第一篇:正弦定理的證明方法
正弦定理的證明方法
如圖1,△ABC中,AD平分乙A交BC于D,由三角形內(nèi)角平分線有ABBDAC一DC由正弦定理有:由(1)(2)(3,得:韶=韶幼朋=Ac:.△ABc為等腰三角形。證明‘三角證法,:BE平分匕B二器二黯…(l)ABACAB滋nC舀石乙二蕊麗勸元二舀麗””’‘(2)CF平分二C幼器二默…(2);EF//BC
用余弦定理:a^2+b^2-2abCOSc=c^2
COSc=(a^2+b^2-c^2)/2ab
SINc^2=1-COSc^2
SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2
=/4a^2*b^2*c^2
同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2
得證
正弦定理:三角形ABC中BC/sinA=AC/sinB=AB/sinC
證明如下:在三角形的外接圓里證明會(huì)比較方便
例如,用BC邊和經(jīng)過(guò)B的直徑BD,構(gòu)成的直角三角形DBC可以得到:
2RsinD=BC(R為三角形外接圓半徑)
角A=角D
得到:2RsinA=BC
同理:2RsinB=AC,2RsinC=AB
這樣就得到正弦定理了
一種是用三角證asinB=bsinA
用面積證
用幾何法,畫三角形的外接圓
聽(tīng)說(shuō)能用向量證,咋么證呢?
三角形ABC為銳角三角形時(shí),過(guò)A作單位向量j垂直于向量AB,則j與向量AB夾角為90,j與向量BC夾角為(90-B),j與向量CA夾角為(90+A),設(shè)AB=c,BC=a,AC=b,因?yàn)锳B+BC+CA=0
即j*AB+J*BC+J*CA=0
|j||AB|cos90+|j||BC|cos(90-B)+|j||CA|cos(90+A)=0
所以asinB=bsinA
用余弦定理:a^2+b^2-2abCOSc=c^2
COSc=(a^2+b^2-c^2)/2ab
SINc^2=1-COSc^2
SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2
=/4a^2*b^2*c^2
同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2
得證用余弦定理:a^2+b^2-2abCOSc=c^2COSc=(a^2+b^2-c^2)/2abSINc^2=1-COSc^2SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2=/4a^2*b^2*c^2同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2得證
滿意答案好評(píng)率:100%
正弦定理
步驟1.在銳角△ABC中,設(shè)BC=a,AC=b,AB=c。作CH⊥AB垂足為點(diǎn)H
CH=a·sinB
CH=b·sinA
∴a·sinB=b·sinA
得到a/sinA=b/sinB
同理,在△ABC中,b/sinB=c/sinC
步驟2.證明a/sinA=b/sinB=c/sinC=2R:
如圖,任意三角形ABC,作ABC的外接圓O.作直徑BD交⊙O于D.連接DA.因?yàn)橹睆剿鶎?duì)的圓周角是直角,所以∠DAB=90度
因?yàn)橥∷鶎?duì)的圓周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R類似可證其余兩個(gè)等式。
余弦定理
平面向量證法:
∵如圖,有a+b=c(平行四邊形定則:兩個(gè)鄰邊之間的對(duì)角線代表兩個(gè)鄰邊大小)
∴c·c=(a+b)·(a+b)
∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ)
(以上粗體字符表示向量)
又∵Cos(π-θ)=-CosC
∴c^2=a^2+b^2-2|a||b|Cosθ(注意:這里用到了三角函數(shù)公式)
再拆開(kāi),得c^2=a^2+b^2-2*a*b*CosC
同理可證其他,而下面的CosC=(c^2-b^2-a^2)/2ab就是將CosC移到左邊表示一下。
平面幾何證法:
在任意△ABC中
