第一篇:導數總結歸納大全
志不立,天下無可成之事!
類型二:求單調區間、極值、最值
例
三、設x?3是函數f(x)?(x?ax?b)e
(1)求a與b的關系式(用a表示b)
(2)求f(x)的單調區間
(3)設a?0,求f(x)在區間?0,4?上的值域
23?x的一個極值點
類型三:導數與方程、不等式
例
四、設函數f(x)?(1?x)?2ln(1?x)
(1)若在定義域內存在x0,使得不等式f(x0)?m?0成立,求實數m的最小值
(2)若函數g(x)?f(x)?x?x?a在區間?0,2?上恰有兩個不同的零點,求實數a22的取值范圍
第二篇:高中導數知識點總結
世界一流潛能大師博恩?崔西說:“潛意識的力量比表意識大三萬倍”。追逐高考,我們向往成功,我們希望激發潛能,我們就需要在心中鑄造一座高高矗立的、堅固無比的燈塔,它的名字叫信念。那么接下來給大家分享一些關于高中導數知識點總結,希望對大家有所幫助。
高中導數知識點11、導數的定義:在點處的導數記作.2.導數的幾何物理意義:曲線在點處切線的斜率
①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。
3.常見函數的導數公式:①;②;③;
⑤;⑥;⑦;⑧。
4.導數的四則運算法則:
5.導數的應用:
(1)利用導數判斷函數的單調性:設函數在某個區間內可導,如果,那么為增函數;如果,那么為減函數;
注意:如果已知為減函數求字母取值范圍,那么不等式恒成立。
(2)求極值的步驟:
①求導數;
②求方程的根;
③列表:檢驗在方程根的左右的符號,如果左正右負,那么函數在這個根處取得極大值;如果左負右正,那么函數在這個根處取得極小值;
(3)求可導函數值與最小值的步驟:
ⅰ求的根;ⅱ把根與區間端點函數值比較,的為值,最小的是最小值。
導數與物理,幾何,代數關系密切:在幾何中可求切線;在代數中可求瞬時變化率;在物理中可求速度、加速度。學好導數至關重要,一起來學習高二數學導數的定義知識點歸納吧!
導數是微積分中的重要基礎概念。當函數y=f(x)的自變量x在一點x0上產生一個增量Δx時,函數輸出值的增量Δy與自變量增量Δx的比值在Δx趨于0時的極限a如果存在,a即為在x0處的導數,記作f'(x0)或df(x0)/dx。
導數是函數的局部性質。一個函數在某一點的導數描述了這個函數在這一點附近的變化率。如果函數的自變量和取值都是實數的話,函數在某一點的導數就是該函數所代表的曲線在這一點上的切線斜率。導數的本質是通過極限的概念對函數進行局部的線性逼近。例如在運動學中,物體的位移對于時間的導數就是物體的瞬時速度。
不是所有的函數都有導數,一個函數也不一定在所有的點上都有導數。若某函數在某一點導數存在,則稱其在這一點可導,否則稱為不可導。然而,可導的函數一定連續;不連續的函數一定不可導。
對于可導的函數f(x),x?f'(x)也是一個函數,稱作f(x)的導函數。尋找已知的函數在某點的導數或其導函數的過程稱為求導。實質上,求導就是一個求極限的過程,導數的四則運算法則也來源于極限的四則運算法則。反之,已知導函數也可以倒過來求原來的函數,即不定積分。微積分基本定理說明了求原函數與積分是等價的。求導和積分是一對互逆的操作,它們都是微積分學中最為基礎的概念。
設函數y=f(x)在點x0的某個鄰域內有定義,當自變量x在x0處有增量Δx,(x0+Δx)也在該鄰域內時,相應地函數取得增量Δy=f(x0+Δx)-f(x0);如果Δy與Δx之比當Δx→0時極限存在,則稱函數y=f(x)在點x0處可導,并稱這個極限為函數y=f(x)在點x0處的導數記為f'(x0),也記作y'│x=x0或dy/dx│x=x0
高中導數知識點2
一、求導數的方法
(1)基本求導公式
(2)導數的四則運算
(3)復合函數的導數
設在點x處可導,y=在點處可導,則復合函數在點x處可導,且即
二、關于極限
.1.數列的極限:
粗略地說,就是當數列的項n無限增大時,數列的項無限趨向于A,這就是數列極限的描述性定義。記作:=A。如:
2函數的極限:
當自變量x無限趨近于常數時,如果函數無限趨近于一個常數,就說當x趨近于時,函數的極限是,記作
三、導數的概念
1、在處的導數.2、在的導數.3.函數在點處的導數的幾何意義:
