久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

向量證明正弦定理

時間:2019-05-13 06:37:29下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《向量證明正弦定理》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《向量證明正弦定理》。

第一篇:向量證明正弦定理

向量證明正弦定理

表述:設(shè)三面角∠p-ABC的三個面角∠BpC,∠CpA,∠ApB所對的二面角依次為∠pA,∠pB,∠pC,則Sin∠pA/Sin∠BpC=Sin∠pB/Sin∠CpA=Sin∠pC/Sin∠ApB。

目錄

1證明2全向量證明

證明

過A做OA⊥平面BpC于O。過O分別做OM⊥Bp于M與ON⊥pC于N。連結(jié)AM、AN。顯然,∠pB=∠AMO,Sin∠pB=AO/AM;∠pC=∠ANO,Sin∠pC=AO/AN。另外,Sin∠CpA=AN/Ap,Sin∠ApB=AM/Ap。則Sin∠pB/Sin∠CpA=AO×Ap/(AM×AN)=Sin∠pC/Sin∠ApB。同理可證Sin∠pA/Sin∠BpC=Sin∠pB/Sin∠CpA。即可得證三面角正弦定理。

全向量證明

如圖1,△ABC為銳角三角形,過點A作單位向量j垂直于向量AC,則j與向量AB的夾角為90°-A,j與向量CB的夾角為90°-C

由圖1,AC+CB=AB(向量符號打不出)

在向量等式兩邊同乘向量j,得·

j·AC+CB=j·AB

∴│j││AC│cos90°+│j││CB│cos(90°-C)

=│j││AB│cos(90°-A)

∴asinC=csinA

∴a/sinA=c/sinC

同理,過點C作與向量CB垂直的單位向量j,可得

c/sinC=b/sinB

∴a/sinA=b/sinB=c/sinC

2步驟

1記向量i,使i垂直于AC于C,△ABC三邊AB,BC,CA為向量a,b,c

∴a+b+c=0

則i(a+b+c)

=i·a+i·b+i·c

=a·cos(180-(C-90))+b·0+c·cos(90-A)

=-asinC+csinA=0

接著得到正弦定理

其他

步驟2.在銳角△ABC中,設(shè)BC=a,AC=b,AB=c。作CH⊥AB垂足為點H

CH=a·sinB

CH=b·sinA

∴a·sinB=b·sinA

得到a/sinA=b/sinB

同理,在△ABC中,b/sinB=c/sinC

步驟3.證明a/sinA=b/sinB=c/sinC=2R:

任意三角形ABC,作ABC的外接圓O.作直徑BD交⊙O于D.連接DA.因為直徑所對的圓周角是直角,所以∠DAB=90度

因為同弧所對的圓周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R

類似可證其余兩個等式。

3用向量叉乘表示面積則s=CB叉乘CA=AC叉乘AB

=>absinC=bcsinA(這部可以直接出來哈哈,不過為了符合向量的做法)

=>a/sinA=c/sinC

2011-7-1817:16jinren92|三級

記向量i,使i垂直于AC于C,△ABC三邊AB,BC,接著得到正弦定理其他步驟2.在銳角△ABC中,證明a/sinA=b/sinB=c/sinC=2R:任意三角形ABC,4過三角形ABC的頂點A作BC邊上的高,垂足為D.(1)當(dāng)D落在邊BC上時,向量AB與向量AD的夾角為90°-B,向量AC與向量AD的夾角為90°-C,由于向量AB、向量AC在向量AD方向上的射影相等,有數(shù)量積的幾何意義可知向量AB*向量AD=向量AC*向量AD即向量AB的絕對值*向量AD的絕對值*COS(90°-B)=向量的AC絕對值*向量AD的絕對值*cos(90°-C)所以csinB=bsinC即b/sinB=c/sinC(2)當(dāng)D落在BC的延長線上時,同樣可以證得

第二篇:向量法證明正弦定理

向量法證明正弦定理

證明a/sinA=b/sinB=c/sinC=2R:

任意三角形ABC,作ABC的外接圓O.作直徑BD交⊙O于D.連接DA.因為直徑所對的圓周角是直角,所以∠DAB=90度

因為同弧所對的圓周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R

2如圖1,△ABC為銳角三角形,過點A作單位向量j垂直于向量AC,則j與向量AB的夾角為90°-A,j與向量CB的夾角為90°-C

由圖1,AC+CB=AB(向量符號打不出)