做AD⊥BC.∠C所對(duì)的邊為c,∠B所對(duì)的邊為b,∠A所對(duì)的邊為a
則有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
根據(jù)勾股定理可得:
AC^2=AD^2+DC^2
b^2=(sinB*c)^2+(a-cosB*c)^2
b^2=sinB2·c2+a^2+cosB2·c^2-2ac*cosB
b^2=(sinB^2+cosB^2)*c^2-2ac*cosB+a^2
b^2=c^2+a^2-2ac*cosB
cosB=(c^2+a^2-b^2)/2ac
第二篇:正弦定理證明方法
正弦定理證明方法
方法1:用三角形外接圓
證明:任意三角形ABC,作ABC的外接圓O.作直徑BD交⊙O于D.連接DA.因?yàn)橹睆剿鶎?duì)的圓周角是直角,所以∠DAB=90度
因?yàn)橥∷鶎?duì)的圓周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R
類似可證其余兩個(gè)等式。
∴a/sinA=b/sinB=c/sinC=2R
方法2:用直角三角形
證明:在銳角△ABC中,設(shè)BC=a,AC=b,AB=c。作CH⊥AB垂足為點(diǎn)H
CH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到a/sinA=b/sinB
同理,在△ABC中,b/sinB=c/sinC∴a/sinA=b/sinB=c/sinC
在直角三角形中,在鈍角三角形中(略)。
方法3:用向量
證明:記向量i,使i垂直于AC于C,△ABC三邊AB,BC,CA為向量a,b,c∴a+b+c=0則i(a+b+c)=i·a+i·b+i·c
=a·cos(180-(C-90))+0+c·cos(90-A)=-asinC+csinA=0∴a/sinA=c/sinC(b與i垂直,i·b=0)
方法4:用三角形面積公式
證明:在△ABC中,設(shè)BC=a,AC=b,AB=c。作CD⊥AB垂足為點(diǎn)D,作BE⊥AC垂足為點(diǎn)E,則CD=a·sinB,BE=csinA,由三角形面積公式得:AB·CD=AC·BE
即c·a·sinB=b·csinA∴a/sinA=b/sinB同理可得b/sinB=c/sinC
∴a/sinA=b/sinB=c/sinC
用余弦定理:a^2+b^2-2abCOSc=c^2
COSc=(a^2+b^2-c^2)/2ab
SINc^2=1-COSc^2
SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2
=/4a^2*b^2*c^2
同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2
得證
正弦定理:三角形ABC中BC/sinA=AC/sinB=AB/sinC
證明如下:在三角形的外接圓里證明會(huì)比較方便
例如,用BC邊和經(jīng)過(guò)B的直徑BD,構(gòu)成的直角三角形DBC可以得到:
2RsinD=BC(R為三角形外接圓半徑)
角A=角D
得到:2RsinA=BC
同理:2RsinB=AC,2RsinC=AB
這樣就得到正弦定理了
一種是用三角證asinB=bsinA
用面積證
用幾何法,畫三角形的外接圓
聽(tīng)說(shuō)能用向量證,咋么證呢?
三角形ABC為銳角三角形時(shí),過(guò)A作單位向量j垂直于向量AB,則j與向量AB夾角為90,j與向量BC夾角為(90-B),j與向量CA夾角為(90+A),設(shè)AB=c,BC=a,AC=b,因?yàn)锳B+BC+CA=0
即j*AB+J*BC+J*CA=0
|j||AB|cos90+|j||BC|cos(90-B)+|j||CA|cos(90+A)=0
所以asinB=bsinA
用余弦定理:a^2+b^2-2abCOSc=c^2
COSc=(a^2+b^2-c^2)/2ab
SINc^2=1-COSc^2
SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2
=/4a^2*b^2*c^2
同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2
