久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

正弦定理與余弦定理的證明

時(shí)間:2019-05-15 07:58:52下載本文作者:會(huì)員上傳
簡(jiǎn)介:寫寫幫文庫小編為你整理了多篇相關(guān)的《正弦定理與余弦定理的證明》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《正弦定理與余弦定理的證明》。

第一篇:正弦定理與余弦定理的證明

在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,則有

a/sinA=b/sinB=c/sinC=2R(R為三角形外接圓的半徑)

正弦定理(Sine theorem)

(1)已知三角形的兩角與一邊,解三角形

(2)已知三角形的兩邊和其中一邊所對(duì)的角,解三角形

(3)運(yùn)用a:b:c=sinA:sinB:sinC解決角之間的轉(zhuǎn)換關(guān)系直角三角形的一個(gè)銳角的對(duì)邊與斜邊的比叫做這個(gè)角的正弦。

證明

步驟1

在銳角△ABC中,設(shè)BC=a,AC=b,AB=c。作CH⊥AB垂足為點(diǎn)HCH=a·sinB

CH=b·sinA

∴a·sinB=b·sinA

得到a/sinA=b/sinB

同理,在△ABC中,b/sinB=c/sinC

步驟2.證明a/sinA=b/sinB=c/sinC=2R:

如圖,任意三角形ABC,作ABC的外接圓O.作直徑BD交⊙O于D.連接DA.因?yàn)樵谕瑘A或等圓中直徑所對(duì)的圓周角是直角,所以∠DAB=90度因?yàn)樵谕瑘A或等圓中同弧所對(duì)的圓周角相等,所以∠D等于∠ACB.所以c/sinC=c/sinD=BD=2R

類似可證其余兩個(gè)等式。

余弦定理的證明:

在任意△ABC中

做AD⊥BC.∠C所對(duì)的邊為c,∠B所對(duì)的邊為b,∠A所對(duì)的邊為a則有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c根據(jù)勾股定理可得:

AC^2=AD^2+DC^2

b^2=(sinB*c)^2+(a-cosB*c)^2

b^2=(sinB*c)^2+a^2-2ac*cosB+(cosB)^2*c^2b^2=(sinB^2+cosB^2)*c^2-2ac*cosB+a^2

b^2=c^2+a^2-2ac*cosB

cosB=(c^2+a^2-b^2)/2ac

第二篇:正弦定理余弦定理[推薦]

正弦定理 余弦定理

一、知識(shí)概述

主要學(xué)習(xí)了正弦定理、余弦定理的推導(dǎo)及其應(yīng)用,正弦定理是指在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等.即余弦定理是指三角形任何一邊的平方等于其它兩邊平方的和減去這兩邊與它們夾角的余弦的積的兩倍,即a2=b2+c2-2bccosA,b2=c2+a2-2cacosB, c2=a2+b2-2abcosC.通過兩定理的學(xué)習(xí),掌握正弦定理和余弦定理,并能利用這兩個(gè)定理去解斜三角形,學(xué)會(huì)用計(jì)算器解決解斜三角形的計(jì)算問題,熟悉兩定理各自解決不同類型的解三角形的問題.認(rèn)識(shí)在三角形中,已知兩邊和其中一邊的對(duì)角解三角形,產(chǎn)生多解的原因,并能準(zhǔn)確判斷解的情況.

二、重點(diǎn)知識(shí)講解

1、三角形中的邊角關(guān)系

在△ABC中,設(shè)角A、B、C的對(duì)邊分別為a、b、c,則有

(1)角與角之間的關(guān)系:A+B+C=180°;

(2)邊與角之間的關(guān)系:

正弦定理:

余弦定理:a2=b2+c2-2bccosA

b2=c2+a2-2accosB

c2=a2+b2-2abcosC

射影定理:a=bcosC+ccosB

b=ccosA+acosC c=acosB+

bcosA

2、正弦定理的另三種表示形式:

3、余弦定理的另一種表示形式:

4、正弦定理的另一種推導(dǎo)方法——面積推導(dǎo)法

在△ABC中,易證明再在上式各邊同時(shí)除

以在此方法推導(dǎo)過程中,要注意對(duì)

面積公式的應(yīng)用.

