第一篇:數學史小故事
數學故事——
費爾馬大定理挽救了一個自殺者的生命
德國數學愛好者、商人沃爾夫斯凱爾迷戀上了一位漂亮姑娘。然而遺憾的是,他卻被全然拒絕了,這使其倍受打擊、傷心至極并決定自殺。不過他雖然感情強烈,但做起事情來并不魯莽。沃爾夫斯凱爾非常謹慎地制定了其死亡計劃的每一個細節。最終他確定下了自殺日期,并決定在午夜鐘聲響起那一刻開槍射擊自己的頭部。
在人生剩余的日子里,沃爾夫斯凱爾依然努力地工作,妥善處理其所有商業事務。在擬定自殺的那一天,他先是寫下了遺囑,然后給所有親朋好友寫下了訣別信。不過因其做事效率比較高,很快就把擬定的所有事情都處理好了,可此時離午夜還有好幾個小時。
為了消磨這人生最后的時間,沃爾夫斯凱爾去了圖書館,隨手翻到一本數學期刊,很快他就被其中一篇文章吸引住了。該文是庫默爾解釋為何柯西和拉梅證明費馬大定理的方法行不通,應該說那是一篇偉大的數學論文,特別適合想自殺的數學家在最后時刻閱讀。很快沃爾夫斯凱爾就不知不覺地被這篇經典論文完全吸引住了。沃爾夫斯凱爾展開了詳細地計算和驗證,突然他驚詫于原文論證中似乎存在著一個邏輯漏洞: 庫默爾提出了一個假定,卻未在其論證中說明合理性。沃爾夫斯凱爾不清楚到底是他發現了一個嚴重的邏輯缺陷呢,還是庫默爾假定是合理的。若是前者,則費馬大定理的證明就有可能比許多人猜測的容易。于是,沃爾夫斯凱爾仔細審閱了那一段不充分的證明,漸漸地聚精會神、全神貫注于這個小證明,該證明或者會加強庫默爾的工作,或者會證明其假設是錯誤的。在后一種情形下,庫默爾的所有工作將宣告都是無效的。
直到黎明時分,沃爾夫斯凱爾終于完成了證明工作,補救了庫默爾的證明,從而確認了柯西和拉梅未能證明費馬大定理。此時原定自殺的時間早已過去了,沃爾夫斯凱爾對于自己發現并改正了偉大的庫默爾工作中一個漏洞感到無比驕傲,因為整個證明過程讓他充分感受到了成功的喜悅和數學魅力,重新認識到了人生的價值所在。正是數學喚起了其重新開始生活的欲望。
沃爾夫斯凱爾撕毀了他已寫好的所有告別信,重新立下遺囑。在他去世后,遺囑被宣讀時,沃爾夫斯凱爾的家人震驚地發現,其大部分遺產被捐贈設立一個獎項,擬獎給第一個證明費馬大定理者。該獎金由哥廷根皇家科學協會保存和評獎,其利息可用于數學的發展。為此,哥廷根皇家科學協會專門發表了公告:
根據達姆斯塔特斯基的保羅·沃爾夫斯凱爾博士授予我們的權力,在此設立10萬馬克的獎賞,擬授予第一個證明費馬大定理者。
如果到2007年9月尚未頒發此獎,將不再繼續接受申請。哥廷根皇家科學協會
1908年6月27日 很快全世界都為之瘋狂,不少人投入到證明費馬大定理的行列之中,以至于哥廷根皇家科學協會不得不印刷大量的退稿卡片來,以便應付來自世界各地的信件。
最終,英國數學家懷爾斯于1995年圓滿證明了費馬大定理。他不僅獲得了沃爾夫斯凱爾獎,還獲得了1996年度的沃爾夫獎。可以毫不夸張地說,懷爾斯動用了人類發明數學以來幾乎所有知識,匯集了20 世紀有關數論的所有突破性工作。其證明最初寫了滿滿200 頁,被分成6 章,由6位世界頂級數學家獨立審核。后來維爾斯的證明濃縮到130頁,這與費馬留在頁邊的那段話可謂格格不入:對于該命題,我確信已發現一種奇妙的證明,可惜這里的空白太小,寫不下。
第二篇:數學史小論文
數學史小論文
圓周率的歷史作用
中文摘要:圓周率,一般以π來表示,是一個在數學及物理學普遍存在的數學常數。它定義為圓形之周長與直徑之比。它也等于圓形之面積與半徑平方之比。是精確計算圓周長、圓面積、球體積等幾何形狀的關鍵值。圓周率是一個常數(約等于3.1415926),是代表圓周長和直徑的比例。它是一個無理數,即是一個無限不循環小數。圓周率在生產實踐中應用非常廣泛,在科學不很發達的古代,計算圓周率是一件相當復雜和困難的工作。因此,圓周率的理論和計算在一定程度上反映了一個國家的數學水平。
圓周率是極其馳名的數。從這個數有文字記載歷史開始,這個數就引起了外行人和學者的興趣。幾千年來,無數古往今外為此奉獻出自己的智慧和勞動。
巴比倫人最早發現了圓周率。1600年,英國威廉奧托蘭特首先使用pi表示圓周率,因為pi是希臘之“圓周”的第一個字母。1706年,英國的瓊斯首先使用pi。1737年,歐拉在其著作中使用,后來被數學家廣泛接受,一直沿用至今。pi是一個非常重要的常數,一位德國數學家評論道:“歷史上一個國家所算得的圓周率的準確程度,可以作為衡量這個國家當時數學發展水平的重要標志,古今中外很多數學家都孜孜不倦地尋求過值的計算方法。從埃及道巴比倫到中國一直都在對圓周率的精確值做出研究。
早期的測算中人們使用了很粗糙方法。古埃及、古希臘人曾用谷粒擺在圓形上,以數粒數與方形對比的方法取得數值。或用勻重木板鋸成圓形和方形以秤量對比取值??由此,得到圓周率的稍好些的值。
在我國東、西漢之交,新朝王莽令劉歆制造量的容器――律嘉量斛。劉歆在制造標準容器的過程中就需要用到圓周率的值。他得到一些關于圓周率的并不劃一的近似值,分別為3.1547,3.1992,3.1498,3.2031,比徑一周三的古率已有所進步。人類的這種探索的結果,當主要估計圓田面積時,對生產沒有太大影響,但以此來制造器皿或其它計算就不合適了。此外為我們所知的就是祖沖之了。
公元前200年間古希臘數學家阿基米德首先從理論上給出pi值的正確求法。他專門寫了一篇論文《圓的度量》用圓外切與內接多邊形的周長以大小兩個方向上同時逐步逼近圓的周長,巧妙地求得pi。這是第一次在科學中創用上下界來確定近似值,公元前150年左右,另一位古希臘數學家托勒密用弦表法(以1的圓心角所對弦長乘以360再除以圓的直徑)給出了pi的近似值3.1416。
公元200年間,我國數學家劉徽在注釋《九章算術》中獨立發現了用幾何方法求圓周率的方法,稱之為“割圓術”。劉徽由正六邊形開始,不斷倍增正多邊形的邊數。