在向量等式兩邊同乘向量j,得·

j·AC+CB=j·AB

∴│j││AC│cos90°+│j││CB│cos(90°-C)

=│j││AB│cos(90°-A)

∴asinC=csinA

∴a/sinA=c/sinC

同理,過點C作與向量CB垂直的單位向量j,可得

c/sinC=b/sinB

∴a/sinA=b/sinB=c/sinC

2步驟

1記向量i,使i垂直于AC于C,△ABC三邊AB,BC,CA為向量a,b,c

∴a+b+c=0

則i(a+b+c)

=i·a+i·b+i·c

=a·cos(180-(C-90))+b·0+c·cos(90-A)

=-asinC+csinA=0

接著得到正弦定理

其他

步驟2.在銳角△ABC中,設(shè)BC=a,AC=b,AB=c。作CH⊥AB垂足為點H

CH=a·sinB

CH=b·sinA

∴a·sinB=b·sinA

得到a/sinA=b/sinB

同理,在△ABC中,b/sinB=c/sinC

步驟3.證明a/sinA=b/sinB=c/sinC=2R:

任意三角形ABC,作ABC的外接圓O.作直徑BD交⊙O于D.連接DA.因為直徑所對的圓周角是直角,所以∠DAB=90度

因為同弧所對的圓周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R

類似可證其余兩個等式。

3用向量叉乘表示面積則s=CB叉乘CA=AC叉乘AB

=>absinC=bcsinA(這部可以直接出來哈哈,不過為了符合向量的做法)

=>a/sinA=c/sinC

2011-7-1817:16jinren92|三級

記向量i,使i垂直于AC于C,△ABC三邊AB,BC,接著得到正弦定理其他步驟2.在銳角△ABC中,證明a/sinA=b/sinB=c/sinC=2R:任意三角形ABC,4過三角形ABC的頂點A作BC邊上的高,垂足為D.(1)當(dāng)D落在邊BC上時,向量AB與向量AD的夾角為90°-B,向量AC與向量AD的夾角為90°-C,由于向量AB、向量AC在向量AD方向上的射影相等,有數(shù)量積的幾何意義可知向量AB*向量AD=向量AC*向量AD即向量AB的絕對值*向量AD的絕對值*COS(90°-B)=向量的AC絕對值*向量AD的絕對值*cos(90°-C)所以csinB=bsinC即b/sinB=c/sinC(2)當(dāng)D落在BC的延長線上時,同樣可以證得

第三篇:用向量證明正弦定理

用向量證明正弦定理

如圖1,△ABC為銳角三角形,過點A作單位向量j垂直于向量AC,則j與向量AB的夾角為90°-A,j與向量CB的夾角為90°-C

由圖1,AC+CB=AB(向量符號打不出)

在向量等式兩邊同乘向量j,得·

j·AC+CB=j·AB

∴│j││AC│cos90°+│j││CB│cos(90°-C)

=│j││AB│cos(90°-A)

∴asinC=csinA

∴a/sinA=c/sinC

同理,過點C作與向量CB垂直的單位向量j,可得

c/sinC=b/sinB

∴a/sinA=b/sinB=c/sinC

2步驟

1記向量i,使i垂直于AC于C,△ABC三邊AB,BC,CA為向量a,b,c

∴a+b+c=0

則i(a+b+c)

=i·a+i·b+i·c

=a·cos(180-(C-90))+b·0+c·cos(90-A)

=-asinC+csinA=0

接著得到正弦定理

其他

步驟2.在銳角△ABC中,設(shè)BC=a,AC=b,AB=c。作CH⊥AB垂足為點H

CH=a·sinB

CH=b·sinA

∴a·sinB=b·sinA

得到a/sinA=b/sinB

同理,在△ABC中,b/sinB=c/sinC

步驟3.證明a/sinA=b/sinB=c/sinC=2R:

任意三角形ABC,作ABC的外接圓O.作直徑BD交⊙O于D.連接DA.因為直徑所對的圓周角是直角,所以∠DAB=90度

因為同弧所對的圓周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R

類似可證其余兩個等式。

3用向量叉乘表示面積則s=CB叉乘CA=AC叉乘AB

=>absinC=bcsinA(這部可以直接出來哈哈,不過為了符合向量的做法)

