初中數學二元一次方程教案1
一、素質教育目標
(一)知識教學點
會列二元一次方程組解簡單的應用題,并能檢查所得結果是否正確、合理.
(二)能力訓練點
培養學生分析問題、解決問題的能力.
(三)德育滲透點
1.進一步滲透化未知為已知的思想.
2.通過應用題的內容,進行理論聯系實際的教育.
(四)美育滲透點
學習列二元一次方程解應用題,通過深入挖掘隱含的條件,滲透解題的簡捷性的數學美以及準確的設元,發揮解題的創造性的數學美.
二、學法引導
1.教學方法:觀察法、談話法、嘗試指導法.
2.學生學法:通過行程問題中的三個量路程、速度、時間結合題意得出兩個正確的相等關系是關鍵,通過反復訓練并思考總結出一般性、規律性的知識.
三、重點·難點·疑點及解決辦法
(一)重點難點
根據簡單應用題的題意列出二元一次方程組.
(二)疑點
正確找出表示應用題全部含義的兩個相等關系,并把它們表示成兩個方程.
(三)解決辦法
反復讀題、審題,提高分析問題及解決問題的能力.
四、課時安排
一課時.
五、教具學具準備
投影儀、自制膠片.
六、師生互動活動設計
1.復習列二元一次方程組解應用題的一般步驟,讓學生在熟練掌握它的基礎上研究新的問題.
2.師生共同探究行程問題中三者的關系,并學會如何通過題意以路程、速度、時間作為等量關系來列二元一次方程組.
七、教學步驟
(一)明確目標
本節課主要學習列二元一次方程組解行程問題的應用題.
(二)整體感知
利用路程、速度、時間的三者關系解關于相遇、追及以及順、逆流航行的應用題,關鍵在于尋找以路程或時間為主的等量關系.
(三)教學過程
1.復習提問,導入新課
(1)上節課我們學習了二元一次方程組的應用,列二元一次方程組解應用題的步驟是什么?
(2)列方程組解應用題的關鍵是哪兩步?
學生活動:回答老師提出的問題.
這節課,我們接著學習列二元一次方程組解應用題.
2.探索新知,講授新課
例3甲、乙二人相距6㎞,二人同時出發,同向而行,甲3小時可追上乙;相向而行,1小時相遇,二人的平均速度各是多少?
提問:(1)題中有幾個未知數?分別是什么?
(2)題中的兩個相等關系分別是什么?
學生活動:觀察、分析后回答.
未知數:甲、乙各自的平均速度
相等關系:
(1)同向而行:甲的行程=乙的行程+6㎞
(2)相向而行:甲行程+乙行程=6㎞
學生活動:設未知數,根據相等關系列出方程組.
解:設甲的平均速度是每小時行㎞,乙的平均速度是每小時行㎞,根據題意,得
解這個方程組,得
答:平均第小時甲行4㎞,乙行2㎞.
注意:檢驗.
反饋練習:P371,2.
例4甲、乙兩碼頭相距60千米,某船往返兩地,順流時用3小時,逆流時用3小時45分,求船在靜水中的航速及水流速度.
分析:復習船在順流航行及逆流航行中的速度與船在靜水中的速度、水流速度的關系.
順流航行的船速=在靜水中的船速度+水流速度
逆流航行的船速=在靜水中的船速度-水流速度
師生共同分析兩個相等關系:
(1)順流航行的速度×3=60千米
(2)逆流航行的速度×=60千米
解:設船在靜水中的速度為千米/時,水流速度為千米/時.
由題意得
答:略.
練習:P487.
例5某市現有42萬人口,計劃一年后城鎮人口增加0.8%,農村人口增加1.1%,這樣全市人口將增加1%,求這個市現在的城鎮人口與農村人口.
提問:(1)題中的兩個未知數分別是什么?
(2)題中的相等關系是什么?
學生活動:回答老師提出的問題.
教師根據學生回答板書.
