第一篇:例談?wù)叶ɡ怼⒂嘞叶ɡ淼膽?yīng)用
龍源期刊網(wǎng) http://.cn
例談?wù)叶ɡ怼⒂嘞叶ɡ淼膽?yīng)用
作者:姜如軍
來源:《理科考試研究·高中》2013年第08期
答:渡輪實際行駛的速度約為13.5 km/h,實際行駛方向與水流方向約成105°.點評根據(jù)平行四邊形法則作圖,從而構(gòu)造數(shù)學(xué)模型,集中了實際問題中的條件與目標,將實際問題轉(zhuǎn)化為求解三角形問題.先由余弦定理確定AC的長,再用正弦定理求出∠ACB,最后過渡到∠BAC.運用正弦定理和余弦定理解決實際問題,關(guān)鍵是根據(jù)題意構(gòu)造適當(dāng)?shù)娜切?如果知道兩邊和夾角,則可先由余弦定理求出角的對邊,再由正弦定理求出另外兩個角.如果已知兩邊及其中一邊的對角,則先由正弦定理求出另一條邊的對角,再由三角形的內(nèi)角和為180°求出第三個角,最后用正弦定理可以求出第三條邊(當(dāng)然也可用余弦定理求解,但正弦定理更為直接).上述求解過程說明,求解三角形,一定要注意已知什么;由已知可以求得什么;目標是什么;要求出目標值需要知道什么;搞清楚這些問題后,就可以確定求解的“序”了.另外,在運用正弦定理、余弦定理的同時,還應(yīng)該結(jié)合面積關(guān)系靈活選擇解決途徑.如果建立適當(dāng)?shù)闹苯亲鴺讼担c解析法有機結(jié)合,或運用向量的有關(guān)性質(zhì),可能帶來更為簡便的求解方案,應(yīng)予重視.
第二篇:正弦定理余弦定理[推薦]
正弦定理 余弦定理
一、知識概述
主要學(xué)習(xí)了正弦定理、余弦定理的推導(dǎo)及其應(yīng)用,正弦定理是指在一個三角形中,各邊和它所對角的正弦的比相等.即余弦定理是指三角形任何一邊的平方等于其它兩邊平方的和減去這兩邊與它們夾角的余弦的積的兩倍,即a2=b2+c2-2bccosA,b2=c2+a2-2cacosB, c2=a2+b2-2abcosC.通過兩定理的學(xué)習(xí),掌握正弦定理和余弦定理,并能利用這兩個定理去解斜三角形,學(xué)會用計算器解決解斜三角形的計算問題,熟悉兩定理各自解決不同類型的解三角形的問題.認識在三角形中,已知兩邊和其中一邊的對角解三角形,產(chǎn)生多解的原因,并能準確判斷解的情況.
二、重點知識講解
1、三角形中的邊角關(guān)系
在△ABC中,設(shè)角A、B、C的對邊分別為a、b、c,則有
(1)角與角之間的關(guān)系:A+B+C=180°;
(2)邊與角之間的關(guān)系:
正弦定理:
余弦定理:a2=b2+c2-2bccosA
b2=c2+a2-2accosB
c2=a2+b2-2abcosC
射影定理:a=bcosC+ccosB
b=ccosA+acosC c=acosB+
bcosA
2、正弦定理的另三種表示形式:
3、余弦定理的另一種表示形式:
4、正弦定理的另一種推導(dǎo)方法——面積推導(dǎo)法
在△ABC中,易證明再在上式各邊同時除
以在此方法推導(dǎo)過程中,要注意對
面積公式的應(yīng)用.