=>a/sinA=c/sinC

2011-7-1817:16jinren92|三級

記向量i,使i垂直于AC于C,△ABC三邊AB,BC,接著得到正弦定理其他步驟2.在銳角△ABC中,證明a/sinA=b/sinB=c/sinC=2R:任意三角形ABC,4過三角形ABC的頂點A作BC邊上的高,垂足為D.(1)當(dāng)D落在邊BC上時,向量AB與向量AD的夾角為90°-B,向量AC與向量AD的夾角為90°-C,由于向量AB、向量AC在向量AD方向上的射影相等,有數(shù)量積的幾何意義可知向量AB*向量AD=向量AC*向量AD即向量AB的絕對值*向量AD的絕對值*COS(90°-B)=向量的AC絕對值*向量AD的絕對值*cos(90°-C)所以csinB=bsinC即b/sinB=c/sinC(2)當(dāng)D落在BC的延長線上時,同樣可以證得

第四篇:向量法證明正弦定理[最終版]

向量法證明正弦定理證明a/sinA=b/sinB=c/sinC=2R: 任意三角形ABC,作ABC的外接圓O.作直徑BD交⊙O于D.連接DA.因為直徑所對的圓周角是直角,所以∠DAB=90度 因為同弧所對的圓周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R 2 如圖1,△ABC為銳角三角形,過點A作單位向量j垂直于向量AC,則j與向量AB的夾角為90°-A,j與向量CB的夾角為90°-C 由圖1,AC+CB=AB(向量符號打不出)在向量等式兩邊同乘向量j,得· j·AC+CB=j·AB ∴│j││AC│cos90°+│j││CB│cos(90°-C)=│j││AB│cos(90°-A)∴asinC=csinA ∴a/sinA=c/sinC 同理,過點C作與向量CB垂直的單位向量j,可得 c/sinC=b/sinB ∴a/sinA=b/sinB=c/sinC 2步驟1 記向量i,使i垂直于AC于C,△ABC三邊AB,BC,CA為向量a,b,c ∴a+b+c=0 則i(a+b+c)=i·a+i·b+i·c =a·cos(180-(C-90))+b·0+c·cos(90-A)=-asinC+csinA=0 接著得到正弦定理 其他 步驟2.在銳角△ABC中,設(shè)BC=a,AC=b,AB=c。作CH⊥AB垂足為點H CH=a·sinB CH=b·sinA ∴a·sinB=b·sinA 得到a/sinA=b/sinB 同理,在△ABC中,b/sinB=c/sinC 步驟3.證明a/sinA=b/sinB=c/sinC=2R: 任意三角形ABC,作ABC的外接圓O.作直徑BD交⊙O于D.連接DA.因為直徑所對的圓周角是直角,所以∠DAB=90度 因為同弧所對的圓周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R 類似可證其余兩個等式。

第五篇:正弦定理證明

新課標(biāo)必修數(shù)學(xué)5“解三角形”內(nèi)容分析及教學(xué)建議

江蘇省錫山高級中學(xué)楊志文

新課程必修數(shù)學(xué)5的內(nèi)容主要包括解三角形、數(shù)列、不等式。這些內(nèi)容都是高中數(shù)學(xué)中的傳統(tǒng)內(nèi)容。其中“解三角形”既是高中數(shù)學(xué)的基本內(nèi)容,又有較強的應(yīng)用性。在歷次教材改革中都作為中學(xué)數(shù)學(xué)中的重點內(nèi)容,一直被保留下來。在這次新課程改革中,新普通高中《數(shù)學(xué)課程標(biāo)準(zhǔn)》(以下簡稱《標(biāo)準(zhǔn)》)與原全日制普通高級中學(xué)《數(shù)學(xué)教學(xué)大綱》(以下簡稱《大綱》)相比,“解三角形”這塊內(nèi)容在安排順序上進行了新的整合。本文就《標(biāo)準(zhǔn)》必修模塊數(shù)學(xué)5第一部分“解三角形”的課程內(nèi)容、教學(xué)目標(biāo)要求、課程關(guān)注點、內(nèi)容處理上等方面的變化進行簡要的分析,并對教學(xué)中應(yīng)注意的幾個問題談?wù)勛约旱囊恍┰O(shè)想和教學(xué)建議,供大家參考。