未知數:城鎮人口與農村人口
相等關系:
(1)城鎮人口+農村人口=總人口
(2)城鎮人口增加數+農村人口增加數=總人口增加數
學生活動:根據分析設未知數、列方程組,一個學生板演.
解:設城鎮人口是萬,農村人口是萬,得
解這個方程組,得
答:城鎮人口是14萬,農村人口是28萬.
注意:②式中的'42也可以寫成.
【教法說明】例3、例4采用了與例1相同的分析方法,這樣分析,可以使學生學會列方程組解應用題的分析方法.如果學生的基礎較好,也可以采用擬題訓練法讓學生分析,培養學生的自學能力.
初中數學二元一次方程教案2
7.2 一元二次方程組的解法
------第六課時
教學目的
1.使學生會借助二元一次方程組解決簡單的實際問題,讓學生再次體會二元一次方程組與現實生活的聯系和作用。
2.通過應用題的教學使學生進一步使用代數中的方程去反映現實世界中的等量關系,體會代數方法的優越性,體會列方程組往往比列一元一次方程容易。
3.進一步培養學生化實際問題為數學問題的能力和分析問題解決問題的能力。
重點、難點、關鍵
1、重、難點:根據題意,列出二元一次方程組。
2、關鍵:正確地找出應用題中的兩個等量關系,并把它們列成方程。
教學過程
一、復習
我們已學習了列一元一次方程解決實際問題,大家回憶列方程解應用題的步驟,其中關鍵步驟是什么?
[審題;設未知數;列方程;解方程;檢驗并作答。關鍵是審題,尋找 出等量關系]
在本節開頭我們已借助列二元一次方程組解決了有2個未知數的實際問題。大家已初步體會到:對兩個未知數的應用題列一次方程組往往比列一元一次方程要容易一些。
二、新授
例l:某蔬菜公司收購到某種蔬菜140噸,準備加工后上市銷售,該公司的加工能力是:每天精加工6噸或者粗加工16噸,現計劃用15天完成加工任務,該公司應安排幾天粗加工,幾天精加工,才能按期完成任務?如果每噸蔬菜粗加工后的利潤為1000元,精加工后為20xx元,那么該公司出售這些加工后的蔬菜共可獲利多少元?
分析:解決這個問題的關鍵是先解答前一個問題,即先求出安排精加和粗加工的天數,如果我們用列方程組的辦法來解答。
可設應安排x天精加工,y加粗加工,那么要找出能反映整個題意的兩個等量關系。引導學生尋找等量關系。
(1)精加工天數與粗加工天數的和等于15天。
(2)精加工蔬菜的噸數與粗加工蔬菜的噸數和為140噸。
指導學生列出方程。對于有困難的學生也可以列表幫助分析。
例2:有大小兩種貨車,2輛大車與3輛小車一次可以運貨15.50噸,5輛大車與6輛小車一次可以運貨35噸。
求:3輛大車與5輛小車一次可以運貨多少噸?
分析:要解決這個問題的關鍵是求每輛大車和每輛小車一次可運貨多少噸?
如果設一輛大車每次可以運貨x噸,一輛小車每次可以運貨y噸,那么能反映本題意的兩個等量頭條是什么?