例
1、在△ABC中,ab=60, sinB=cosB.面積S=15,求△ABC的三個內(nèi)角. 分析:
在正弦定理中,由
進而可以利用三角函數(shù)之間的關(guān)系進行解題. 解:
可以把面積進行轉(zhuǎn)化,由公式
∴C=30°或150°
又sinA=cosB∴A+B=90°或A-B=90°顯然A+B=90°不可能成立
當(dāng)C=30°時,由A+B=150°,A-B=90°得A=120°B=30°
當(dāng)C=150°時,由A-B=90°得B為負值,不合題意故所求解為A=120°,B=30°,C=30°.例
2、在△ABC中,a、b、c分別是內(nèi)角A、B、C的外邊,若b=2a,B=A+60°,求A的值. 分析:
把題中的邊的關(guān)系b=2a利用正弦定理化為角的關(guān)系,2RsinB=4RsinA,即sinB=2sinA. 解:
∵B=A+60°
∴sinB=sin(A+60°)=sinAcos60°+cosAsin60°
=
又∵b=2a
∴2RsinB=4RsinA,∴sinB=2sinA
例
3、在△ABC中,若tanA︰tanB=a2︰b2,試判斷△ABC的形狀. 分析:
三角形分類是按邊或角進行的,所以判定三角形形狀時一般要把條件轉(zhuǎn)化為邊之間關(guān)系或角之間關(guān)系式,從而得到諸如a+b=c,a+b>c(銳角三角形),a+b<c(鈍角三角形)或sin(A-B)=0,sinA=sinB,sinC=1或cosC=0等一些等式,進而判定其形狀,但在選擇轉(zhuǎn)化為邊或是角的關(guān)系上,要進行探索.
解法一:由同角三角函數(shù)關(guān)系及正弦定理可推得,∵A、B為三角形的內(nèi)角,∴sinA≠0,sinB≠0.
.
∴2A=2B或2A=π-2B,∴A=B或A+B=所以△ABC為等腰三角形或直角三角形.解法二:由已知和正弦定理可得:
整理得a-ac+bc-b=0,即(a-b)(a+b-c)=0,于是a=b或a+b-c=0,∴a=b或a+b=c.∴△ABC是等腰三角形或直角三角形.
5、利用正弦定理和余弦定理判定三角形形狀,此類問題主要考查邊角互化、要么同時化邊為角,要么同時化角為邊,然后再找出它們之間的關(guān)系,注意解答問題要周密、嚴謹.
例
4、若acosA=bcosB,試判斷△ABC的形狀. 分析:
本題既可以利用正弦定理化邊為角,也可以利用余弦定理化角為邊. 解:
解法一:由正弦定理得:2RsinAcosA=2RsinBcosB∴sin2A=sin2B
∴2A=2B或2A+2B=180°∴A=B或A+B=90°
故△ABC為等腰三角形或直角三角形解法二:由余弦定理得
∴a(b+c-a)=b(a+c-b)∴(a-b)(a+b-c)=0∴a=b或a+b=c
故△ABC為等腰三角形或直角三角形.
6、正弦定理,余弦定理與函數(shù)之間的相結(jié)合,注意運用方程的思想.
例
5、如圖,設(shè)P是正方形ABCD的一點,點P到頂點A、B、C的距離分別是
1,2,3,求正方形的邊長.