1、在△ABC中,ab=60, sinB=cosB.面積S=15,求△ABC的三個(gè)內(nèi)角. 分析:

在正弦定理中,由

進(jìn)而可以利用三角函數(shù)之間的關(guān)系進(jìn)行解題. 解:

可以把面積進(jìn)行轉(zhuǎn)化,由公式

∴C=30°或150°

又sinA=cosB∴A+B=90°或A-B=90°顯然A+B=90°不可能成立

當(dāng)C=30°時(shí),由A+B=150°,A-B=90°得A=120°B=30°

當(dāng)C=150°時(shí),由A-B=90°得B為負(fù)值,不合題意故所求解為A=120°,B=30°,C=30°.例

2、在△ABC中,a、b、c分別是內(nèi)角A、B、C的外邊,若b=2a,B=A+60°,求A的值. 分析:

把題中的邊的關(guān)系b=2a利用正弦定理化為角的關(guān)系,2RsinB=4RsinA,即sinB=2sinA. 解:

∵B=A+60°

∴sinB=sin(A+60°)=sinAcos60°+cosAsin60°

=

又∵b=2a

∴2RsinB=4RsinA,∴sinB=2sinA

3、在△ABC中,若tanA︰tanB=a2︰b2,試判斷△ABC的形狀. 分析:

三角形分類是按邊或角進(jìn)行的,所以判定三角形形狀時(shí)一般要把條件轉(zhuǎn)化為邊之間關(guān)系或角之間關(guān)系式,從而得到諸如a+b=c,a+b>c(銳角三角形),a+b<c(鈍角三角形)或sin(A-B)=0,sinA=sinB,sinC=1或cosC=0等一些等式,進(jìn)而判定其形狀,但在選擇轉(zhuǎn)化為邊或是角的關(guān)系上,要進(jìn)行探索.

解法一:由同角三角函數(shù)關(guān)系及正弦定理可推得,∵A、B為三角形的內(nèi)角,∴sinA≠0,sinB≠0.

∴2A=2B或2A=π-2B,∴A=B或A+B=所以△ABC為等腰三角形或直角三角形.解法二:由已知和正弦定理可得:

整理得a-ac+bc-b=0,即(a-b)(a+b-c)=0,于是a=b或a+b-c=0,∴a=b或a+b=c.∴△ABC是等腰三角形或直角三角形.

5、利用正弦定理和余弦定理判定三角形形狀,此類問題主要考查邊角互化、要么同時(shí)化邊為角,要么同時(shí)化角為邊,然后再找出它們之間的關(guān)系,注意解答問題要周密、嚴(yán)謹(jǐn).

4、若acosA=bcosB,試判斷△ABC的形狀. 分析:

本題既可以利用正弦定理化邊為角,也可以利用余弦定理化角為邊. 解:

解法一:由正弦定理得:2RsinAcosA=2RsinBcosB∴sin2A=sin2B

∴2A=2B或2A+2B=180°∴A=B或A+B=90°

故△ABC為等腰三角形或直角三角形解法二:由余弦定理得

∴a(b+c-a)=b(a+c-b)∴(a-b)(a+b-c)=0∴a=b或a+b=c

故△ABC為等腰三角形或直角三角形.

6、正弦定理,余弦定理與函數(shù)之間的相結(jié)合,注意運(yùn)用方程的思想.

5、如圖,設(shè)P是正方形ABCD的一點(diǎn),點(diǎn)P到頂點(diǎn)A、B、C的距離分別是

1,2,3,求正方形的邊長.

分析:

本題運(yùn)用方程的思想,列方程求未知數(shù). 解:

設(shè)邊長為x(1

設(shè)x=t,則1

-5)=16t

三、難點(diǎn)剖析

1、已知兩邊和其中一邊的對(duì)角,解三角形時(shí),將出現(xiàn)無解、一解和兩解的情況,應(yīng)分情況予以討論.

下圖即是表示在△ABC中,已知a、b和A時(shí)解三角形的各種情況.

(1)當(dāng)A為銳角時(shí)(如下圖),(2)當(dāng)A為直角或鈍角時(shí)(如下圖),也可利用正弦定理進(jìn)行討論.