指導學生分析出等量關系。
(1) 2輛大車一次運貨+3輛小車一次運貨=15. 5
(2) 5輛大車一次運貨+6輛小車一次運貨=35
根據題意,列出方程,并解答。教師指導。
三、鞏固練習
教科書第34頁練習l、2、3。
第3題:首先讓學生明白什么叫充分利用這船的載重量與容量,讓學生找出兩個等量關系。
四、小結
列二元一次方程組解應用題的步驟。
1.審題,弄清題目中的數量關系,找出未知數,用x、y表示所要求的兩個未知數。
2.找到能表示應用題全部含義的兩個等量關系。
3.根據兩個等量關系,列出方程組。
4.解方程組。
5.檢驗作答案。
五、作業
1.教科書第35頁,習題7.2第2、3、4題。
《二元一次方程》教學設計
一、教材的地位與作用
《二元一次方程》是九年義務教育人教版教材七年級下冊第四章《二元一次方程組》的第一節。在此之前學生已經學習了一元一次方程,這為本節的學習起了鋪墊的作用。本節內容是二元一次方程的起始部分,因此,在本章的教學中,起著承上啟下的地位。
二、教學目標(一)知識與技能:
1.了解二元一次方程概念;
2.了解二元一次方程的解的概念和解的不唯一性;
3.會將一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式。(二)數學思考:
體會學習二元一次方程的必要性,學會獨立思考,體會數學的轉化思想和主元思想。
(三)問題解決:
初步學會利用二元一次方程來解決實際問題,感受二元一次方程解的不唯一性。獲得求二元一次方程解的思路方法。(四)情感態度:
培養學生發現意識和能力,使其具有強烈的好奇心和求知欲。
三、教學重點與難點
教學重點:二元一次方程及其解的概念。
教學難點:二元一次方程的概念里“含未知數的項的次數”的理解;把一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式。
四、教法與學法分析
教法:情境教學法、比較教學法、閱讀教學法。學法:閱讀、比較、探究的學習方式。
五、教學過程
1.創設情境,引入新課 從學生熟悉的姚明受傷事件引入。
師:火箭隊最近取得了20連勝,姚明參加了前面的12場比賽,是球隊的頂梁柱。(1)連勝的第12場,火箭對公牛,在這場比賽中,姚明得了12分,其中罰球得了2分,你知道姚明投中了幾個兩分球?(本場比賽姚明沒投中三分球)師:能用方程解決嗎?列出來的方程是什么方程?
(2)連勝的第1場,火箭對勇士,在這場比賽中,姚明得了36分,你知道姚明投中了幾個兩分球,罰進了幾個球嗎?(罰進1球得1分,本場比賽姚明沒投中三分球)師:這個問題能用一元一次方程解決嗎?,你能列出方程嗎? 設姚明投進了x個兩分球,罰進了y個球,可列出方程______。
(3)在雄鹿隊與火箭隊的比賽中易建聯全場總共得了19分,其中罰球得了3分。你知道他分別投進幾個兩分球、幾個三分球嗎? 設易建聯投進了x個兩分球,y個三分球,可列出方程______。
師:對于所列出來的三個方程,后面兩個你覺的是一元一次方程嗎?那這兩個方程有什么相同點嗎?你能給它們命一個名稱嗎? 從而揭示課題。
(設計意圖:第一個問題主要是讓學生體會一元一次方程是解決實際問題的數學模型,從而回顧一元一次方程的概念;第二、三問題設置的主要目的是讓學生體會到當實際問題不能用一元一次方程來解決的時候,我們可以試著列出二元一次方程,滲透方程模型的通用性。另外,數學來源于生活,又應用于生活,通過創設輕松的問題情境,點燃學習新知識的“導火索”,引起學生的學習興趣,以“我要學”的主人翁姿態投入學習,而且“會學”“樂學”。)2.探索交流,汲取新知
概念思辨,歸納二元一次方程的特征
師:那到底什么叫二元一次方程?(學生思考后回答)
師:翻開書本,請同學們把這個概念劃起來,想一想,你覺得和我們自己歸納出來的概念有什么區別嗎?(同學們思考后回答)師:根據概念,你覺得二元一次方程應具備哪幾個特征? 活動:你自己構造一個二元一次方程。快速判斷:下列式子中哪些是二元一次方程? ①x2+y=0
②y=2x+4 ③2x+1=2-x
④ab+b=4(設計意圖:這一環節是本課設計的重點,為加深學生對“含有未知數的項的次數”的內涵的理解,我采取的是閱讀書本中二元一次方程的概念,形成學生的認知沖突,激發學生對“項的次數”的思考,進而完善學生對二元一次方程概念的理解,通過學生自己舉例子的活動去把“項的次數”形象化。)二元一次方程解的概念
師:前面列的兩個方程2x+y=36,2x+3y=16真的是二元一次方程嗎?通過方程2x+3y=16,你知道易建聯可能投中幾個兩分球,幾個三分球嗎?