一、《標(biāo)準(zhǔn)》必修模塊數(shù)學(xué)5中“解三角形”與原課程中“解斜三角形”的比較

1.課程內(nèi)容安排上的變化

“解三角形”在原課程中為“解斜三角形”,安排在“平面向量”一章中,作為平面向量的一個單元。而在新課程《標(biāo)準(zhǔn)》中重新進行了整合,將其安排在必修模塊數(shù)學(xué)5中,獨立成為一章,與必修模塊數(shù)學(xué)4中的“平面向量”分別安排在不同的模塊中。

2.教學(xué)要求的變化

原大綱對“解斜三角形”的教學(xué)要求是:

(1)掌握正弦定理、余弦定理,并能運用它們解斜三角形,能利用計算器解決解斜三角形的計算問題。

(2)通過解三角形的應(yīng)用的教學(xué),提高運用所學(xué)知識解決實際問題的能力。

(3)實習(xí)作業(yè)以測量為內(nèi)容,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識解決實際問題的能力和實際操作的能力。《標(biāo)準(zhǔn)》對“解三角形”的教學(xué)要求是:

(1)通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。

(2)能夠運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關(guān)的實際問題。由此可以看出,《標(biāo)準(zhǔn)》在計算方面降低了要求,取消了“利用計算器解決解斜三角形的計算問題”的要求,而在探索推理方面提高了要求,要求“通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理”。

3、課程關(guān)注點的變化

原《大綱》中,解斜三角形內(nèi)容,比較關(guān)注三角形邊角關(guān)系的恒等變換,往往把側(cè)重點放在運算上。而《標(biāo)準(zhǔn)》則關(guān)注運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關(guān)的實際問題。側(cè)重點放在學(xué)生探究和推理能力的培養(yǎng)上。

4、內(nèi)容處理上的變化

原《大綱》中,解斜三角形作為平面向量知識的應(yīng)用,突出其工具性和應(yīng)用性。而《標(biāo)準(zhǔn)》將解三角形作為幾何度量問題來處理,突出幾何的作用,為學(xué)生理解數(shù)學(xué)中的量化思想、進一步學(xué)習(xí)數(shù)學(xué)奠定基礎(chǔ)。解三角形處理的是三角形中長度、角度、面積的度量問題,長度、面積是理解積分的基礎(chǔ),角度是刻畫方向的,長度、方向是向量的特征,有了長度、方向,向量的工具自然就有用武之地。

二、教學(xué)中應(yīng)注意的幾個問題及教學(xué)建議

原《大綱》中解斜三角形的內(nèi)容,比較關(guān)注三角形邊角關(guān)系的恒等變換,往往把側(cè)重點放在運算上。而《標(biāo)準(zhǔn)》將解三角形作為幾何度量問題來展開,強調(diào)學(xué)生在已有知識的基礎(chǔ)上,通過對任意三角形邊角關(guān)系的探究,發(fā)現(xiàn)并掌握三角形中的邊長與角度之間的數(shù)量關(guān)系,解決簡單的三角形度量問題。這就要求在教學(xué)過程中,突出幾何的作用和數(shù)學(xué)量化思想,發(fā)揮學(xué)生學(xué)習(xí)的主動性,使學(xué)生的學(xué)習(xí)過程成為在教師引導(dǎo)下的探究過程、再創(chuàng)造過程。因此在教學(xué)中應(yīng)注意以下幾個問題。

1.要重視探究和推理

《標(biāo)準(zhǔn)》要求“通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理”。因此建議在教學(xué)中,既要重視從特殊到一般的探索學(xué)習(xí)過程的教學(xué),又要重視數(shù)學(xué)的理性思維的培養(yǎng)。教學(xué)中不要直接給出定理進行證明,可通過學(xué)生對三角形邊與角的正弦的測量與計算,研究邊與其對角的正弦之間的比,揭示它們在數(shù)量上的規(guī)律,發(fā)現(xiàn)正弦定理的結(jié)論,然后再從理論上進行論證,從而掌握正弦定理。從中體會發(fā)現(xiàn)和探索數(shù)學(xué)知識的思想方法。

參考案例:正弦定理的探索、發(fā)現(xiàn)與證明

教學(xué)建議:建議按如下步驟設(shè)計教學(xué)過程:

(1)從特殊三角形入手進行發(fā)現(xiàn)

讓學(xué)生觀察并測量一個三角板的邊長。

提出問題:你能發(fā)現(xiàn)三邊長與其對角的正弦值之比之間的關(guān)系嗎?