得證用余弦定理:a^2+b^2-2abCOSc=c^2COSc=(a^2+b^2-c^2)/2abSINc^2=1-COSc^2SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2=/4a^2*b^2*c^2同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2得證
滿意答案好評(píng)率:100%
正弦定理
步驟1.在銳角△ABC中,設(shè)BC=a,AC=b,AB=c。作CH⊥AB垂足為點(diǎn)H
CH=a·sinB
CH=b·sinA
∴a·sinB=b·sinA
得到a/sinA=b/sinB
同理,在△ABC中,b/sinB=c/sinC
步驟2.證明a/sinA=b/sinB=c/sinC=2R:
如圖,任意三角形ABC,作ABC的外接圓O.作直徑BD交⊙O于D.連接DA.因?yàn)橹睆剿鶎?duì)的圓周角是直角,所以∠DAB=90度
因?yàn)橥∷鶎?duì)的圓周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R類似可證其余兩個(gè)等式。
余弦定理
平面向量證法:
∵如圖,有a+b=c(平行四邊形定則:兩個(gè)鄰邊之間的對(duì)角線代表兩個(gè)鄰邊大小)
∴c·c=(a+b)·(a+b)
∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ)
(以上粗體字符表示向量)
又∵Cos(π-θ)=-CosC
∴c^2=a^2+b^2-2|a||b|Cosθ(注意:這里用到了三角函數(shù)公式)
再拆開(kāi),得c^2=a^2+b^2-2*a*b*CosC
同理可證其他,而下面的CosC=(c^2-b^2-a^2)/2ab就是將CosC移到左邊表示一下。
平面幾何證法:
在任意△ABC中
做AD⊥BC.∠C所對(duì)的邊為c,∠B所對(duì)的邊為b,∠A所對(duì)的邊為a
則有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
根據(jù)勾股定理可得:
AC^2=AD^2+DC^2
b^2=(sinB*c)^2+(a-cosB*c)^2
b^2=sinB2·c2+a^2+cosB2·c^2-2ac*cosB
b^2=(sinB^2+cosB^2)*c^2-2ac*cosB+a^2
b^2=c^2+a^2-2ac*cosB
cosB=(c^2+a^2-b^2)/2ac
第三篇:正弦定理證明
正弦定理證明1.三角形的正弦定理證明: 步驟1.在銳角△ABC中,設(shè)三邊為a,b,c。作CH⊥AB垂足為點(diǎn)H CH=a·sinB CH=b·sinA ∴a·sinB=b·sinA 得到
a/sinA=b/sinB 同理,在△ABC中,b/sinB=c/sinC 步驟2.證明a/sinA=b/sinB=c/sinC=2R:
如圖,任意三角形ABC,作ABC的外接圓O.作直徑BD交⊙O于D.連接DA.因?yàn)橹睆剿鶎?duì)的圓周角是直角,所以∠DAB=90度 因?yàn)橥∷鶎?duì)的圓周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R a/SinA=BC/SinD=BD=2R 類似可證其余兩個(gè)等式。2.三角形的余弦定理證明:平面幾何證法: 在任意△ABC中 做AD⊥BC.∠C所對(duì)的邊為c,∠B所對(duì)的邊為b,∠A所對(duì)的邊為a 則有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根據(jù)勾股定理可得: AC^2=AD^2+DC^2 b^2=(sinB*c)^2+(a-cosB*c)^2 b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosB b^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2 b^2=c^2+a^2-2ac*cosB cosB=(c^2+a^2-b^2)/2ac 3 在△ABC中,AB=c、BC=a、CA=b 則c^2=a^2+b^2-2ab*cosC a^2=b^2+c^2-2bc*cosA b^2=a^2+c^2-2ac*cosB 下面在銳角△中證明第一個(gè)等式,在鈍角△中證明以此類推。過(guò)A作AD⊥BC于D,則BD+CD=a 由勾股定理得:
c^2=(AD)^2+(BD)^2,(AD)^2=b^2-(CD)^2 所以c^2=(AD)^2-(CD)^2+b^2 =(a-CD)^2-(CD)^2+b^2 =a^2-2a*CD +(CD)^2-(CD)^2+b^2 =a^2+b^2-2a*CD 因?yàn)閏osC=CD/b 所以CD=b*cosC 所以c^2=a^2+b^2-2ab*cosC 題目中^2表示平方。2 談?wù)⒂嘞叶ɡ淼亩喾N證法 聊城二中 魏清泉
正、余弦定理是解三角形強(qiáng)有力的工具,關(guān)于這兩個(gè)定理有好幾種不同的證明方法.人教A版教材《數(shù)學(xué)》(必修5)是用向量的數(shù)量積給出證明的,如是在證明正弦定理時(shí)用到作輔助單位向量并對(duì)向量的等式作同一向量的數(shù)量積,這種構(gòu)思方法過(guò)于獨(dú)特,不易被初學(xué)者接受.本文試圖通過(guò)運(yùn)用多種方法證明正、余弦定理從而進(jìn)一步理解正、余弦定理,進(jìn)一步體會(huì)向量的巧妙應(yīng)用和數(shù)學(xué)中“數(shù)”與“形”的完美結(jié)合.定理:在△ABC中,AB=c,AC=b,BC=a,則(1)(正弦定理)= =;(2)(余弦定理)c2=a2+b2-2abcos C, b2=a2+c2-2accos B, a2=b2+c2-2bccos A.一、正弦定理的證明
證法一:如圖1,設(shè)AD、BE、CF分別是△ABC的三條高。則有 AD=b?sin∠BCA,BE=c?sin∠CAB,CF=a?sin∠ABC。
所以S△ABC=a?b?csin∠BCA =b?c?sin∠CAB =c?a?sin∠ABC.證法二:如圖1,設(shè)AD、BE、CF分別是△ABC的3條高。則有 AD=b?sin∠BCA=c?sin∠ABC,BE=a?sin∠BCA=c?sin∠CAB。證法三:如圖2,設(shè)CD=2r是△ABC的外接圓 的直徑,則∠DAC=90°,∠ABC=∠ADC。
證法四:如圖3,設(shè)單位向量j與向量AC垂直。因?yàn)锳B=AC+CB,所以j?AB=j?(AC+CB)=j?AC+j?CB.因?yàn)閖?AC=0,j?CB=| j ||CB|cos(90°-∠C)=a?sinC,j?AB=| j ||AB|cos(90°-∠A)=c?sinA.二、余弦定理的證明
法一:在△ABC中,已知,求c。
第四篇:正弦定理證明
正弦定理
1.在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等,且等于其外接圓半徑的兩倍,即
abc???2R sinAsinBsinC
證明:如圖所示,過(guò)B點(diǎn)作圓的直徑BD交圓于D點(diǎn),連結(jié)AD BD=2R, 則 D=C,?DAB?90 在Rt?ABD中 ?A ?sinC?sinD??c 2RD
b c c?2R sinCab同理:?2R,?2R
sinAsinBabc所以???2R
sinAsinBsinC2.變式結(jié)論
1)a?2RsinA,b?2RsinB,c?2RsinC 2)sinA?C
a
B abc ,sinB?,sinC?2R2R2R3)asinB?bsinA,asinC?csinA,csinB?bsinC 4)a:b:c?sinA:sinB:sinC
例題
在?ABC中,角A,B,C所對(duì)的邊分別是a,b,c,若(3b?c)cosA?acosC,求cosA的值.解:由正弦定理 a?2RsinA,b?2RsinB,c?2RsinC得
(3sinB?sinC)cosA?sinAcosC
?3sinBcosA?sin(A?C)?sin(A?C)?sinB?3sinBcosA?sinB?B?(0,?)?0?sinB?1?cosA?33
第五篇:正弦定理證明
新課標(biāo)必修數(shù)學(xué)5“解三角形”內(nèi)容分析及教學(xué)建議
江蘇省錫山高級(jí)中學(xué)楊志文