函數在點處的導數是曲線在處的切線的斜率,即k=,相應的切線方程是
注:函數的導函數在時的函數值,就是在處的導數。
例、若=2,則=()A-1B-2C1D
四、導數的綜合運用
(一)曲線的切線
函數y=f(x)在點處的導數,就是曲線y=(x)在點處的切線的斜率.由此,可以利用導數求曲線的切線方程.具體求法分兩步:
(1)求出函數y=f(x)在點處的導數,即曲線y=f(x)在點處的切線的斜率k=;
(2)在已知切點坐標和切線斜率的條件下,求得切線方程為_。
高中數學函數與導數知識點總結分享:
函數與導數
第一、求函數定義域題忽視細節函數的定義域是使函數有意義的自變量的取值范圍,考生想要在考場上準確求出定義域,就要根據函數解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數的定義域。在求一般函數定義域時,要注意以下幾點:分母不為0;偶次被開放式非負;真數大于0以及0的0次冪無意義。函數的定義域是非空的數集,在解答函數定義域類的題時千萬別忘了這一點。復合函數要注意外層函數的定義域由內層函數的值域決定。
第二、帶絕對值的函數單調性判斷錯誤帶絕對值的函數實質上就是分段函數,判斷分段函數的單調性有兩種方法:第一,在各個段上根據函數的解析式所表示的函數的單調性求出單調區間,然后對各個段上的單調區間進行整合;第二,畫出這個分段函數的圖象,結合函數圖象、性質能夠進行直觀的判斷。函數題離不開函數圖象,而函數圖象反應了函數的所有性質,考生在解答函數題時,要第一時間在腦海中畫出函數圖象,從圖象上分析問題,解決問題。對于函數不同的單調遞增(減)區間,千萬記住,不要使用并集,指明這幾個區間是該函數的單調遞增(減)區間即可。
第三、求函數奇偶性的常見錯誤求函數奇偶性類的題最常見的錯誤有求錯函數定義域或忽視函數定義域,對函數具有奇偶性的前提條件不清,對分段函數奇偶性判斷方法不當等等。判斷函數的奇偶性,首先要考慮函數的定義域,一個函數具備奇偶性的必要條件是這個函數的定義域區間關于原點對稱,如果不具備這個條件,函數一定是非奇非偶的函數。在定義域區間關于原點對稱的前提下,再根據奇偶函數的定義進行判斷。在用定義進行判斷時,要注意自變量在定義域區間內的任意性。
第四、抽象函數推理不嚴謹很多抽象函數問題都是以抽象出某一類函數的共同“特征”而設計的,在解答此類問題時,考生可以通過類比這類函數中一些具體函數的性質去解決抽象函數。多用特殊賦值法,通過特殊賦可以找到函數的不變性質,這往往是問題的突破口。抽象函數性質的證明屬于代數推理,和幾何推理證明一樣,考生在作答時要注意推理的嚴謹性。每一步都要有充分的條件,別漏掉條件,更不能臆造條件,推理過程層次分明,還要注意書寫規范。
第五、函數零點定理使用不當若函數y=f(x)在區間[a,b]上的圖象是連續不斷的一條曲線,且有f(a)f(b)<>
第六、混淆兩類切線曲線上一點處的切線是指以該點為切點的曲線的切線,這樣的切線只有一條;曲線的過一個點的切線是指過這個點的曲線的所有切線,這個點如果在曲線上當然包括曲線在該點處的切線,曲線的過一個點的切線可能不止一條。因此,考生在求解曲線的切線問題時,首先要區分是什么類型的切線。
第七、混淆導數與單調性的關系一個函數在某個區間上是增函數的這類題型,如果考生認為函數的導函數在此區間上恒大于0,很容易就會出錯。解答函數的單調性與其導函數的關系時一定要注意,一個函數的導函數在某個區間上單調遞增(減)的充要條件是這個函數的導函數在此區間上恒大(小)于等于0,且導函數在此區間的任意子區間上都不恒為零。
第八、導數與極值關系不清考生在使用導數求函數極值類問題時,容易出現的錯誤就是求出使導函數等于0的點,卻沒有對這些點左右兩側導函數的符號進行判斷,誤以為使導函數等于0的點就是函數的極值點,往往就會出錯,出錯原因就是考生對導數與極值關系沒搞清楚。可導函數在一個點處的導函數值為零只是這個函數在此點處取到極值的必要條件,小編在此提醒廣大考生,在使用導數求函數極值時,一定要對極值點進行仔細檢查。
高中數學的學習方法
首先,不要忽視課本。把高一高二的所有教學課本找出來,認認真真仔仔細細地把里面的知識點定理公理等等都看一遍,包括書上的證明也不要忽視。不是說看一遍就了事的,而是真正的去理解他。因為在你高一高二所有的月考,期中考,期末考,經歷了這么多題海戰術之后你要做的就是要回歸課本。你會發現有些高考題,他是很巧妙的利用了書上一些簡單的定義進行變換和引申得到的。所以當老師帶著從頭復習的時候,不要排斥,而是要回憶,消化,理解和掌握這些書本上的基礎知識。