公元前200年間古希臘數學家阿基米德首先從理論上給出pi值的正確求法。他專門寫了一篇論文《圓的度量》用圓外切與內接多邊形的周長以大小兩個方向上同時逐步逼近圓的周長,巧妙地求得pi。這是第一次在科學中創用上下界來確定近似值,公元前150年左右,另一位古希臘數學家托勒密用弦表法(以1的圓心角所對弦長乘以360再除以圓的直徑)給出了pi的近似值3.1416。
公元200年間,我國數學家劉徽在注釋《九章算術》中獨立發現了用幾何方法求圓周率的方法,稱之為“割圓術”。劉徽由正六邊形開始,不斷倍增正多邊形的邊數。邊數越多越接近圓,最后劉徽求得π≈ 3.1416。
劉薇與阿基米德的方法有所不同,他只從圓內接正六邊形入手,也是不斷將邊數加倍,只是劉薇用正多邊形的面積逼近圓的面積。劉薇認為:“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體,而無所失矣。”包含有樸素的極限思想。公元460年,南朝的祖沖之利用劉薇的割圓術,把值算到小數點后第七位3.1415926。這個具有七位小數的圓周率當時是世界首次,祖沖之還找到了兩個分數22、7和355、113。用分數來代替pi,極大地簡化了計算,這種思想比西方早一千年。可見當時的中國數學家對圓周率的值作了比較的精確計算為中國日后的數學發展起著舉足輕重的作用。1579年法國韋達發現了關系式,首次擺脫了幾何學的陳舊方法,尋求到了pi的解析表達式。1650年瓦里斯把pi表示成無窮乘積,無窮連分數,無窮級數等各種值表達式紛紛出現,值計算精度也迅速增加。稍后,萊布尼茨發現接著歐拉證明了這些公式的計算量都很大。盡管形式非常簡單,pi值的計算方法的最大突破是找到了它的反正切函數表達式。1706年英國數學家麥欣首先發現了其計算速度遠遠超過方典算法。
某個古代文牘員以不同長度的半徑畫了一些圓,他取了每個圓的直徑(將半徑加倍)只是為了好玩。他決定以每個圓的直徑為單位長度在圓周上丈量。令人驚奇的是,不管圓的大小如何,圓周總是直徑的3倍多一點。由于pi與圓的特殊關系,故數學家設計用來計算出圓的面積和周長的新方法。
為什么數學家們還象登山運動員那樣,奮力向上攀登,一直求下去而不是停止對 π 的探索呢?為什么其小數值有如此的魅力呢?這其中大概免不了有人類的好奇心與領先于人的心態作怪,但除此之外,還有許多其它原因。
1、它現在可以被人們用來測試或檢驗超級計算機的各項性能,特別是運算速度與計算過程的穩定性。
2、計算的方法和思路可以引發新的概念和思想。π 的故事講述的是人類的勝利,而不是機器的勝利。
3、還有一個關于 π 的計算的問題是:我們能否無限地繼續算下去?
4、作為一個無窮數列,數學家感興趣的把 π 展開到上億位,能夠提供充足的數據來驗證人們所提出的某些理論問題,可以發現許多迷人的性質。如,在 π 的十進展開中,10個數字,哪些比較稀,哪些比較密? π 的數字展開中某些數字出現的頻率會比另一些高嗎?或許它們并非完全隨意?這樣的想法并非是無聊之舉。只有那些思想敏銳的人才會問這種貌似簡單,許多人司空見慣但卻不屑發問的問題。
在這方面,還有如下的統計結果:在60億數字中已出現連在一起的8個8;9個7;10個6;小數點后第710150位與3204765位開始,均連續出現了七個3;小數點52638位起連續出現了14142135這八個數字,這恰是的前八位;小數點后第2747956位起,出現了有趣的數列876543210,遺憾的是前面缺個9;還有更有趣的數列123456789也出現了。如果繼續下去,看來各種類型的數字列組合可能都會出現。
背誦圓周率能夠鍛煉人的記憶力,我國橋梁專家茅以升年輕時就能背誦圓周率鍛煉記憶力。晚年時仍能輕松地背出圓周率的100位數值。
可見圓周率pi不僅與我們身邊的數學緊密相連更與我們的生活息息相關。俗話說得好,“有理走遍天下,無理寸步難行”圓周率pi就好比這個“理”。有了圓周率pi不僅解決了困惑眾多數學家的三大著名幾何問題之一的化圓為方的不可能性更為后續的數學研究奠定了基礎。
參考文獻:
[1].李文林.數學史概論:北京:高等教育出版社,2002年8月 [2].王樹禾.數學思想史;北京:國防工業出版社,2003年1月
第三篇:數學史
數學史讀后感
寒假讀了數學史,有很多感觸。原來最簡單的數字在誕生之前,也經歷了那么多曲折,現在看起來很自然的數字0、無理數、負數等,在當時看來是那么奇怪。歷史上經歷了蠻長的過程才被接受,他們是許多學者前仆后繼、辛勤耕耘的結果。
數學史上的三次危機,正是由于數學家們不怕困難,堅持真理,數學才得以繼續發展。正如數學的發展過程一樣,數學的學習過程也會遇到各種困難和挫折,但是我們要向祖沖之,陳景潤、歐拉他們那樣,孜孜不倦的學習,以頑強拼搏的精神和勇氣,經過思考和探索獲得只是。同時,我們也要學習數學家們敢于質疑和創新精神,善于思考。創新是發展的靈魂。在以后的學習中,不因困難而放棄,刻苦鉆研。我的數學不太好,但是我不會放棄。雖然不會成為數學家,但是我一定會把數學學好,多寫、多練。祖沖之的故事給了我很多感悟。
祖沖之(公元429——500年)是我國南北朝時代一位成績卓著的科學家。他不僅在天文、數學等方面有過聞名世界的貢獻,而且在機械制造等方面也有許多發明創造。他的發明為促進社會生產的發展,建立了不可磨滅 的功績,受到了中國人民和世界人民的尊敬。劉徽發明了用分割的方法,求得圓周率的近似值3.14。他說用無限分割方法可以求得更加精確的數值,但是后來是由祖沖之求得了更加精確的數值。他的毅力和堅持是多么讓人敬佩啊。相比之下,我們的那點困難又算的了什么呢。我們現在有如此優越的條件,更應該努力學習,不能因為一點小小的挫折,就倒下了,要堅持。要明確自己的目標,人正是因為有了清晰的目標和堅定的信仰,有了腳踏實地的行動,才能成功。以后要積極思考,發現問題,學習數學家創新的精神,如果沒有歐幾里得第五公設的懷疑就不會有非歐幾何的產生,如果沒有創新的勇氣哪兒會有康托爾集合論的創立。
數學的發展只一個漫長而又曲折的過程,我們學習的只是很少的一部分,沒有理由不好好學。這個過程正如人生一樣,布滿荊棘,但不能阻擋我們的前進。
第四篇:數學史
1學習數學史有何意義?研究數學史主要有那些形式?