新課程必修數(shù)學(xué)5的內(nèi)容主要包括解三角形、數(shù)列、不等式。這些內(nèi)容都是高中數(shù)學(xué)中的傳統(tǒng)內(nèi)容。其中“解三角形”既是高中數(shù)學(xué)的基本內(nèi)容,又有較強(qiáng)的應(yīng)用性。在歷次教材改革中都作為中學(xué)數(shù)學(xué)中的重點(diǎn)內(nèi)容,一直被保留下來(lái)。在這次新課程改革中,新普通高中《數(shù)學(xué)課程標(biāo)準(zhǔn)》(以下簡(jiǎn)稱《標(biāo)準(zhǔn)》)與原全日制普通高級(jí)中學(xué)《數(shù)學(xué)教學(xué)大綱》(以下簡(jiǎn)稱《大綱》)相比,“解三角形”這塊內(nèi)容在安排順序上進(jìn)行了新的整合。本文就《標(biāo)準(zhǔn)》必修模塊數(shù)學(xué)5第一部分“解三角形”的課程內(nèi)容、教學(xué)目標(biāo)要求、課程關(guān)注點(diǎn)、內(nèi)容處理上等方面的變化進(jìn)行簡(jiǎn)要的分析,并對(duì)教學(xué)中應(yīng)注意的幾個(gè)問(wèn)題談?wù)勛约旱囊恍┰O(shè)想和教學(xué)建議,供大家參考。
一、《標(biāo)準(zhǔn)》必修模塊數(shù)學(xué)5中“解三角形”與原課程中“解斜三角形”的比較
1.課程內(nèi)容安排上的變化
“解三角形”在原課程中為“解斜三角形”,安排在“平面向量”一章中,作為平面向量的一個(gè)單元。而在新課程《標(biāo)準(zhǔn)》中重新進(jìn)行了整合,將其安排在必修模塊數(shù)學(xué)5中,獨(dú)立成為一章,與必修模塊數(shù)學(xué)4中的“平面向量”分別安排在不同的模塊中。
2.教學(xué)要求的變化
原大綱對(duì)“解斜三角形”的教學(xué)要求是:
(1)掌握正弦定理、余弦定理,并能運(yùn)用它們解斜三角形,能利用計(jì)算器解決解斜三角形的計(jì)算問(wèn)題。
(2)通過(guò)解三角形的應(yīng)用的教學(xué),提高運(yùn)用所學(xué)知識(shí)解決實(shí)際問(wèn)題的能力。
(3)實(shí)習(xí)作業(yè)以測(cè)量為內(nèi)容,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力和實(shí)際操作的能力。《標(biāo)準(zhǔn)》對(duì)“解三角形”的教學(xué)要求是:
(1)通過(guò)對(duì)任意三角形邊長(zhǎng)和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡(jiǎn)單的三角形度量問(wèn)題。
(2)能夠運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些與測(cè)量和幾何計(jì)算有關(guān)的實(shí)際問(wèn)題。由此可以看出,《標(biāo)準(zhǔn)》在計(jì)算方面降低了要求,取消了“利用計(jì)算器解決解斜三角形的計(jì)算問(wèn)題”的要求,而在探索推理方面提高了要求,要求“通過(guò)對(duì)任意三角形邊長(zhǎng)和角度關(guān)系的探索,掌握正弦定理、余弦定理”。
3、課程關(guān)注點(diǎn)的變化
原《大綱》中,解斜三角形內(nèi)容,比較關(guān)注三角形邊角關(guān)系的恒等變換,往往把側(cè)重點(diǎn)放在運(yùn)算上。而《標(biāo)準(zhǔn)》則關(guān)注運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些與測(cè)量和幾何計(jì)算有關(guān)的實(shí)際問(wèn)題。側(cè)重點(diǎn)放在學(xué)生探究和推理能力的培養(yǎng)上。
4、內(nèi)容處理上的變化