第二,要嘗試著去掌握一些新的定理和法則。在高一高二的時候,老師可能會說這個公式不是大綱要求的,所以不必掌握。這是完全正確的,因為當時所有的知識都是新的,你在面對過多新知識的時候,很難消化和掌握。但是現在你已經掌握了很多知識的基礎上,在去適當的結合自己的能力去了解一些考綱之外的,就更容易掌握了。比如洛必達法則,高中雖然不講,但是在答大題的時候用起來很方便的一個法則。如果你掌握了,你就會比別人做的更好更快更準確。
第三,要注意數學思想和方法的總結。比如說畫圖的思想,轉化的思想等等。這個操作起來還是比較容易的。就是在你每次做完題要注意看解析,看他是怎么分析試題的;老師講課的時候是怎么講解和歸類的;甚至可以多問一下身邊的同學是怎么做這道題的,來尋求一題多解,多思路,看有沒有比你的方法更好的方法。良好的方法是成功的一半,掌握了正確的方法不僅省時更省力。
第四,計算能力的提高。講真,我是沒有這個毛病的。但是我身邊的好多同學有這個問題,就是明明會做的題一定會算錯。小題大題一張卷下來能扣出來10分。嘴上說著是粗心,但我認為不是。我覺得有兩個原因,一個是知識掌握的不牢固,另一個是自身計算能力太差。這兩點都是很致命的。計算能力的提高,會讓正確率上升,會做的題會一次性做對。同時,也會節省出很多時間,去做其他的題。所以從一輪復習開始就要學會提升自己的計算能力,這樣到最后才不會后悔
高中導數知識點總結
第三篇:導數及其應用 知識點總結
導數及其應用 知識點總結
1、函數f?x?從x1到x2的平均變化率:
f
?x2??f?x1?
x2?x1
x?x0
f(x0??x)?f(x0)
?x2、導數定義:f?x?在點x0處的導數記作y?
?f?(x0)?lim
;.
處的切線的斜率.
?x?03、函數y?f?x?在點x0處的導數的幾何意義是曲線
4、常見函數的導數公式:
y?f?x?
在點
??x0,f?x0??
①C'?0;②(xn)'?nxn?1;③(sinx)'?cosx;④(cosx)'??sinx; ⑤(ax)'?axlna;⑥(ex)'?ex;⑦(log5、導數運算法則:
a
x)?
'
1xlna
;⑧(lnx)'?
1x
?1?
?
fx?gx?????????f??x??g??x?;
?fx?gx?????????f??x?g?x??f?x?g??x?;
?2?
??f?x??f??x?g?x??f?x?g??x?
?g?x??0????2
gx????3????g?x???.
6、在某個區間?a,b?內,若f??x??0,則函數y?f?x?在這個區間內單調遞增;
若f??x??0,則函數y?f?x?在這個區間內單調遞減.
7、求解函數y?f(x)單調區間的步驟:
(1)確定函數y?f(x)的定義域;(2)求導數y'?f'(x);(3)解不等式f'(x)?0,解集在定義域內的部分為增區間;(4)解不等式f(x)?0,解集在定義域內的部分為減區間.
8、求函數y?f?x?的極值的方法是:解方程f??x??0.當f??x0??0時:
'
?1?如果在x0附近的左側f??x??0,右側f??x??0,那么f?x0?是極大值; f??x??0,右側f??x??0,那么f?x0?是極小值.
?2?如果在x0附近的左側
9、求解函數極值的一般步驟:
(1)確定函數的定義域(2)求函數的導數f’(x)(3)求方程f’(x)=0的根
(4)用方程f’(x)=0的根,順次將函數的定義域分成若干個開區間,并列成表格(5)由f’(x)在方程f’(x)=0的根左右的符號,來判斷f(x)在這個根處取極值的情況
10、求函數y?f?x?在?a,b?上的最大值與最小值的步驟是:
?1?求函數y?f?x?在?a,b?內的極值;
?2?將函數y?f?x?的各極值與端點處的函數值f?a?,f?b?比較,其中最大的一個是最大值,最
小的一個是最小值.
第四篇:導數及其應用_知識點總結
導數及其應用 知識點總結
1、函數{ EMBED Equation.DSMT4 |f?x?從到的平均變化率:
2、導數定義:在點處的導數記作;.