與其他知識部門相比,數學是門歷史性或者說累積性很強的科學。重大的數學理論總是在繼承和發展原有理論的基礎上建立起來的,它們不僅不會推翻原有的理論,而且總是包容原先的理論。人們也常常把現代數學比喻成一株茂密的大樹,它包含著并且正在繼續生長出越來越多的分支。
數學史不僅是單純的數學成就的編年記錄。數學的發展決不是一帆風順的,在更多的情況下是充滿憂郁、徘徊,要經歷艱難曲折,甚至會面臨危機。數學史也是數學家們克服困難和戰勝危機的斗爭記錄。對這種記錄的了解可使我們從前人的探索與奮斗中汲取教益,獲得鼓舞和增強信心。因此,可以說不了解數學史就不可能全面了解數學科學。
大類分為內史和外史。具體有編年史(隨時間前后)、國別史(按不同國家區域)、學科史(按數學分科)、斷代史(截開一個歷史橫斷面,研究同一個時期內各個國家各個區域的數學情況)
2作為世界四大文明古國之一,中國在先秦時期有哪些主要的數學成就?
商高定理:又叫“勾股定理”。在任何一個直角三角形中,兩條直角邊的平方之和一定等于斜邊的平方。在中國,《周髀算經》記載了勾股定理的公式與證明,相傳是在商代由商高發現,故又有稱之為商高定理。勾股定理是幾何學中一顆光彩奪目的明珠,被稱為“幾何學的基石”,而且在高等數學和其他學科中也有著極為廣泛的應用。
《墨經》:諸子百家中闡述自然科學理論與學說最豐富的著作,包括光學、力學、邏輯學及幾何學等各方面的知識,還包含了無限分割的思想。
《周髀算經》:《周髀(bì)算經》乃是算經的十書之一。原名《周髀》,它是我國最古老的天文學著作,主要闡明當時的蓋天說和四分歷法。唐初規定它為國子監明算科的教材之一,故改名《周髀算經》。《周髀算經》在數學上的主要成就是介紹了勾股定理及其在測量上的應用以及怎樣引用到天文計算。
3劉徽是中國歷史上。最重要的數學家之一,他的?九章算術注?對于中國傳統數學體系的形成具有特別重要的意義。試闡述他的主要數學成就。
劉徽的數學成就大致為兩方面:
一是清理中國古代數學體系并奠定了它的理論基礎。這方面集中體現在《九章算術注》中。它實已形成為一個比較完整的理論體系:二是在繼承的基礎上提出了自己的創見。
用數的同類與異類闡述了通分、約分、四則運算,以及繁分數化簡等的運算法則;他從開方不論述了無理方根的存在。他還用“率”來定義中國古代數學中的“方程”,即現代數學中線性方程組的增廣矩陣。逐一論證了有關勾股定理與解勾股形的計算原理,建立了相似勾股形理論,發展了勾股測量術;用出入相補、以盈補虛的原理及“割圓術”的極限方法提出了劉徽原 1
理,并解決了多種幾何形、幾何體的面積、體積計算問題。他在《九章算術?圓田術》注中,用割圓術證明了圓面積的精確公式,并給出了計算圓周率的科學方法。
4宋元時期我國最杰出的數學家有哪些?試闡述他們的代表作和主要數學成就。
宋元時期數學,可以說是以算籌為主要工具的中國古代數學的極盛時期,出現了沈括、秦九韶、李治、楊輝、朱世杰等著名的數學家和他們編寫的數學著作。如沈括的《夢溪筆談》,秦九韶的《數學九章》等。這一時期數學家取得了很多具有世界意義的成就,特別是高次方程數值解法、天元術和四元術、大衍求一術、垛積術和招差術等。北宋沈括《夢溪筆談》中曾經研究二階級數求和問題,首創“隙積術”。南宋楊輝豐富和發展了隙積術的成果,提出
S=12+22+32+…+n2=1/6n(n+1)(2n+1)
S=1+3+6+10+…+n(n+1)/2=1/6n(n+1)(n+2)
之類的垛積公式。
5中國傳統數學是世界數學發展長河的一支不容忽視的源頭, 她有哪些重要特點?
一是追求實用,如《周髀算經》是我國最古老的天文學著作;二是注重算法,“問—答—術”的解題程序,“術”就是解答該類問題的程序化算法;三是寓理于算,如中國傳統幾何理論基礎“出入相補”等原理。20世紀數學的發展有哪些顯著的特點?
一是更高的抽象性,包括集合論觀點(數學的研究對象是抽象集合)和公理化方法(數學的研究對象);二是更強的統一性,體現在幾何與分析的統一、幾何與代數的統一、幾何分析和代數的統一;三是更深刻的基礎性,體現在集合論悖論、三大學派(邏輯主義、直覺主義、形式主義)、數理邏輯體系;四是更廣泛的應用性。20世紀應用數學的發展有哪些特點?