分析:
本題運用方程的思想,列方程求未知數(shù). 解:
設(shè)邊長為x(1 設(shè)x=t,則1 -5)=16t 三、難點剖析 1、已知兩邊和其中一邊的對角,解三角形時,將出現(xiàn)無解、一解和兩解的情況,應(yīng)分情況予以討論. 下圖即是表示在△ABC中,已知a、b和A時解三角形的各種情況. (1)當(dāng)A為銳角時(如下圖),(2)當(dāng)A為直角或鈍角時(如下圖),也可利用正弦定理進行討論. 如果sinB>1,則問題無解; 如果sinB=1,則問題有一解; 如果求出sinB<1,則可得B的兩個值,但要通過“三角形內(nèi)角和定理”或“大邊對大角”等三角形有關(guān)性質(zhì)進行判斷. 2、用方程的思想理解和運用余弦定理:當(dāng)?shù)仁絘2=b2+c2-2bccosA中含有未知數(shù)時,等式便成為方程.式中有四個量,知道任意三個,便可以解出另一個,運用此式可以求a或b或c或cosA. 3、向量方法證明三角形中的射影定理 在△ABC中,設(shè)三內(nèi)角A、B、C的對邊分別是a、b、c. 4、正弦定理解三角形可解決的類型:(1)已知兩角和任一邊解三角形; (2)已知兩邊和一邊的對角解三角形. 5、余弦定理解三角形可解決的類型:(1)已知三邊解三角形; (2)已知兩邊和夾角解三角形. 6、三角形面積公式: 例 6、不解三角形,判斷三角形的個數(shù). ①a=5,b=4,A=120° ②a=30,b=30,A=50° ③a=7,b=14,A=30° ④a=9,b=10,A=60° ⑤a=6,b=9,A=45° ⑥c=50,b=72,C=135° 解析: ①a>b,A=120°,∴△ABC有一解.②a=b,A=50°<90°,∴△ABC有一解. ③a ④a0 ∴△ABC有兩解. ⑤b>c,C=45°,∴△ABC無解(不存在).⑥b>c,C=135°>90°,又由b>c知∠B>∠C=135°,這樣B+C>180°,∴△ABC無解. 正弦定理、余弦定理練習(xí)題 一、選擇題(共20題,題分合計100分) 1.已知在△ABC中,sinA:sinB:sinC=3:2:4,那么cosC的值為 A.? 14B.14C.23D.?23 2.在△ABC中,a=λ,b= λ,A=45°,則滿足此條件的三角形的個數(shù)是 A.0 個B.1 個C.2個D.無數(shù)個 3.在△ABC中,bcosA=acosB,則三角形為 A.直角三角形B.銳角三角形C.等腰三角形D.等邊三角形 4.已知三角形的三邊長分別為x2 +x+1,x2 -1和2x+1(x>1),則最大角為 A.150°B.120°C.60°D.75° 5.在△ABC中,=1,=2,(+)·(+)=5+23則邊| |等于 A.5B.5-23C.5?2D.5?23 6.在△ABC中,已知B=30°,b=50,c=150,那么這個三角形是 A.等邊三角形B.直角三角形C.等腰三角形D.等腰三角形或直角三角形 7.在△ABC中,若b2 sin2 C+c2 sin2 B=2bccosBcosC,則此三角形為 A.直角三角形B.等腰三角形C.等邊三角形D.等腰直角三角形 8.正弦定理適應(yīng)的范圍是 A.Rt△B.銳角△C.鈍角△D.任意△ 9.已知△ABC中,a=10,B=60°,C=45°,則c= A.10+B.10(-1)C.(3+1)D.103 10.在△ABC中,bsinA<a<b,則此三角形有 A.一解B.兩解C.無解D.不確定 11.三角形的兩邊分別為5和3,它們夾角的余弦是方程5x2 -7x-6=0的根,則三角形的另一邊長為A.52B.2C.16D.4 12.在△ABC中,a2 =b2 +c2 +bc,則A等于 A.60°B.45°C.120 D.30° 13.在△ABC中,則△ABC是 A.銳角三角形B.直角三角形C.鈍角三角形D.任意三角形 14.在△ABC中,a=2,A=30°,C=45°,則△ABC的面積S△ABC等于 A.2B.22C.+1D.(?1)15.已知三角形ABC的三邊a、b、c成等比數(shù)列,它們的對角分別是A、B、C,則sinAsinC等于 A.cos2BB.1-cos2BC.1+cos2BD.1+sin2B 17.