3、函數在點處的導數的幾何意義是曲線在點處的切線的斜率.
4、常見函數的導數公式:
①;②;③;④;
⑤;⑥;⑦;⑧
5、導數運算法則:;
;
.
6、在某個區間內,若,則函數在這個區間內單調遞增;
若,則函數在這個區間內單調遞減.
7、求解函數單調區間的步驟:
(1)確定函數的定義域;(2)求導數;
(3)解不等式,解集在定義域內的部分為增區間;
(4)解不等式,解集在定義域內的部分為減區間.
8、求函數的極值的方法是:解方程.當時:
如果在附近的左側,右側,那么是極大值;
如果在附近的左側,右側,那么是極小值.
9、求解函數極值的一般步驟:
(1)確定函數的定義域(2)求函數的導數f’(x)
(3)求方程f’(x)=0的根
(4)用方程f’(x)=0的根,順次將函數的定義域分成若干個開區間,并列成表格
(5)由f’(x)在方程f’(x)=0的根左右的符號,來判斷f(x)在這個根處取極值的情況
10、求函數在上的最大值與最小值的步驟是:
求函數在內的極值;
將函數的各極值與端點處的函數值,比較,其中最大的一個是最大值,最小的一個是最小值.
第五篇:導數與積分總結
導數與積分
1.導數的概念
函數y=f(x),如果自變量x在x0處有增量?x,那么函數y相應地有增量
?y=f(x0+?x)-f(x0),比?y值?x?y叫做函數y=f(x)在x0到x0+?x之間的平均變化率,即?x=
f(x0??x)?f(x0)?x。如果當?y?x?0時,?x有極限,我們就說函數y=f(x)在點x0處可導,并把這個極限叫做f(x)在點x0處的導數,記作f’(x0)或y’|x?x0。
f(x0??x)?f(x0)?ylimlim?x?x?0?x?x?00即f(x)==2.導數的幾何意義。
函數y=f(x)在點x0處的導數的幾何意義是曲線y=f(x)在點p(x0,f(x0))處的切線的斜率。也就是說,曲線y=f(x)在點p(x0,f(x0))處的切線的斜率是f’(x0)。相應地,切線方程為y-y0=f`(x0)(x-x0)。
3.幾種常見函數的導數:
xn??nxn?1;(sinx)??cosx??0;C(cosx)???sinx;①②③;
④??xxxx??(e)?e;(a)?alna;
⑦⑤⑥
?lnx???11?logax???logaex;
⑧x.4.兩個函數的和、差、積的求導法則
?u?u'v?uv'''''''??u?v)?u?v.(uv)?uv?uv.?v?‘=v2((v?0)。
復合函數的導數:
單調區間:一般地,設函數
y?f(x)在某個區間可導,如果f'(x)?0,則f(x)為增函數;如果f'(x)?0,則f(x)為減函數;
f'(x)?0,則f(x)為常數; 如果在某區間內恒有2.極點與極值:
曲線在極值點處切線的斜率為0,極值點處的導數為0;曲線在極大值點左側切線的斜率為正,右側為負;曲線在極小值點左側切線的斜率為負,右側為正; 3.最值:
一般地,在區間[a,b]上連續的函數f①求函數?②求函數?
(x)在[a,b]上必有最大值與最小值。
(x)在(a,b)內的極值;(x)在區間端點的值?(a)、?(b);
(x)的各極值與?(a)、?(b)比較,其中最大的是最大值,其中最小的是最小值。③將函數? 4.定積分
(1)概念:設函數f(x)在區間[a,b]上連續,用分點a=x0 n間長度),把n→∞即△x→0時,和式In的極限叫做函數f(x)在區間[a,b]上的定積分,記作: ?baf(x)dx,?即ba?ff(x)dxlimn??=i?1n(ξi)△x。 這里,a與b分別叫做積分下限與積分上限,區間[a,b]叫做積分區間,函數f(x)叫做被積函數,x叫做積分變量,f(x)dx叫做被積式。基本的積分公式: 1m?1x?0dx=C;?xdx=m?1+C(m∈Q,m≠-1) ; m1?xdx=lnxxaexdxexaxdx??+C;=+C;=lna+C; ?cosxdx=sinx+C;?sinxdx=-cosx+C(表中C均為常數)。 (2)定積分的性質 ①??babkf(x)dx?k?f(x)dxabab(k為常數); ba?②③abf(x)?g(x)dx??f(x)dx??g(x)dxf(x)dx??f(x)dx??f(x)dxaccb; a(其中a<c<b。)(3)定積分求曲邊梯形面積 由三條直線x=a,x=b(a ?baf1(x)dx??f2(x)dxab。