向人類幾乎所有的知識領域滲透,純粹數學幾乎對所有的分支都獲得應用;現代數學對生產技術的應用變得越來越直接,向外滲透產生了一些相對獨立的學科,如數理統計、運籌學、控制論和信息論等。現代計算機的出現,對數學科學的發展有何影響?對您影響最大的現代數學的學科有哪些?為什么?對您影響最大的數學家有哪些人?為什么?
第五篇:數學史
前言
一、數學史研究哪些內容? P1 答:數學史研究數學概念、數學方法和數學思想的起源與發展,及其與社會政治、經濟和一般文化的聯系。
二、歷史上關于數學概念的定義有哪些? P5~8 答:
1、公元前4世紀的希臘哲學家亞里士多德將數學定義為“數學是量的科學”。2、16世紀英國哲學家培根(1561—1626)將數學分為“純粹數學” 與“混合數學”。
3、在17世紀,笛卡兒(1596—1650)認為:“凡是以研究順序(order)和度量(measure)為目的的科學都與數學有關”。4、19世紀恩格斯這樣來論述數學:“純數學的對象是現實世界的空間形式與數量關系”。根據恩格斯的論述,數學可以定義為:“數學是研究現實世界的空間形式與數量關系的科學。” 5、19世紀晚期,集合論的創始人康托爾(1845—1918)曾經提出: “數學是絕對自由發展的學科,它只服從明顯的思維,就是說它的概念必須擺脫自相矛盾,并且必須通過定義而確定地、有秩序地與先前已經建立和存在的概念相聯系”。6、20世紀50年代,前蘇聯一批有影響的數學家試圖修正前面提到的恩格斯的定義來概括現代數學發展的特征:“現代數學就是各種量之間的可能的,一般說是各種變化著的量的關系和相互聯系的數學”。
7、從20世紀80年代開始,又出現了對數學的定義作符合時代的修正的新嘗試。主要是一批美國學者,將數學簡單地定義為關于“模式” 的科學:“【數學】這個領域已被稱作模式的科學,其目的是要揭示人們從自然界和數學本身的抽象世界中所觀察到的結構和對稱性”。
三、數學史通常采用哪些線索進行分期?P9
答:一般可以按照如下線索:
(1)按時代順序;(2)按數學對象、方法等本身的質變過程;(3)按數學發展的社會背景。
四、本書對數學史如何分期?P9
答:
1、數學的起源與早期發展(公元前6世紀前)
2、初等數學時期(公元前6世紀一16世紀)
(1)古代希臘數學(公元前6世紀-6世紀)
(2)中世紀東方數學(3世紀一15世紀)
(3)歐洲文藝復興時期(15世紀一16世紀)
3、近代數學時期(變量數學,17世紀-18世紀)
4、現代數學時期(1820年一現在)(1)現代數學醞釀時期(1820?一1870)(2)現代數學形成時期(1870—1940’)
(3)現代數學繁榮時期(當代數學時期,1950-現在)
第一章
一、世界上早期常見有幾種古老文明記數系統,它們分別是什么數字,采用多少進制數系? P13 答:1.古埃及的象形數字(公元前3400年
左右):十進制數系
2.巴比倫楔形數字(公元前2400年左右):六十進制數系 3.中國甲骨文數字(公元前1600年左右):十進制數系 4.希臘阿提卡數字(公元前500年左右):十進制數系 5.中國籌算數碼數字(公元前500年左右):十進制數系 6.印度婆羅門數字(公元前300年左右):十進制數系
7.瑪雅數字(?):二十進制數系
二、“河谷文明”指的是什么? P16 答:歷史學家往往把興起于埃及。美索不大米亞、中國和印度等地域的古代文明稱為“河谷文明”。
三、關于古埃及數學的知識主要依據哪兩部紙草書?P17 紙草書中問題絕大部分都是實用性質,但有個別例外,請舉例。P23
答:古埃及數學的知識主要依據萊茵德紙草書和莫斯科紙草書兩部紙草書。例如:萊茵德紙草書第79題:“7座房,49只貓,343只老鼠,2401棵麥穗,16807赫卡特。
四、美索不達米亞人的記數制遠勝埃及象形數字之處主要表現在哪些方面?P23—2
5答:
1、六十進制為主德楔形文記數系統。
2、巧妙地將位值原理應用到整數以外的分數。
3、計算程序化。
4、數表計算。
第二章
一、希臘數學一般是指什么時期,活動于什么地方的數學家創造的數學? P32 答:希臘數學一般指從公元前600年至公元600年間,活動于希臘半島、愛琴海區域、馬其頓與色雷斯地區、意大利半島、小亞細亞以及非州北部的數學家們創造的數學。
二、什么使泰勒斯獲得了第一位數學家和論證幾何學鼻祖的美名? P33 答:關于泰勒斯并沒有確鑿的傳記資料留傳下來。但是以下命題記載卻流傳至今,使泰勒斯獲得了第一位數學家和論證幾何學鼻祖的美名。泰勒斯曾證明了下列四條定理:
1、圓的直徑將圓分為兩個相等的部分;
2、等腰三角形兩底角相等;
3、兩相交直線形成的對頂角相等;
4、如果一三角形有兩角、一邊分別與另一三角形的對應角、邊相等,那么這兩個三角形全等。傳說泰勒斯還證明了現稱“泰勒斯定理”的命題:半圓上的圓周角是直角。
三、畢達哥拉斯學派認為宇宙萬物皆依賴于整數的信條由于什么發現而受到動搖?這個“第一次數學危機”是由于什么人提出的新比例理論而暫時消除,P38這個新比例理論當今的語言可怎么敘述?P48 答:畢達哥拉斯學派認為宇宙萬物皆依賴于整數的信條由于不可公度量的發現而受到動搖, 這個“第一次數學危機”是大約一個世紀以后,由于畢達哥拉撕學派成員阿契塔斯的學生歐多克斯提出的新比例理論而暫時消除。