如果sinB>1,則問題無解; 如果sinB=1,則問題有一解;

如果求出sinB<1,則可得B的兩個(gè)值,但要通過“三角形內(nèi)角和定理”或“大邊對(duì)大角”等三角形有關(guān)性質(zhì)進(jìn)行判斷.

2、用方程的思想理解和運(yùn)用余弦定理:當(dāng)?shù)仁絘2=b2+c2-2bccosA中含有未知數(shù)時(shí),等式便成為方程.式中有四個(gè)量,知道任意三個(gè),便可以解出另一個(gè),運(yùn)用此式可以求a或b或c或cosA.

3、向量方法證明三角形中的射影定理

在△ABC中,設(shè)三內(nèi)角A、B、C的對(duì)邊分別是a、b、c.

4、正弦定理解三角形可解決的類型:(1)已知兩角和任一邊解三角形;

(2)已知兩邊和一邊的對(duì)角解三角形.

5、余弦定理解三角形可解決的類型:(1)已知三邊解三角形;

(2)已知兩邊和夾角解三角形.

6、三角形面積公式:

6、不解三角形,判斷三角形的個(gè)數(shù). ①a=5,b=4,A=120° ②a=30,b=30,A=50° ③a=7,b=14,A=30° ④a=9,b=10,A=60° ⑤a=6,b=9,A=45° ⑥c=50,b=72,C=135° 解析:

①a>b,A=120°,∴△ABC有一解.②a=b,A=50°<90°,∴△ABC有一解.

③a

④a0 ∴△ABC有兩解.

⑤b>c,C=45°,∴△ABC無解(不存在).⑥b>c,C=135°>90°,又由b>c知∠B>∠C=135°,這樣B+C>180°,∴△ABC無解.

第三篇:正弦定理余弦定理練習(xí)

正弦定理和余弦定理練習(xí)

一、選擇題

1、已知?ABC中,a?4,b?43,A?300,則B=()

A.300B.300或1500 C.600D.600或12002、已知?ABC中,AB?6,A?300,B?1200,則S?ABC?()

A.9B.18C.93D.1833、已知?ABC中,a:b:c?1:3:2,則A:B:C?()

A.1:2:3B.2:3:1C.1:3:2D.3:1:24、已知?ABC中,sinA:sinB:sinC?k:(k?1):2k(k?0),則k的取值范圍是()

A.?2,???B.???,0?C.二、填空題

1、已知?ABC中,B?300,AB?23,AC?2,則S?ABC?

2、已知?ABC中,b?2csinB,則角

3、設(shè)?ABC的外接圓的半徑為R,且AB?4,C?450,則R=

4、已知S?ABC?32,b?2,c?3,則角1??,0???2??D.?1?,????2?? A=

5、已知?ABC中,B?450,C?600,a?2(3?1),則S?ABC?

三、簡(jiǎn)答題

01、在?ABC中,若B?30,AB?23,AC?2,求S?ABC.2、已知?ABC中,C?60,BC?a,AC?b,a?b?6.(1)寫出?ABC的面積S與a的函數(shù)關(guān)系式;(2)當(dāng)a等于多少時(shí),Smax?并求出Smax.23、已知?ABC中,a?a?2(b?c),a?2b?2c?3,若sinC:sinA?4:,求a,b,c.04、a,b,c是?ABC的三內(nèi)角A,B,C的對(duì)邊,4sin

(1)求角A;(2)若a?3,b?c?3,2B?C2?cos2A?72.求b,c的值.

第四篇:《正弦定理和余弦定理》測(cè)試卷

《正弦定理和余弦定理》學(xué)習(xí)成果測(cè)評(píng)

基礎(chǔ)達(dá)標(biāo):

1.在△ABC中,a=18,b=24,∠A=45°,此三角形解的情況為()

A.一個(gè)解B.二個(gè)解C.無解D.無法確定

2.在△ABC

中,若a?2,b?c??A的度數(shù)是()

A.30°B.45°C.60°D.75°

2223.ΔABC中,若a=b+c+bc,則∠A=()

A.60?B.45?C.120?D.30?

4.邊長為5、7、8的三角形的最大角與最小角之和為()

A.90°B.120°C.135°D.150°

5.在△ABC中,已知a?3,b?2,B=45?.求A、C及c.06.在?ABC中,若B?