例如,量得三角板三內(nèi)角300,600,900所對的三邊長分別約為5cm,8.6cm,10cm,58.610,?10?10?10 000

sin30sin60sin90

abc

對于特殊三角形,我們發(fā)現(xiàn)規(guī)律:。??

sinAsinBsinC

則有:

提出問題:上述規(guī)律,對任意三角形成立嗎?(2)實驗,探索規(guī)律

二人合作,先在紙上做一任意銳角(銳角或鈍角)三角形,測量三邊長及其三個對角,然后用計算器計算每一邊與其對角正弦值的比,填入下面表中,驗證前面得出的結(jié)論是否正確。(其中,角精確到分,忽略測量誤差,通過實驗,對任意三角形,有結(jié)論:

abc,即在一個三角形中,??

sinAsinBsinC

各邊和它所對的角的正弦的比相等。

提出問題:上述的探索過程所得出的結(jié)論,只是我們通過實驗(近似結(jié)果)發(fā)現(xiàn)的一個結(jié)果,如果我們能在理論上證明它是正確的,則把它叫做正弦定理。那么怎樣證明呢?

(4)研究定理證明的方法方法一:(向量法)①若△ABC為直角三角形,由銳角三角函數(shù)的定義知,定理顯然成立。②若△ABC為銳角三角形,過點A做單位向量j垂直于AC,則向量j與向量的夾角為900-A,向

量j

與向量CB的夾角為900-C,(如圖1),且有:AC?CB?AB,所以j·(+)= j·即j·+ j· = j·AB 展開|j||AC|cos900+ | j||CB|cos(900-C)=| j|||cos(900-A)

ac

。?

sinAsinC

cbabc

同理,過點C做單位向量j垂直于,可得:,故有。???

sinCsinBsinAsinBsinC

③若△ABC為鈍角三角形,不妨設(shè)角A>900(如圖2),過點A做單位向量j垂直于AC,則向量j與

則得 a sinC = c sinA,即

向量AB的夾角為A-900,向量j與向量的夾角為900-C,且有:??,同樣可證得:

abc

。??

sinAsinB

提出問題:你還能利用其他方法證明嗎?

方法二:請同學(xué)們課后自己利用平面幾何中圓內(nèi)接三角形(銳角,鈍角和直角)及同弧所對的圓周角相等等知識,將△ABC中的邊角關(guān)系轉(zhuǎn)化為以直徑為斜邊的直角三角形中去探討證明方法。

2.要重視綜合應(yīng)用

《標(biāo)準(zhǔn)》要求掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。建議在正弦定理、余弦定理的教學(xué)中,設(shè)計一些關(guān)于正弦定理、余弦定理的綜合性問題,提高學(xué)生綜合應(yīng)用知識解決問題的能力。如可設(shè)計下面的問題進行教學(xué):

參考案例:正弦定理、余弦定理的綜合應(yīng)用 C 如圖,在四邊形ABCD中,已知AD?CD,AD=10,AB=14,?BDA=60?,?BCD=135?.求BC的長.教學(xué)建議:

引導(dǎo)學(xué)生進行分析,欲求BC,需在△BCD中求解,∵?BCD=135?,?BDC=30?,∴需要求BD,而BD需在△ABD中求解.再引導(dǎo)學(xué)生將

A B

四邊形問題轉(zhuǎn)化為三角形問題,選擇余弦定理求BD,再由正弦定理

例2圖 求BC。

3.要重視實際應(yīng)用

《標(biāo)準(zhǔn)》要求運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關(guān)的實際問題。因此建議在教學(xué)中,設(shè)計一些實際應(yīng)用問題,為學(xué)生體驗數(shù)學(xué)在解決問題中的作用,感受數(shù)學(xué)與日常生活及與其他學(xué)科的聯(lián)系,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識,提高學(xué)生解決實際問題的能力。在題目的設(shè)計中要注意對恒等變形降低要求,避免技巧性強的變形和繁瑣的運算。

參考案例:解三角形在實際中的應(yīng)用

參考案例1.航海中甲船在A處發(fā)現(xiàn)乙船在北偏東45?,與A的距離為10海里的C處正以20海里/h的速度向南偏東75?的方向航行,已知甲船速度是203海里/h,問甲船沿什么方向,用多少時間才能與

乙船相遇?