原《大綱》中,解斜三角形作為平面向量知識(shí)的應(yīng)用,突出其工具性和應(yīng)用性。而《標(biāo)準(zhǔn)》將解三角形作為幾何度量問(wèn)題來(lái)處理,突出幾何的作用,為學(xué)生理解數(shù)學(xué)中的量化思想、進(jìn)一步學(xué)習(xí)數(shù)學(xué)奠定基礎(chǔ)。解三角形處理的是三角形中長(zhǎng)度、角度、面積的度量問(wèn)題,長(zhǎng)度、面積是理解積分的基礎(chǔ),角度是刻畫方向的,長(zhǎng)度、方向是向量的特征,有了長(zhǎng)度、方向,向量的工具自然就有用武之地。
二、教學(xué)中應(yīng)注意的幾個(gè)問(wèn)題及教學(xué)建議
原《大綱》中解斜三角形的內(nèi)容,比較關(guān)注三角形邊角關(guān)系的恒等變換,往往把側(cè)重點(diǎn)放在運(yùn)算上。而《標(biāo)準(zhǔn)》將解三角形作為幾何度量問(wèn)題來(lái)展開(kāi),強(qiáng)調(diào)學(xué)生在已有知識(shí)的基礎(chǔ)上,通過(guò)對(duì)任意三角形邊角關(guān)系的探究,發(fā)現(xiàn)并掌握三角形中的邊長(zhǎng)與角度之間的數(shù)量關(guān)系,解決簡(jiǎn)單的三角形度量問(wèn)題。這就要求在教學(xué)過(guò)程中,突出幾何的作用和數(shù)學(xué)量化思想,發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性,使學(xué)生的學(xué)習(xí)過(guò)程成為在教師引導(dǎo)下的探究過(guò)程、再創(chuàng)造過(guò)程。因此在教學(xué)中應(yīng)注意以下幾個(gè)問(wèn)題。
1.要重視探究和推理
《標(biāo)準(zhǔn)》要求“通過(guò)對(duì)任意三角形邊長(zhǎng)和角度關(guān)系的探索,掌握正弦定理、余弦定理”。因此建議在教學(xué)中,既要重視從特殊到一般的探索學(xué)習(xí)過(guò)程的教學(xué),又要重視數(shù)學(xué)的理性思維的培養(yǎng)。教學(xué)中不要直接給出定理進(jìn)行證明,可通過(guò)學(xué)生對(duì)三角形邊與角的正弦的測(cè)量與計(jì)算,研究邊與其對(duì)角的正弦之間的比,揭示它們?cè)跀?shù)量上的規(guī)律,發(fā)現(xiàn)正弦定理的結(jié)論,然后再?gòu)睦碚撋线M(jìn)行論證,從而掌握正弦定理。從中體會(huì)發(fā)現(xiàn)和探索數(shù)學(xué)知識(shí)的思想方法。
參考案例:正弦定理的探索、發(fā)現(xiàn)與證明
教學(xué)建議:建議按如下步驟設(shè)計(jì)教學(xué)過(guò)程:
(1)從特殊三角形入手進(jìn)行發(fā)現(xiàn)
讓學(xué)生觀察并測(cè)量一個(gè)三角板的邊長(zhǎng)。
提出問(wèn)題:你能發(fā)現(xiàn)三邊長(zhǎng)與其對(duì)角的正弦值之比之間的關(guān)系嗎?
例如,量得三角板三內(nèi)角300,600,900所對(duì)的三邊長(zhǎng)分別約為5cm,8.6cm,10cm,58.610,?10?10?10 000
sin30sin60sin90
abc
對(duì)于特殊三角形,我們發(fā)現(xiàn)規(guī)律:。??
sinAsinBsinC
則有:
提出問(wèn)題:上述規(guī)律,對(duì)任意三角形成立嗎?(2)實(shí)驗(yàn),探索規(guī)律
二人合作,先在紙上做一任意銳角(銳角或鈍角)三角形,測(cè)量三邊長(zhǎng)及其三個(gè)對(duì)角,然后用計(jì)算器計(jì)算每一邊與其對(duì)角正弦值的比,填入下面表中,驗(yàn)證前面得出的結(jié)論是否正確。(其中,角精確到分,忽略測(cè)量誤差,通過(guò)實(shí)驗(yàn),對(duì)任意三角形,有結(jié)論:
abc,即在一個(gè)三角形中,??
sinAsinBsinC
各邊和它所對(duì)的角的正弦的比相等。
提出問(wèn)題:上述的探索過(guò)程所得出的結(jié)論,只是我們通過(guò)實(shí)驗(yàn)(近似結(jié)果)發(fā)現(xiàn)的一個(gè)結(jié)果,如果我們能在理論上證明它是正確的,則把它叫做正弦定理。那么怎樣證明呢?