45,c?

b?A.7.在?ABC中,已知a?134.6cm,b?87.8cm,c?161.7cm,解三角形.8.在?ABC中,若a2?b2?c2?bc,求A.能力提升:

AB的取值范圍是()AC

A.(0,2)B.(2,2)C.(2,)D.(,2)9.銳角ΔABC中,若C=2B,則

10.已知在△ABC中,sinA:sinB:sinC=3:2:4,那么cosC的值為()A.?

14B.1

422ABC.?D.銳角ΔABC中,若C=2B,則的取值范圍是 33AC

11.等腰三角形底邊長為6,一條腰長12,則它的外接圓半徑為()

12.在?ABC中,已知三邊a、b、c滿足?a?b?c??a?b?c??3ab,則C=()

A.15B.30C.45D.60

13.鈍角?ABC的三邊長為連續(xù)自然數(shù),則這三邊長為()。

A、1、2、3B、2、3、4C、3、4、5D、4、5、6 ????

sinC2?(6?1),則∠A=_______.sinB

5a?b?c?_____.15.在△ABC中,∠A=60°,b=1,c=4,則sinA?sinB?sinC14.在ΔABC中,BC=3,AB=2,16.在△ABC中,∠B=120°,sinA:sinC=3:5,b=14,則a,c長為_____.綜合探究:

17.已知鈍角?ABC的三邊為:a?k,b?k?2,c?k?4,求實(shí)數(shù)k的取值范圍.a2?b2sin(A?B)?18.在?ABC中,角A、B、C的對(duì)邊分別為a、b、c,證明:.2sinCc

參考答案:

基礎(chǔ)達(dá)標(biāo):

1.B2.A3.C4.B

5.解析:

asinB3sin45?解法1:由正弦定理得:sinA? ??b22

∴∠A=60?或120?

bsinC2sin75?6?2當(dāng)∠A=60?時(shí),∠C=75?,c?; ??sinB2sin45?

bsinC2sin15?6?2當(dāng)∠A=120?時(shí),∠C=15?,c?.???sinB2sin45

解法2:設(shè)c=x,由余弦定理b?a?c?2accosB 將已知條件代入,整理:x?x?1?0 解之:x?22226?2 2

222?22)?3b?c?a1?3??2??? 當(dāng)c?時(shí),cosA?2bc26?22(?1)22?2?22?(從而∠A=60?,∠C=75?; ?2時(shí),同理可求得:∠A=120?,∠C=15?.2

bc?6.∵,sinBsinC當(dāng)c?

csinBsin45???∴sinC?,b∵0?C?180,∴C?60或C?120

∴當(dāng)C?60時(shí),A?75; ?????

當(dāng)C?120時(shí),A?15,;

所以A?75或A?15.

7.由余弦定理的推論得: ????

b2?c2?a287.82?161.72?134.62

?0.5543,?cosA?A?56020?;

c2?a2?b2134.62?161.72?87.82

? cosB?B?32053?;

? C?1800?(A?B)?1800?(56020??32053)

8.∵bc?b2?c2?a2,?0.8398,b2?c2?a21∴由余弦定理的推論得:cosA?? ∵0?A?180,∴A?60.能力提升:

9.C10.A11.C

12.D.由?a?b?c??a?b?c??3ab,得a?b?2ab?c?3ab 222??

a2?b2?c21?,∴由余弦定理的推論得:cosC?2ab2

∵0?C?180,∴C?60.13.B;只需要判定最大角的余弦值的符號(hào)即可。

選項(xiàng)A不能構(gòu)成三角形; ??

22?32?421???0,故該三角形為鈍角三角形; 選項(xiàng)B中最大角的余弦值為2?2?34

32?42?52

?0,故該三角形為直角三角形; 選項(xiàng)C中最大角的余弦值為:2?4?3

42?52?621??0,故該三角形為銳角三角形.選項(xiàng)D中最大角的余弦值為2?4?58

14.120?