在△ABC中,bCosA=acosB,則三角形為 A.直角三角形B.銳角三角形C.等腰三角形D.等邊三角形 18.△ABC中,sin2 A=sin2 B+sin2 C,則△ABC為 A.直角三角形B.等腰直角三角形C.等邊三角形D.等腰三角形 19.△ABC中,A=60°,b=1,這個三角形的面積為,則△ABC外接圓的直徑為 A.B.C.D.20.在△ABC中,,則k為 A.2RB.RC.4RD.(R為△ABC外接圓半徑) 《正弦定理和余弦定理》學(xué)習(xí)成果測評 基礎(chǔ)達標: 1.在△ABC中,a=18,b=24,∠A=45°,此三角形解的情況為() A.一個解B.二個解C.無解D.無法確定 2.在△ABC 中,若a?2,b?c??A的度數(shù)是() A.30°B.45°C.60°D.75° 2223.ΔABC中,若a=b+c+bc,則∠A=() A.60?B.45?C.120?D.30? 4.邊長為5、7、8的三角形的最大角與最小角之和為() A.90°B.120°C.135°D.150° 5.在△ABC中,已知a?3,b?2,B=45?.求A、C及c.06.在?ABC中,若B? 45,c? b?A.7.在?ABC中,已知a?134.6cm,b?87.8cm,c?161.7cm,解三角形.8.在?ABC中,若a2?b2?c2?bc,求A.能力提升: AB的取值范圍是()AC A.(0,2)B.(2,2)C.(2,)D.(,2)9.銳角ΔABC中,若C=2B,則 10.已知在△ABC中,sinA:sinB:sinC=3:2:4,那么cosC的值為()A.? 14B.1 422ABC.?D.銳角ΔABC中,若C=2B,則的取值范圍是 33AC 11.等腰三角形底邊長為6,一條腰長12,則它的外接圓半徑為() 12.在?ABC中,已知三邊a、b、c滿足?a?b?c??a?b?c??3ab,則C=() A.15B.30C.45D.60 13.鈍角?ABC的三邊長為連續(xù)自然數(shù),則這三邊長為()。 A、1、2、3B、2、3、4C、3、4、5D、4、5、6 ???? sinC2?(6?1),則∠A=_______.sinB 5a?b?c?_____.15.在△ABC中,∠A=60°,b=1,c=4,則sinA?sinB?sinC14.在ΔABC中,BC=3,AB=2,16.在△ABC中,∠B=120°,sinA:sinC=3:5,b=14,則a,c長為_____.綜合探究: 17.已知鈍角?ABC的三邊為:a?k,b?k?2,c?k?4,求實數(shù)k的取值范圍.a2?b2sin(A?B)?18.在?ABC中,角A、B、C的對邊分別為a、b、c,證明:.2sinCc 參考答案: 基礎(chǔ)達標: 1.B2.A3.C4.B 5.解析: asinB3sin45?解法1:由正弦定理得:sinA? ??b22 ∴∠A=60?或120? bsinC2sin75?6?2當(dāng)∠A=60?時,∠C=75?,c?; ??sinB2sin45? bsinC2sin15?6?2當(dāng)∠A=120?時,∠C=15?,c?.???sinB2sin45 解法2:設(shè)c=x,由余弦定理b?a?c?2accosB 將已知條件代入,整理:x?x?1?0 解之:x?22226?2 2 222?22)?3b?c?a1?3??2??? 當(dāng)c?時,cosA?2bc26?22(?1)22?2?22?(從而∠A=60?,∠C=75?; ?2時,同理可求得:∠A=120?,∠C=15?.2 bc?6.∵,sinBsinC當(dāng)c? csinBsin45???∴sinC?,b∵0?C?180,∴C?60或C?120 ∴當(dāng)C?60時,A?75; ????? 當(dāng)C?120時,A?15,; 所以A?75或A?15. 7.由余弦定理的推論得: ???? b2?c2?a287.82?161.72?134.62 ?0.5543,?cosA?A?56020?; c2?a2?b2134.62?161.72?87.82 ? cosB?B?32053?; ? C?1800?(A?B)?1800?(56020??32053) 8.