x張郵票。
x+3x=180
想:一個x與3個x合起來就是4個x 4x =180
x=45
姐姐:3x=45×3=135(張)
答:弟弟有45張郵票,姐姐有135張郵票。
三、拓展延伸:用方程解決實際問題:
1、如果利用姐姐比弟弟多90張的條件,可以怎樣列方程呢?
學生單獨完成,個別匯報。
(匯報要求:說一說你是根據哪個等量關系列的方程。)2、小結列方程解決問題的一般步驟: A:弄清題意,找出題中的等量關系 B:設未知數,列方程 C:解方程 D:寫出答案
(注意:在列方程的過程中,如果有兩個未知量,需要選擇設一個未知量設為x,在根據兩個未知量之間的關系,用字母表示另一個未知量。在解方程的過程中,比如:需要用到“一個x與3個x合起來就是4個x”。)
四、運用新知,用方程解決實際問題:
1、幻燈片出示題目,學生獨立解決。
2、課本70頁的解方程,學生獨立完成,集體匯報。
五、課堂總結
今天這節課我們學了什么內容,你學到了什么,還有哪些疑問?
板書設計 :
郵票的張數
解:設弟弟有 x 張郵票,姐姐有3x 張郵票。
x+3x=180 4x=180 x=45
姐姐:3x=45×3=135(張)
答:弟弟有45張郵票,姐姐有135張郵票。