1516.4綜合探究:

17.∵?ABC中邊a?k,b?k?2,c?k?4,∴a?k?0,且邊c最長,∵?ABC為鈍角三角形

∴當(dāng)C為鈍角時(shí) a2?b2?c2

?0,∴cosC?2ab

∴a?b?c?0, 即a?b?c

∴k2?(k?2)2?(k?4)2, 解得?2?k?6,又由三角形兩邊之和大于第三邊:k?(k?2)?k?4,得到k?2,故實(shí)數(shù)k的取值范圍:2?k?6.18.證法一:由正弦定理得: 222222

a2?b2sin2A?sin2Bcos2B?cos2A?? c2sin2C2sin2C

=?2sin(B?A)sin(B?A)sinCsin(A?B)sin(A?B)==.222sinCsinCsinC

222證法二:由余弦定理得a=b+c-2bccosA,a2?b2c2?2bccosA2b??1??cosA,則22ccc

又由正弦定理得bsinB?,csinC

a2?b22sinBsinC?2sinBcosA?1??cosA?∴ 2csinCsinC

sin(A?B)?2sinBcosA sinC

sinAcosB?sinBcosAsin(A?B)??.sinCsinC

sin(A?B)sinAcosB?sinBcosA?證法三:.sinCsinC

sinAasinBb?,?,由正弦定理得sinCcsinCc

sin(A?B)acosB?bcosA?∴,sinCc?

又由余弦定理得

a2?c2?b2b2?c2?a2a??b?sin(A?B)?sinCc

(a2?c2?b2)?(b2?c2?a2)? 22c

a2?b2

?.c2

第五篇:正弦定理、余弦定理模擬試題

陽光補(bǔ)習(xí)班《解三角形》單元測(cè)試卷

1.在?ABC中,a?2,b?22,B?45?,則A為()

A.60?或120?B.60?C.30?或150?D.30?

2.在???C中,若

A.30?sinAcosB?,則?B?()abB.45?C.60?D.90?

3.在?ABC中,a2?b2?c2?bc,則A等于()

A.60?B.45?

B.75C.120?D.30?4.在?ABC中,A?60?,b?16,面積S?3,則a等于()A..C.49D.51

225.已知三角形的三邊長分別為a、b、a?ab?b,則三角形的最大內(nèi)角是()

A.135?B.120?C.60?D.90?

6.在200米高的山頂上,測(cè)得山下一塔頂與塔底的俯角分別為30?、則塔高為()60?,4002003mB.mD.mC.m 3333A27.在?ABC中,sinB?sinC?cos,則?ABC是()2A.A.等邊三角形B.直角三角形C.等腰三角形D.等腰直角三角形

8.三角形的兩邊分別為5和3,它們夾角的余弦是方程2的根,5x?7x?6?0則三角形的另一邊長為()

A.52B.2C.16D.4

9.在?ABC中,a?b?12,A?60?,B?45?,則a?_______,b?________

10.在?ABC中,化簡(jiǎn)bcosC?ccosB?___________

11.在?ABC中,已知sinA:sinB:sinC?6:5:4,則cosA?___________

12.三角形的一邊長為14,這條邊所對(duì)的角為?,另兩邊之比為8 : 5,60

則這個(gè)三角形的面積為___________

13.(14分)在海岸A處,發(fā)現(xiàn)北偏東?方向,距離A為45(3?1)n mile的B處有一艘走私船,在A處北偏西75?方向,距離A為2 n mile的C處有一艘緝私艇奉命以10n mile / h的速度追截走私船,此時(shí),走私船正以10 n mile / h的速度從B處向北偏東30?方向逃竄,問緝私艇沿什么方向行駛才能最快追上走私船?并求出所需

D 時(shí)間。

C

西 A

南 B 東

下載正弦定理與余弦定理的證明word格式文檔
下載正弦定理與余弦定理的證明.doc
將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
點(diǎn)此處下載文檔

文檔為doc格式


聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

相關(guān)范文推薦

    正弦定理與余弦定理練習(xí)題(5篇模版)

    正弦定理與余弦定理 1.△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,若c=2,b=6,B=120°,則a等于2.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,若(a+c-b)tanB=3ac,則角B的值為 3.下列判斷中......