這個新比例理論當今的語言可敘述為(P48):設A,B,C,D是任意四個量,其中A和B同類,C和D同類,如果對于任意兩個正整數m和n,關系mA?(?)nB是否成立,相應地取決于關系mC?(?)nD是否成立,則稱A與B之比等于C與D之比,即四量成比例。
四、希臘數學學派主要有哪些學派? P39
答:希臘數學也隨之走向繁榮,學派林立,主要有:
1、伊利亞學派;
2、詭辯學派;
3、雅典學院(柏拉圖學派);
4、亞里士多德學派。
五、古希臘三大著名幾何問題是什么?P40 答:(1)化圓為方,即作一個給定的圓面積相等的正方形。
(2)倍方立體,即求作一立方體,使其體積等于已知立方體的兩倍。(3)三等分角,即分任意角為三等分。
六、亞里士多德《物理學》中記載芝諾提出的四個著名的悖論是什么?P43 答:芝諾四個著名悖論:
1、兩分法
2、阿基里斯
3、飛箭
4、運動場
七、希臘數學的“黃金時代”指的是什么時間?這時期希臘數學的中心從雅典移到何處,此處出現了哪三大數學家? P45
答:從公元前338年希臘諸邦被馬其頓控制,至公元前30年羅馬消滅最后一個希臘化國家托勒密王國的三百余年,史稱希臘數學的“黃金時代”。
這時期希臘數學的中心從雅典移到亞歷山大城;此處出現了歐幾里得、阿基米德和阿波羅尼奧斯三大數學家,標志著古代希臘數學的顛峰。
八、幾何《原本》共分多少卷,包括有多少條公理,多少條公設,多少個定義和多少條命題? P46 答:幾何《原本》共分13卷,包括有5條公理,5條公設,119定義和465條命題。
九、阿基米德數學研究的最大功績是什么? P52~53 答:阿基米德數學研究的最大功績是集中探討與面積與體積計算相關的問題。主要著述:(1)《圓的度量》(2)《拋物線求積》(3)《論螺線》(4)《論球和圓柱》(5)《論劈錐曲面和旋轉橢球》(6)《引理集》(7)《處
理力學問題的方法》(8)《論平面圖形的平衡或其重心》(9)《論浮體》(10)《沙粒計數》(11)《牛群問題》。
十、阿波羅尼奧斯最重要的數學成就是什么?P58 答:阿波羅尼奧斯最重要的數學成就是創立了相當完美的圓錐曲線理論。
第三章
一、中國數學史上何時何人何種方法最先完成勾股定理證明?P70
答:公元3世紀三國時期的趙爽在注《周髀算經》,作“勾股圓方圖“,其中的”弦圖“,相當于運用面積的出入相補證明了勾股定理。
二、《九章算術》中各章名稱是什么?這些章節中談論算術、代數、幾何方面的內容為哪些章節?P71----78 答 :《九章算術》采用問題集的形式,全書246個問題,分成九章,依次為:方田、粟米、衰分、少廣、商功、均輸、盈不足、方程、勾股,其中所包含的數學成就是豐富和多方面的。
算術方面:方田、粟米、衰分、均輸、盈不足;
代數方面:方程;
幾何方面:方田、商功、勾股。
三、劉徽的數學成就中最突出是什么? P78
答:劉徽的數學成就中最突出是 “割圓術”和“體積理論”
四、賈憲增乘開方法能否適用于開任意高次方? P93
答:賈憲增乘開方法,是一個非常有效的和高度機械化的算法,可適用于開任意高次方。
五、為什么說一次同余組求解的剩余定理常常被稱為“中國剩余定理”? P96 答:秦九韶(約公元1202――1261)的“大衍求一術”是完全正確且十分嚴密的,但本人沒有給出證明,到18、19世紀,歐拉(1743)和高斯(1801)分別對一次同余組進行了詳細研究,重新獨立地獲得與秦九韶“大衍求一術”相同的定理,并對模數兩兩互素的情形作出了嚴格證明。1876年德國人馬蒂生首先指出秦九韶的算法與高斯算法是一致的,因此關于一次同余組求解的剩余定理常常被稱為“中國剩余定理”。
第四章
一、印度數學的發展可劃分為3個重要時期,這3個重要時期是指什么時期?
答;印度數學的發展可以劃分為三個重要時期,首先是雅利安人入侵以前的達羅毗(pi)荼人時期(約公元前3000——前1400),史稱河谷文化;隨后是吠(fei)陀(tuo)(約公元前10世紀——前3世紀);其次是悉檀(tan)多時期(5世紀——12世紀)。
二、用圓圈符號“O”表示零,可以說是印度數學的一大發明,印度人起初用什么表示零,直到最后發展為圈號。答:點號,直到最后發展為圈號。
1.“0”表示空位;
2.“0”表示“無”;
3.數域的一個基本元素,可以運算。
三、“巴克沙利手稿”中涉及到哪些的數學內容? P107 答:“巴克沙利手稿”中涉及到分數,平方根、數列、收支與利潤計算、比例算法、級數求和、代數方程等,其代數方程包括一次方程、聯立方程組、二次方程。特別值得注意的是手稿中使用了一些數學符號如:減號、零號“0”。
四、“阿拉伯數學“是否單指阿拉伯國家的數學? P113 答:“阿拉伯數學“并非單指阿拉伯國家的數學,而是指8――15世紀阿拉伯帝國統治下整個中亞和西亞地區的數學,包括希臘人、波斯人、猶太人和基督徒等所寫的阿拉伯文及波斯文等數學著作。
五、第一次給出一元二次方程的一般代數解法是來自何人著的著作?