∵bc?b2?c2?a2,?0.8398,b2?c2?a21∴由余弦定理的推論得:cosA?? ∵0?A?180,∴A?60.能力提升: 9.C10.A11.C 12.D.由?a?b?c??a?b?c??3ab,得a?b?2ab?c?3ab 222?? a2?b2?c21?,∴由余弦定理的推論得:cosC?2ab2 ∵0?C?180,∴C?60.13.B;只需要判定最大角的余弦值的符號即可。 選項A不能構(gòu)成三角形; ?? 22?32?421???0,故該三角形為鈍角三角形; 選項B中最大角的余弦值為2?2?34 32?42?52 ?0,故該三角形為直角三角形; 選項C中最大角的余弦值為:2?4?3 42?52?621??0,故該三角形為銳角三角形.選項D中最大角的余弦值為2?4?58 14.120? 1516.4綜合探究: 17.∵?ABC中邊a?k,b?k?2,c?k?4,∴a?k?0,且邊c最長,∵?ABC為鈍角三角形 ∴當(dāng)C為鈍角時 a2?b2?c2 ?0,∴cosC?2ab ∴a?b?c?0, 即a?b?c ∴k2?(k?2)2?(k?4)2, 解得?2?k?6,又由三角形兩邊之和大于第三邊:k?(k?2)?k?4,得到k?2,故實數(shù)k的取值范圍:2?k?6.18.證法一:由正弦定理得: 222222 a2?b2sin2A?sin2Bcos2B?cos2A?? c2sin2C2sin2C =?2sin(B?A)sin(B?A)sinCsin(A?B)sin(A?B)==.222sinCsinCsinC 222證法二:由余弦定理得a=b+c-2bccosA,a2?b2c2?2bccosA2b??1??cosA,則22ccc 又由正弦定理得bsinB?,csinC a2?b22sinBsinC?2sinBcosA?1??cosA?∴ 2csinCsinC sin(A?B)?2sinBcosA sinC sinAcosB?sinBcosAsin(A?B)??.sinCsinC sin(A?B)sinAcosB?sinBcosA?證法三:.sinCsinC sinAasinBb?,?,由正弦定理得sinCcsinCc sin(A?B)acosB?bcosA?∴,sinCc? 又由余弦定理得 a2?c2?b2b2?c2?a2a??b?sin(A?B)?sinCc (a2?c2?b2)?(b2?c2?a2)? 22c a2?b2 ?.c2 正弦定理和余弦定理練習(xí) 一、選擇題 1、已知?ABC中,a?4,b?43,A?300,則B=() A.300B.300或1500 C.600D.600或12002、已知?ABC中,AB?6,A?300,B?1200,則S?ABC?() A.9B.18C.93D.1833、已知?ABC中,a:b:c?1:3:2,則A:B:C?() A.1:2:3B.2:3:1C.1:3:2D.3:1:24、已知?ABC中,sinA:sinB:sinC?k:(k?1):2k(k?0),則k的取值范圍是() A.?2,???B.???,0?C.二、填空題 1、已知?ABC中,B?300,AB?23,AC?2,則S?ABC? 2、已知?ABC中,b?2csinB,則角 3、設(shè)?ABC的外接圓的半徑為R,且AB?4,C?450,則R= 4、已知S?ABC?32,b?2,c?3,則角1??,0???2??D.?1?,????2?? A= 5、已知?ABC中,B?450,C?600,a?2(3?1),則S?ABC? 三、簡答題 01、在?ABC中,若B?30,AB?23,AC?2,求S?ABC.2、已知?ABC中,C?60,BC?a,AC?b,a?b?6.(1)寫出?ABC的面積S與a的函數(shù)關(guān)系式;(2)當(dāng)a等于多少時,Smax?并求出Smax.23、已知?ABC中,a?a?2(b?c),a?2b?2c?3,若sinC:sinA?4:,求a,b,c.04、a,b,c是?ABC的三內(nèi)角A,B,C的對邊,4sin (1)求角A;(2)若a?3,b?c?3,2B?C2?cos2A?72.求b,c的值.第三篇:正弦余弦定理應(yīng)用定理
第四篇:《正弦定理和余弦定理》測試卷
第五篇:正弦定理余弦定理練習(xí)