(4)研究定理證明的方法方法一:(向量法)①若△ABC為直角三角形,由銳角三角函數(shù)的定義知,定理顯然成立。②若△ABC為銳角三角形,過(guò)點(diǎn)A做單位向量j垂直于AC,則向量j與向量的夾角為900-A,向
量j
與向量CB的夾角為900-C,(如圖1),且有:AC?CB?AB,所以j·(+)= j·即j·+ j· = j·AB 展開(kāi)|j||AC|cos900+ | j||CB|cos(900-C)=| j|||cos(900-A)
ac
。?
sinAsinC
cbabc
同理,過(guò)點(diǎn)C做單位向量j垂直于,可得:,故有。???
sinCsinBsinAsinBsinC
③若△ABC為鈍角三角形,不妨設(shè)角A>900(如圖2),過(guò)點(diǎn)A做單位向量j垂直于AC,則向量j與
則得 a sinC = c sinA,即
向量AB的夾角為A-900,向量j與向量的夾角為900-C,且有:??,同樣可證得:
abc
。??
sinAsinB
提出問(wèn)題:你還能利用其他方法證明嗎?
方法二:請(qǐng)同學(xué)們課后自己利用平面幾何中圓內(nèi)接三角形(銳角,鈍角和直角)及同弧所對(duì)的圓周角相等等知識(shí),將△ABC中的邊角關(guān)系轉(zhuǎn)化為以直徑為斜邊的直角三角形中去探討證明方法。
2.要重視綜合應(yīng)用
《標(biāo)準(zhǔn)》要求掌握正弦定理、余弦定理,并能解決一些簡(jiǎn)單的三角形度量問(wèn)題。建議在正弦定理、余弦定理的教學(xué)中,設(shè)計(jì)一些關(guān)于正弦定理、余弦定理的綜合性問(wèn)題,提高學(xué)生綜合應(yīng)用知識(shí)解決問(wèn)題的能力。如可設(shè)計(jì)下面的問(wèn)題進(jìn)行教學(xué):
參考案例:正弦定理、余弦定理的綜合應(yīng)用 C 如圖,在四邊形ABCD中,已知AD?CD,AD=10,AB=14,?BDA=60?,?BCD=135?.求BC的長(zhǎng).教學(xué)建議:
引導(dǎo)學(xué)生進(jìn)行分析,欲求BC,需在△BCD中求解,∵?BCD=135?,?BDC=30?,∴需要求BD,而B(niǎo)D需在△ABD中求解.再引導(dǎo)學(xué)生將
A B
四邊形問(wèn)題轉(zhuǎn)化為三角形問(wèn)題,選擇余弦定理求BD,再由正弦定理
例2圖 求BC。
3.要重視實(shí)際應(yīng)用
《標(biāo)準(zhǔn)》要求運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些與測(cè)量和幾何計(jì)算有關(guān)的實(shí)際問(wèn)題。因此建議在教學(xué)中,設(shè)計(jì)一些實(shí)際應(yīng)用問(wèn)題,為學(xué)生體驗(yàn)數(shù)學(xué)在解決問(wèn)題中的作用,感受數(shù)學(xué)與日常生活及與其他學(xué)科的聯(lián)系,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí),提高學(xué)生解決實(shí)際問(wèn)題的能力。在題目的設(shè)計(jì)中要注意對(duì)恒等變形降低要求,避免技巧性強(qiáng)的變形和繁瑣的運(yùn)算。
參考案例:解三角形在實(shí)際中的應(yīng)用
參考案例1.航海中甲船在A處發(fā)現(xiàn)乙船在北偏東45?,與A的距離為10海里的C處正以20海里/h的速度向南偏東75?的方向航行,已知甲船速度是203海里/h,問(wèn)甲船沿什么方向,用多少時(shí)間才能與
乙船相遇?
教學(xué)建議:引導(dǎo)學(xué)生依據(jù)題意畫出示意圖,將實(shí)際問(wèn)題轉(zhuǎn)化為解三角形問(wèn)題。若設(shè)甲船與乙船經(jīng)過(guò)t小時(shí)在B處相遇,構(gòu)建?ACB,容易計(jì)算出AB?20海里,BC?20海里,根據(jù)余弦定理建立關(guān)于t的方程,求出t,問(wèn)題就解決了。
答: 甲船沿北偏東75?的方向,經(jīng)過(guò)0.5小時(shí)與乙船相遇.參考案例2.為了測(cè)量某城市電視塔的高度,在一條直道上選 擇了A,B,C三點(diǎn),使AB?BC?60m,在A,B,C三點(diǎn)
?