P114
答:第一次給出一元二次方程的一般代數解法是來自中世紀對歐洲數學影響最大的阿拉伯數學家花拉子米(約783-850)的《代數學》。
第五章
一、卡爾丹在1545年出版的著作《大法》中公布了形如x3+mx2=n(m,n>0)的三次方程的解法是從何人那里傳授來的?在《大法》中卡爾丹對三次方程又進一步作了哪些工作?P126
答:卡爾丹在1545年出版的著作《大法》中公布了形如x3+mx2=n(m,n>0)的三次方程的解法是從塔塔利亞(1499――1557)那里傳授來的。
在《大法》中卡爾丹給出了一般三次方程的解法,而且補充了幾何證明;書中還把其學生費拉里(1522――1565)的一般四次方程的解法寫進《大法》中。
二、學符號系統化首先應歸功于哪位數學家,對這位數學使用的代數符號的改進工作是由何人完成的? P129 答:數學符號系統化首先應歸功于法國數學家韋達(1540――1603),對這位數學使用的代數符號的改進工作是由法國笛卡兒(1596――1650)完成的,他首先用拉丁字母(a,b,c,d,?)表示已知量,后幾個(x,y,z,w,?)表示未知量等。
三、球面三角與平面三角何者先出現?P131
答:球面三角先于平面三角出現。
四、對數是何人首先發明?它的產生主要是由于什么的需要?P136 答 :蘇格蘭貴族數學家納皮爾正是在球面天文學的三角研究中首先發明對數方法的。對數的產生主要是由于天文和航海計算的強烈需要。
五、笛卡兒創立解析幾何的靈感有幾個傳說,請試述其中的任意一個。P142 答:笛卡兒創立解析幾何的靈感有兩個傳說。第一個傳說“晨思”時,看見一只天花板的蒼蠅,想確定其路線;另一個傳說是1619年冬天的三個連慣的三個夢。
第六章
一、微積分與積分學的起源何者在先,何者在后?P145 答:積分學的起源在先,微積分的起源比積分學的起源要晚的多。
二、微積分醞釀階段最有代表性的工作有哪幾項?P146—154 答:
(一)開普勒與旋轉體體積;
(二)卡瓦列里不可分量原理;
(三)笛卡爾“圓法”;
(四)費馬求極大值與極小值的方法;
(五)巴羅“微分三角形”;
(六)沃利斯“無窮算術”。
三、牛頓走上創立微積分之路受哪兩部著作的影響最深?P155 答:就數學思想的形成而言,笛卡兒的《幾何學》和沃利斯的《無窮算術》對他的影響最深,正是這兩部著作引導牛頓走上創立微積分之路。
四、牛頓1666年寫了《流數簡論》之后,始終不渝努力改進,完善自己的微積分學說,先后寫成三篇微積分論文,這三篇論文的名稱是什么?P158為什么其中第三篇是牛頓最成熟的微積分著述?P160 答:牛頓1666年寫了《流數簡論》之后,始終不渝努力改進,完善自己的微積分學說,先后寫成三篇微積分論文,這三篇論文的名稱是:
1、《運用無窮多項方程的分析》,簡稱《分析學》(1669)
2、《流數法與無窮級數》,簡稱《流數法》(1671)
3、《曲線求積分》簡稱《求積術》(1691)
五、為什么說在微積分的創立上牛頓需要與萊布尼茨分享榮譽?P174 答:牛頓和萊布尼茨都是他們時代的巨人,就微積分的創立而言,盡管在背景、方法和形式上存在差異、各有特色,但兩者的功績是相當的,他們都使微積分成為能普遍適用的算法,同時又都將面積、體積及相當的問題歸結為反切線(微分)運算。應該說,微積分能成為獨立的科學并給整個自然科學帶來革命性的影響,主要是靠了牛頓與萊布尼茲的工作,在科學上,重大的真理往往在條件成熟的一定時期的探索者相互獨立地發現,微積分地出來,情形也是如此。所以說在微積分的創立上牛頓需要與萊布尼茨分享榮譽。
第七章
一、18世紀微積分發展包括哪幾個主要方面?P176—187 答:
(一)積分技術與橢圓積分,(二)微積分向多元函數的推廣,(三)無窮級數理論,(四)函數概念的深化,(五)微積分嚴格化的嘗試。
二、簡述18世紀常微分方程的發展過程。P188 答:
1、常微分方程是伴隨著微積分一起發展起來的,從17世紀末開始,擺的運動、彈性理論以及天體力學等實際問題的研究引出了一系列常微分方程。
2、數學家們起初是采取特殊的技巧來對付特殊的方程,但逐漸開始尋找帶普遍性的方法,如:萊布尼茲1691年分離變量法,1696年雅各布伯努利的“伯努利方程”;歐拉和克萊洛的“積分因子法”。
3、歐拉1743年關于n階常系數線性齊次方程的完整解法。
4、18世紀常微分方程求解的最高成就是拉格朗日1774~1775年間用參數變易法解出了一般n階變系數非齊次常微分方程。
三、簡述18世紀微分幾何的形成過程。P196 答:
1、1731年十八歲的法國青年數學家克萊洛發表《關于雙重曲率曲線的研究》,開創了空間曲線理論,是建立微分幾何的的重要一步;
2、歐拉是微分幾何的重要奠基人。他早在1736年就引進了平面曲線的內在坐標概念; 3、18世紀微分幾何的發展由于蒙日的工作而臻于高峰,1795年發表的《關于分析的幾何應用的活頁論文》是第一步系統的微分幾何著述。
四、述哥德巴赫猜想與華林問題。P204 答:哥德巴赫猜想從:每個偶數是兩個素數之和;每個奇數是三個素數之和。
kkk華林問題:任一自然數n可表示成至多r次冪之和,即n?x1?x2?x3???xrk,其中x1,x2,x3,?,xr為自然數,r依賴于k。
第八章
一、數學家阿貝爾通過證明什么樣的結論解決了五次和高于五次的一般方程的求解問題?P208 答:1824年,年僅22歲的挪威數學家阿貝爾(1802——1829)出版的《論代數方程,證明一般五次方程的不可解性》,在其中嚴格證明了:如果方程的次數n?5,并且系數a1,a2,?,an看成字母,那么任何一個由這些字母組成的根式都不可能是方程的根,這樣,五次和高于五次的一般方程的求解問題就由阿貝爾解決了。
二、布爾的邏輯代數思想集中在他的哪兩本書中。P219
答:布爾(英國數學家,1815--1864)的邏輯代數思想集中在他的1847年發表的《邏輯的數學分支》和1854年出版的《思維規律研究》。
三、《算術研究》的作者是誰,發表的年份是何時?它的發表有何意義。P221
答:《算術研究》是德國數學家高斯在1801年發表的。在19世紀以前,數論只是一系列孤立的結果,《算術研究》發表后數論作為現代數學的一個重要分支得到了系統的發展。《算術研究》中有三個主要思想:同余理論,復整數理論和型的理論。
第九章
一、非歐幾何三位發明人(高斯、波約、羅巴切夫斯基)中哪位是最早、最系統地發表自己關于非歐幾何的研究成果?P230
答:羅巴切夫斯基。
二、最先理解非歐幾何全部意義的數學家是誰?在歐幾里得空間中給出非歐幾何的直觀模型的數學家有哪幾位?P235~236 答:最先理解非歐幾何全部意義的數學家是黎曼
在歐幾里得空間中給出非歐幾何的直觀模型的數學家有:意大利數學家貝爾特拉米、德國數學家克萊因和法國數學家龐加萊。