師:你是怎么考慮的?(讓學生說說他是如何得到x和y的值的,怎么證明自己的這對未知數的取值是對的)利用一個學生合理的解釋,引導學生類比一元一次方程的解的概念,讓學生歸納出二元一次方程的解的概念及其記法。(學生看書本上的記法)
使二元一次方程兩邊的值相等的一對未知數的值,叫做二元一次方程的一個解。(設計意圖:通過引導學生自主取值,猜x和y的值,從而更深刻的體會二元一次方程解的本質:使方程左右兩邊相等的一對未知數的取值。引導學生看書本,目的是讓學生在記法上體會“一對未知數的取值”的真正含義。)二元一次方程解的不唯一性
對于2x+3y=16,你覺得這個方程還有其它的解嗎?你能試著寫幾個嗎? 師:這些解你們是如何算出來的?
(設計意圖:設計此環節,目的有三個:首先,是讓學生學會如何檢驗一對未知數的取值是二元一次方程的解;其次是讓學生體會到二元一次方程的解的不唯一性;最后讓學生感受如何得到一個正確的解:只要取定一個未知數的取值,就可以代入方程算出另一個未知數的值,這也就是求二元一次方程的解的方法。)如何去求二元一次方程的解 例:已知方程3x+2y=10,(1)當x=2時,求所對應的y的值;
(2)取一個你自己喜歡的數作為x的值,求所對應的y的值;(3)用含x的代數式表示y;(4)用含y的代數式表示x;
(5)當x=-2,0時,所對應的y的值是多少?
(6)寫出方程3x+2y=10的三個解.
(設計意圖:此處設計主要是想讓學生形成求二元一次方程的解的一般方法,先讓學生展示他們的思維過程,再從他們解一元一次方程的重復步驟中提煉出用一個未知數的代數式表示另一個未知數,然后把它與原方程比較,把一個未知數的值代入哪一個方程計算會更簡單,形成“正遷移”,引導學生體會“用關于一個未知數的代數式表示另一個未知數”的過程,實質是解一個關于y的一元一次方程,滲透數學的主元思想。以此突破本節課的難點。)大顯身手: 課內練習第2題 梳理知識,課堂升華
本節課你有收獲嗎?能和大家說說你的感想嗎? 3.作業布置
必做題:書本作業題1、2、3、4。選做題:書本作業題5、6。設計說明
本節授課內容屬于概念課教學。數學學科的內容有其固有的組成規律和邏輯結構,它總是由一些最基本的數學概念作為核心和邏輯起點,形成系統的數學知識,所以數學概念是數學課程的核心。只有真正理解數學概念,才能理解數學。二元一次方程作為初中階段接觸的第二類方程,形成概念并不難,關鍵如何理解它的概念,因此本節課采用先讓同學自己試著下定義,然后與教材中的完整定義相互比較,發現不同點,進而理解“含有未知數的項的次數都是一次”這句話的內涵。在二元一次方程的解的教學過程中,采用的是讓學生體會“一個解——不止一個解——無數個解”的漸進過程,感受到用一個二元一次方程并不能求出一對確定的未知數的取值,從而讓學生產生有后續學習的愿望。
在講授用含一個未知數的代數式表示另一個未知數的時候,采用“特殊——一般——特殊”的教學流程,以期突破難點。首先拋出問題“這幾個解你是如何求的”,此時注意的聚焦點是二元一次方程;其次學生歸納先定一個未知數的取值,代入原方程求另一個未知數的值,此時注意的聚焦點是一元一次方程;然后教師引導回到二元一次方程,假如x是一個常數,那么這個方程可以看成是一個關于誰的一元一次方程,此時注意的聚焦點是原來的二元一次方程;最后代入求值,此時注意的聚焦點是等號右邊的那個算式,體會“用含一個未知數的代數式表示另一個未知數”在求值過程中的簡潔性,強化這種代數形式。另外,在引導學生推導“用含一個未知數的代數式表示另一個未知數”的過程中,滲透數學的主元思想和轉化思想。