    正弦定理證明

    正弦定理證明1.三角形的正弦定理證明: 步驟1. 在銳角△ABC中,設(shè)三邊為a,b,c。作CH⊥AB垂足為點(diǎn)H CH=a·sinB CH=b·sinA ∴a·sinB=b·sinA 得到 a/sinA=b/sinB 同理,在△ABC中,......

    正弦定理證明

    正弦定理 1.在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等,且等于其外接圓半徑的兩倍, 即abc???2R sinAsinBsinC 證明:如圖所示,過B點(diǎn)作圓的直徑BD交圓于D點(diǎn),連結(jié)AD BD=2R, 則 D=C,?DAB......

    正弦定理證明

    新課標(biāo)必修數(shù)學(xué)5“解三角形”內(nèi)容分析及教學(xué)建議江蘇省錫山高級(jí)中學(xué)楊志文新課程必修數(shù)學(xué)5的內(nèi)容主要包括解三角形、數(shù)列、不等式。這些內(nèi)容都是高中數(shù)學(xué)中的傳統(tǒng)內(nèi)容。其中......

    球面正弦,余弦定理證明

    §4球面余弦定理和正弦定理平面幾何中的三角形全等判定條件說明了平面三角形的唯一性,到了平面三角學(xué),把這種唯一性定理提升到有效能算的角邊函數(shù)關(guān)系。其中最基本的就是三角......

    正弦定理和余弦定理的復(fù)習(xí)

    第十九教時(shí) 教材:正弦定理和余弦定理的復(fù)習(xí)《教學(xué)與測(cè)試》76、77課 目的:通過復(fù)習(xí)、小結(jié)要求學(xué)生對(duì)兩個(gè)定理的掌握更加牢固,應(yīng)用更自如。 過程:一、復(fù)習(xí)正弦定理、余弦定理及解......

    《正弦定理和余弦定理》教學(xué)反思

    《正弦定理、余弦定理》教學(xué)反思我對(duì)教學(xué)所持的觀念是:數(shù)學(xué)學(xué)習(xí)的主要目的是:“在掌握知識(shí)的同時(shí),領(lǐng)悟由其內(nèi)容反映出來的數(shù)學(xué)思想方法,要在思維能力、情感態(tài)度與價(jià)值觀等多方面......

    正弦余弦定理應(yīng)用定理(5篇范例)

    正弦定理、余弦定理練習(xí)題 一、選擇題(共20題,題分合計(jì)100分) 1.已知在△ABC中,sinA:sinB:sinC=3:2:4,那么cosC的值為 A.? 14B.14C.23D.?23 2.在△ABC中,a=λ,b= λ,A=45°,則滿......

主站蜘蛛池模板: 欧美精品免费观看二区| 国产精品va在线播放我和闺蜜| av电影在线观看| 亚洲日韩小电影在线观看| 免费看撕开奶罩揉吮奶头视频| 女子spa高潮呻吟抽搐| 亚洲中国最大av网站| 成人免费精品网站在线观看影片| 永久免费男同av无码入口| 国产?少萝??视频| 少妇人妻无码专区视频| 欧美极品jizzhd欧美| 亚洲老子午夜电影理论| 久热爱精品视频在线◇| 色屁屁www影院免费观看入口| 人妻体内射精一区二区三区| 无码人妻久久一区二区三区蜜桃| 亚洲一区av无码少妇电影| 久久精品道一区二区三区| 国产亚洲精品欧洲在线观看| 亚洲乱码1卡2卡3乱码在线芒果| 竹菊影视欧美日韩一区二区三区四区五区| 亚洲18色成人网站www| 欧美性色老妇人| 婷婷五月六月激情综合色中文字幕| 国产精品久久无码一区| 2022国产成人精品视频人| 日本入室强伦姧bd在线观看| 中文字幕在线日亚州9| 欧美性白人极品1819hd| 国产欧美另类久久精品蜜芽| 无码精品国产dvd在线观看9久| 精品国产三级大全在线观看| 国产口爆吞精在线视频| 熟妇人妻av中文字幕老熟妇| 天天综合色天天综合色h| 精品人妻无码视频中文字幕一区二区三区| 亚洲中文字幕av在天堂| 国产精品天堂avav在线观看| 精品久久久无码中文字幕| 精品人妻潮喷久久久又裸又黄|