三、在射影幾何的發展過程中,龐斯列有哪些創舉?P239~240 答:龐斯列(法國數學家,1788-1867)1822年出版的《論圖形的射影性質》,帶來了這門學科歷史上的黃金時期。龐斯列有探討一般問題:圖形在射影和截影下保持不變的性質;選擇并發展了對偶與調和點列理論;采用中心投影而不是平行投影及兩個基本原理——連續性原理和對偶原理的創舉。
第十章
一、柯西在分析基礎工作方面做了哪些工作?P247
答:柯西(法國數學家,1789——1851)在分析基礎工作方面,他寫出了一系列著作,其中最有代表性的是《分析教程》(1821)和《無窮小計算教程概論》(1823),它們以嚴格化為目標,對微積分的基本概念,如變量、函數、極限、連續性、導數、微分、收斂等等給出了明確的定義,并在此基礎上重建和拓展了微積分的重要事實與定理。
二、魏爾斯特拉斯在1861年舉出一個什么例子來說明存在處處連續但卻處處不可微的函數?P250 答:魏爾斯特拉斯在1861年舉出一個例子
f(x)??bncos(an?x),其中a是奇數,n?0?b?(0,1)為常數,使得ab?1?3?.2
三、魏爾斯特拉斯關于分析嚴格化的突出表現是創造了一套什么語言?P253 答:魏爾斯特拉斯關于分析嚴格化的突出表現是創造了一套ε-δ語言。
四、集合論的建立是由哪些問題研究而導致的?P255 答:在分析的嚴格化過程中,一些基本概念如極限、實數、級數等的研究都涉及到由無窮多個元素組成的集合,特別是在對那些不連續函數進行分析時,需要對使函數不連續或使收斂問題變得很困難的點集進行研究,這樣就導致了集合論的建立。
五、19世紀分析的擴展表現在哪些方面?P258~263 答:
1、復分析的建立;
2、解析數論的形成;
3、數學物理方程與微分方程。
第十一章
一、與19世紀相比,20世紀純粹數學的發展表現出哪些主要的特征與趨勢?P271 答:
1、更高的抽象性
2、更強的統一性
3、更深入的基礎探討
二、1900年德國數學家希爾伯特在巴黎國際數學家大會上作演說中提出23個數學問題,至今這23個問題解決狀況如何?P272~274 答:(略,詳見教材P272~274。)
三、集合論觀點的滲透和公理化方法的運用導致20世紀上半葉哪四大數學抽象分支的崛興?P276 答:集合論觀點的滲透和公理化方法的運用導致20世紀上半葉實變函數論、泛函分析、拓撲學和抽象代數四大數學抽象分支的崛興
四、簡述實變函數論的建立。P276——278 答:
1、法國數學家勒貝格1902年發表的《積分,長度與面積》中利用以集合論為基礎的“測度”概念而建立勒所謂“勒貝格積分”。
2、在勒貝格積分的基礎上進一步推廣導數等其他微積分基本概念,并重建微積分基本定理(微分運算與積分運算的互逆性)等微積分的基本事實,從而形成了一門新的數學分支——實變函數論。
五、“泛函”這個名稱是由誰最先采用的?(P279)為什么說泛函分析的建立體現了20世紀在集合論影響下空間和函數這兩個基本概念的進一步變革?P279-280
答:“泛函”這個名稱是由法國數學家阿達馬最先采用的.因為“空間”現在被理解為某類元素的集合,這些元素按習慣被稱作“點”,它們之間受到某種關系的約束,這些關系被稱之為空間的結構,簡言之,“空間”僅僅是具有某種結構的集合,而“函數”的概念則推廣為兩空間之間的元素(映射)關系。所以說泛函分析的建立體現了20世紀在集合論影響下空間和函數這兩個基本概念的進一步變革。
六、《環中的理想論》的作者是誰?P282 答:《環中的理想論》的作者是諾特(1882-1935)。
七、拓撲學研究什么內容?“拓撲學”這一術語是由何人首先引用的? P285 答:拓撲學研究幾何圖形的連續性質,即在連續變形下保持不變的性質(允許拉伸、扭曲,但不能割斷和粘合)。“拓撲學”這一術語是由高斯的學生李斯廷1847年首先引用的。
八、簡述概率論起源以及公理化后概率論取得哪些突破?P287、P291 答:概率論起源于博弈問題。P287 公理化后概率論取得如下突破:P291
1、使隨機過程的研究獲得了新的起點,2、隨機過程是“鞅”,鞅論使隨機過程的研究進一步抽象化,1942年開始,日本數學家伊藤清引進隨機積分與隨機微分方程,不僅開辟了隨機過程研究的新道路,而且為一門意義深遠的數學新分支——隨機分析的創立與發展奠定了基礎。
九、舉例說明20世紀下半葉不同分支領域的數學思想與數學方法互相融合導致重大發現的事實。P292-297 答:1.微分拓撲與代數拓撲2.整體微分幾何3.代數幾何 4.多復變函數論 5.動力系統6.偏微分方程與泛函分析7.隨機分析
十、試述羅素關于集合的悖論。P298 答:以M表示是其自身成員的集合的幾何,N表示不是其自身成員的集合的集合。然后問:集合N是否為它自身的成員?如果N是它自身的成員,則N屬于M而不屬于N,也就是說N不是它自身的成員;另一方面,如果N不是它自身的成員,則N屬于N而不屬于M,也就是說N是它自身的成員。無論出現哪一種情況,都將導出矛盾的結論。
十一、數學基礎的三大學派是什么?P300 答:
1、以羅素為代表的邏輯主義
2、以布勞威爾為代表的直覺主義
3、以希爾伯特為代表的形式主義
十二、現代數理邏輯的四大分支是什么?P303 答:1。公理化集合論 2.證明論 3.模型論4.遞歸論
第十二章
一、應用數學新時代具有哪幾個方面特點?P307——309 答:
1、數學的應用突破了傳統的范圍而向人類幾乎所有的知識領域滲透;
2、純粹數學幾乎所有的分支都獲得了應用,其中最抽象的一些分支也參與了滲透;
3、現代數學對生產技術的應用變得越來越直接;
4、現代數學在向外滲透的過程中,產生了一些相對獨立的應用學科如:數理統計、運籌學、控制論等等。
二、數學向其他科學滲透表現在哪些方面?P309 答:
1、數學物理
2、生物數學
3、數理經濟學
三、簡述數理統計、運籌學、控制論發展過程。P317-324 答:略
四、簡述電子計算機的誕生。P325答:略
五、計算機對數學的影響表現在哪些方面?P330 答:
1、計算數學的興旺
2、純粹數學研究與計算機
3、計算機科學中的數學
第十三章
一 簡述20世紀十例現代數學成果的內容。
答:1.哥德爾不完全性定理。P339 2.高斯-博內公式的推廣。P341 3.米爾諾怪球。P343 4.阿蒂亞-辛格指標定理。P344 5.孤立子與非線性偏微分方程。P345 6.四色問題。P347 7.分形與混沌。P349 8.有限單群分類。P353 9.費馬大定理的證明。P355 10.若干著名未決猜想的進展。359
二、龐加萊猜想、哥德巴赫猜想、黎曼猜想的內容是什么?P359 答:龐加萊猜想是拓撲學中一個著名的和基本的問題,即任意一個三維的單連通閉流形必與三維球面同胚。
哥德巴赫猜想:偶數都是兩個奇素數之和,奇數都是三個奇素數之和。
黎曼猜想:在帶狀區域0???1中,黎曼?(s)?11??的零點都位于直線上。?s2nn?1?