教學(xué)建議:引導(dǎo)學(xué)生依據(jù)題意畫出示意圖,將實際問題轉(zhuǎn)化為解三角形問題。若設(shè)甲船與乙船經(jīng)過t小時在B處相遇,構(gòu)建?ACB,容易計算出AB?20海里,BC?20海里,根據(jù)余弦定理建立關(guān)于t的方程,求出t,問題就解決了。

答: 甲船沿北偏東75?的方向,經(jīng)過0.5小時與乙船相遇.參考案例2.為了測量某城市電視塔的高度,在一條直道上選 擇了A,B,C三點,使AB?BC?60m,在A,B,C三點

?

?

?

例1圖 DA 觀察塔的最高點,測得仰角分別為45,54.2,60,若測量 E

者的身高為1.5m,試求電視塔的高度(結(jié)果保留1位小數(shù)).F 教學(xué)建議:引導(dǎo)學(xué)生依據(jù)題意畫出示意圖如圖,將實際問題轉(zhuǎn)化為

解三角形問題。要求電視塔的高度。只要求出DE的長。將問題中的已

知量、未知量集中到有關(guān)三角形中,構(gòu)造出解三角形的數(shù)學(xué)模型。在例2圖 ?ACE中和?BCE中應(yīng)用余弦定理,使問題獲得解決.答: 電視塔的高度約為158.3m.4.要重視研究性學(xué)習(xí)

解三角形的內(nèi)容有較強的應(yīng)用性和研究性,可為學(xué)生提供豐富的研究性素材。建議在教學(xué)內(nèi)容的設(shè)計上探索開放,在教學(xué)形式上靈活多樣。可設(shè)計一些研究性、開放性的問題,讓學(xué)生自行探索解決。參考案例:研究性學(xué)習(xí)

課外研究題:將一塊圓心角為120?,半徑為20厘米的扇形鐵片裁成一塊矩形,請你設(shè)計裁法,使裁得矩形的面積最大?并說明理由.

教學(xué)建議:這是一個研究性學(xué)習(xí)內(nèi)容,可讓學(xué)生在課外兩人一組合作完成,寫成研究報告,在習(xí)題課上讓學(xué)生交流研究結(jié)果,老師可適當(dāng)進行點評。

參考答案:這是一個如何下料的問題,一般有如圖(1)、圖(2)的兩種裁法:即讓矩形一邊在扇形的一條半徑OA上,或讓矩形一邊與弦AB

平行。從圖形的特點來看,涉及到線段的長度和角度,將

這些量放置在三角形中,通過解三角形求出矩形的邊長,再計算出兩種方案所得矩形的最大面積,加以比較,就可以得出問題的結(jié)論.

NBB

PO圖(2)

QM

O圖(1)

按圖(1)的裁法:矩形的一邊OP在OA上,頂點M在圓弧上,設(shè)?MOA??,則:

時,Smax?200.

4按圖(2)的裁法: 矩形一邊PQ與弦AB平行,設(shè)?MOQ??,在?MOQ中,?OQM?90??30??120?,由正弦定理,得:

sin120?

又?MN?2OMsin(60???)?40sin(60???),MQ?

20sin?

?

3sin?. 3

MP?20sin?,OP?20cos?,從而S?400sin?cos??200sin2?.即當(dāng)??

?

∴S?MQ?MN?

sin?sin(60???)?cos(2??60?)?cos60?. 33

??

∴當(dāng)??30?時,Smax?由于

400. 3

400平方厘米. ?200,所以用第二中裁法可裁得面積最大的矩形,最大面積為33

也可以建議學(xué)生在課外自行尋找研究性、應(yīng)用性的題目去做,寫出研究或?qū)嶒瀳蟾妫趯W(xué)校開設(shè)的研究性學(xué)習(xí)課上進行交流,評價。

參考文獻:

①全日制普通高中級學(xué)《數(shù)學(xué)教學(xué)大綱》。人民教育出版社。2002年4 月。

②《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實驗))》。人民教育出版社。2003年4月第一次印刷。③《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實驗)解讀》。嚴(yán)士健 張奠宙王尚志等主編。江蘇教育出版社。2004年4月。

下載向量證明正弦定理word格式文檔
下載向量證明正弦定理.doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點此處下載文檔

文檔為doc格式


聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進行舉報,并提供相關(guān)證據(jù),工作人員會在5個工作日內(nèi)聯(lián)系你,一經(jīng)查實,本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

相關(guān)范文推薦

    原創(chuàng)正弦定理證明

    1.直角三角形中:sinA= ,sinB=, sinC=1即c=∴abc, c= ,c=.sinAsinBsinCacbcabc== sinAsinBsinC2.斜三角形中證明一:(等積法)在任意斜△ABC當(dāng)中S△ABC=absinC?acsinB?bcsinA兩邊同除以abc即......