?
?
例1圖 DA 觀察塔的最高點(diǎn),測(cè)得仰角分別為45,54.2,60,若測(cè)量 E
者的身高為1.5m,試求電視塔的高度(結(jié)果保留1位小數(shù)).F 教學(xué)建議:引導(dǎo)學(xué)生依據(jù)題意畫出示意圖如圖,將實(shí)際問(wèn)題轉(zhuǎn)化為
解三角形問(wèn)題。要求電視塔的高度。只要求出DE的長(zhǎng)。將問(wèn)題中的已
知量、未知量集中到有關(guān)三角形中,構(gòu)造出解三角形的數(shù)學(xué)模型。在例2圖 ?ACE中和?BCE中應(yīng)用余弦定理,使問(wèn)題獲得解決.答: 電視塔的高度約為158.3m.4.要重視研究性學(xué)習(xí)
解三角形的內(nèi)容有較強(qiáng)的應(yīng)用性和研究性,可為學(xué)生提供豐富的研究性素材。建議在教學(xué)內(nèi)容的設(shè)計(jì)上探索開(kāi)放,在教學(xué)形式上靈活多樣。可設(shè)計(jì)一些研究性、開(kāi)放性的問(wèn)題,讓學(xué)生自行探索解決。參考案例:研究性學(xué)習(xí)
課外研究題:將一塊圓心角為120?,半徑為20厘米的扇形鐵片裁成一塊矩形,請(qǐng)你設(shè)計(jì)裁法,使裁得矩形的面積最大?并說(shuō)明理由.
教學(xué)建議:這是一個(gè)研究性學(xué)習(xí)內(nèi)容,可讓學(xué)生在課外兩人一組合作完成,寫成研究報(bào)告,在習(xí)題課上讓學(xué)生交流研究結(jié)果,老師可適當(dāng)進(jìn)行點(diǎn)評(píng)。
參考答案:這是一個(gè)如何下料的問(wèn)題,一般有如圖(1)、圖(2)的兩種裁法:即讓矩形一邊在扇形的一條半徑OA上,或讓矩形一邊與弦AB
平行。從圖形的特點(diǎn)來(lái)看,涉及到線段的長(zhǎng)度和角度,將
這些量放置在三角形中,通過(guò)解三角形求出矩形的邊長(zhǎng),再計(jì)算出兩種方案所得矩形的最大面積,加以比較,就可以得出問(wèn)題的結(jié)論.
NBB
PO圖(2)
QM
O圖(1)
按圖(1)的裁法:矩形的一邊OP在OA上,頂點(diǎn)M在圓弧上,設(shè)?MOA??,則:
時(shí),Smax?200.
4按圖(2)的裁法: 矩形一邊PQ與弦AB平行,設(shè)?MOQ??,在?MOQ中,?OQM?90??30??120?,由正弦定理,得:
sin120?
又?MN?2OMsin(60???)?40sin(60???),MQ?
20sin?
?
3sin?. 3
MP?20sin?,OP?20cos?,從而S?400sin?cos??200sin2?.即當(dāng)??
?
∴S?MQ?MN?
sin?sin(60???)?cos(2??60?)?cos60?. 33
??
∴當(dāng)??30?時(shí),Smax?由于
400. 3
400平方厘米. ?200,所以用第二中裁法可裁得面積最大的矩形,最大面積為33
也可以建議學(xué)生在課外自行尋找研究性、應(yīng)用性的題目去做,寫出研究或?qū)嶒?yàn)報(bào)告,在學(xué)校開(kāi)設(shè)的研究性學(xué)習(xí)課上進(jìn)行交流,評(píng)價(jià)。
參考文獻(xiàn):
①全日制普通高中級(jí)學(xué)《數(shù)學(xué)教學(xué)大綱》。人民教育出版社。2002年4 月。
②《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn)))》。人民教育出版社。2003年4月第一次印刷。③《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn))解讀》。嚴(yán)士健 張奠宙王尚志等主編。江蘇教育出版社。2004年4月。