第十四章
一、為什么說數學的發展與社會的進化之間聯系是雙向的?P363 答:一方面,數學的發展依賴于社會環境,受著社會經濟、政治和文化等諸多因素的影響; 另一方面,數學的發展又反過來對人類社會的進步起推動作用,包括對人類物質文明和精神文明兩大方面的影響。
二、數學如何促進社會進步?P363—364 答:數學的發展對人類社會的進步起推動作用,包括對人類物質文明和精神文明兩大方面的影響。數學對人類物質文明的影響,最突出的是反映在與能從根本上改變人類物質生活方式的產業革命的關系上。人類歷史上先后共有三次重大的產業革命,其主體技術都與數學的新理論、新方法的應用有直接或間接的關聯;數學對于人類精神文明的影響同樣也很深刻,數學本就是一種精神,一種探索精神,這種精神的兩個要素,即對理性(真理)與完美的追求,千百年來對人們的思維方式、教育方式以及世界觀、藝術觀等的影響是不容否認的,數學往往成為解放思想的決定性武器。
三、1850——1899年間創辦,至今仍在發行的主要數學期刊有哪些?P372 答:《純粹與應用數學年報》(1850,意大利),《數學匯刊》(1865,俄國),《數學年刊》(1868,德國),《美國數學雜志》(1878,美國),《數學年報》(1882,瑞典),《數學年刊》(1884,美國),《美國數學月刊》(1894,美國)。
四、中國數學會是建立何年建立的?P376 答:1935年中國數學會建立的。
五、試述各屆國際數學家大會召開年份與地點。P375 答:略
六、兩項影響最大的國際數學獎勵是什么獎?何年、在何領域取得其中的哪個獎?P376,P378——379 答:兩項影響最大的國際數學獎勵是菲爾茲獎和沃爾夫獎。
中國數學家丘成桐,1983年,微分幾何,偏微分方程,相對論,菲爾茲獎。中國數學家陳省身,1984年,整體微分幾何,沃爾夫獎。
第十五章
一、試述17世紀初至19世紀末在中國出現兩次西方數學傳播的高潮的時間與內容。P381 答:第一次是從17世紀初到18世紀初,標志性的事件是歐幾里得《原本》的首次翻譯,17世紀中頁以后,文藝復興時代以來發展起來的西方初等數學知識如三角學、透視學、代數學等也部分傳入中國;第二次高潮是從19世紀中葉開始,除了初等數學,這一時期傳入的數學知識還包括了解析幾何、微積分、無窮級數論、概率論等近代數學。
二、中國第一個大學數學系是在哪所大學設立?P383答:1912,中國第一個大學數學系是在北京大學數學系成立。
三、1912年至1930年中國有哪些大學創辦了數學系?P384 答:北京大學、清華大學、南開大學、浙江大學、南京大學、北京師范大學、武漢大學、廈門大學、四川大學、中山大學、東北大學、交通大學、安徽大學、山東大學、河南大學
第十六章
一、簡述華羅庚生平P387答:略
二、寫一篇學習數學史教程的心得體會。答:略
填空題
1、歷史學家往往把興起于、、、和 等地域的古代文明稱為“河谷文明”。
埃及、美索不達亞、中國、印度
2.歐幾里得是希臘論證幾何學的集大成者,他的著作中,最重要的莫過于。《原本》 3.在現存的中國古代數學著作中,是最早的一部。《周髀算經》 4.《九章算術》“ ”、“ ”、“ ”諸章集中討論比例問題。
粟米、衰分、均輸 5.劉徽數學成就中最突出的是“ ”和。割圓術、體積理論
6. 的推導和 的計算是祖沖之本人引以為榮的兩大數學成就。球體積 圓周率
7.宋元數學發展中一個最深刻的動向是代數符號化的嘗試,這就是“ 天元術 ”和“ 四圓術 ”。8.數學符號系統化首先歸功于法國數學家。韋達
9.解析幾何的真正發明歸功于法國另外兩位數學家 和。
笛卡兒 費馬 10.牛頓的《 》標志著微積分的誕生。流數簡論 11.18世紀微積分最重大的進步是由 作出的。歐拉 12.“巴黎三L”指、、。拉普拉斯 拉格朗日 勒讓德 13.___________是歷史上并不多見的以“神童”著稱的一位數學家。高斯 14.___________可以說是最先理解非歐幾何全部意義的數學家。黎曼
15.19世紀偏微分方程發展的序幕,是由法國數學家 拉開的。傅立葉 16.現代數理統計學作為一門獨立學科的奠基人是英國數學家。費希爾 17.影響最大的國際數學獎勵: 和。菲爾茲獎 沃爾夫獎 18.________年,中國第一個大學數學系—北京大學數學系成立(當時叫“數學門”,后改為“數學系”)。1912