    正弦定理證明

    正弦定理證明1.三角形的正弦定理證明: 步驟1. 在銳角△ABC中,設(shè)三邊為a,b,c。作CH⊥AB垂足為點H CH=a·sinB CH=b·sinA ∴a·sinB=b·sinA 得到 a/sinA=b/sinB 同理,在△ABC中,......

    正弦定理證明范文合集

    正弦定理證明1.三角形的正弦定理證明:步驟1.在銳角△ABC中,設(shè)三邊為a,b,c。作CH⊥AB垂足為點HCH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到a/sinA=b/sinB同理,在△ABC中,b/sinB=c/s......

    正弦定理證明

    正弦定理 1.在一個三角形中,各邊和它所對角的正弦的比相等,且等于其外接圓半徑的兩倍, 即abc???2R sinAsinBsinC 證明:如圖所示,過B點作圓的直徑BD交圓于D點,連結(jié)AD BD=2R, 則 D=C,?DAB......

    用正弦定理證明三重向量積[5篇材料]

    用正弦定理證明三重向量積作者:光信1002班 李立內(nèi)容:通過對問題的討論和轉(zhuǎn)化,最后用正弦定理來證明三重向量積的公式——(a?b)?c??(c?b)a?(c?a)b。首先,根據(jù)叉乘的定義,a、b、a?b可以構(gòu)成......

    用向量法證明正弦定理教學(xué)設(shè)計(推薦)

    用向量法證明正弦定理教學(xué)設(shè)計一、 教學(xué)目標(biāo)1、知識與技能:掌握正弦定理的內(nèi)容及其證明方法;會運用正弦定理解決一些簡單的三角形度量問題。2、過程與方法:讓學(xué)生通過向量方法......

    正弦定理的證明

    正弦定理的證明用余弦定理:a^2+b^2-2abCOSc=c^2COSc=(a^2+b^2-c^2)/2abSINc^2=1-COSc^2SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2=/4a^2*b^2*c^2同理可推倒得SINa^2......

    正弦定理證明方法

    正弦定理證明方法方法1:用三角形外接圓證明:任意三角形ABC,作ABC的外接圓O.作直徑BD交⊙O于D.連接DA.因為直徑所對的圓周角是直角,所以∠DAB=90度因為同弧所對的圓周角相等,......

主站蜘蛛池模板: 黄网站色成年片在线观看| 久久超乳爆乳中文字幕| 亚洲在战av极品无码| 国产精品视频第一区二区三区| 国产男女免费完整视频| 果冻传媒mv免费播放在线观看| 内射人妻少妇无码一本一道| 欧洲无码八a片人妻少妇| 精品国产a∨无码一区二区三区| 日本熟妇大乳| 精品久久久bbbb人妻| 色一情一乱一伦一视频免费看| 激情综合一区二区三区| 人妻夜夜爽天天爽| 无码中文字幕av免费放dvd| 久久国产成人精品av| 亚洲精品午夜国产va久久成人| 国产av偷闻女邻居内裤被发现| 无码一区二区三区在线观看| 亚洲a无码综合a国产av中文| 日韩精品无码不卡无码| 国产人妻人伦精品1国产| 亚洲色大成网站www永久男同| 亚洲а∨天堂久久精品| 内射人妻视频国内| 成av免费大片黄在线观看| 国产成人久久婷婷精品流白浆| 国产精品嫩草影院av| 开心婷婷五月激情综合社区| 国产一区二区三区高清在线观看| 欧美日韓性视頻在線| 丰满少妇大力进入av亚洲| 少妇无码太爽了不卡视频在线看| 97人妻熟女成人免费视频色戒| 无码专区—va亚洲v天堂| 午夜精品射精入后重之免费观看| 天堂va欧美va亚洲va好看va| 尤物193在线人妻精品免费| 中字幕人妻一区二区三区| 亚洲人成电影网站 久久影视| 中文字幕亚洲无线码在线一区|