1時(shí),證明不等式x>ln(x+1)f(x)=x-ln(x+1)f'(x)=1-1/(x+1)=x/(x+1)x>1,所以f'(x)>0,增函數(shù)所以x>1,f(x)>f(1)=1-ln2>0f(x)" />

久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

導(dǎo)數(shù)證明不等式

時(shí)間:2019-05-12 11:58:12下載本文作者:會(huì)員上傳
簡(jiǎn)介:寫(xiě)寫(xiě)幫文庫(kù)小編為你整理了多篇相關(guān)的《導(dǎo)數(shù)證明不等式》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫(xiě)寫(xiě)幫文庫(kù)還可以找到更多《導(dǎo)數(shù)證明不等式》。

第一篇:導(dǎo)數(shù)證明不等式

導(dǎo)數(shù)證明不等式

一、當(dāng)x>1時(shí),證明不等式x>ln(x+1)

f(x)=x-ln(x+1)

f'(x)=1-1/(x+1)=x/(x+1)

x>1,所以f'(x)>0,增函數(shù)

所以x>1,f(x)>f(1)=1-ln2>0

f(x)>0

所以x>0時(shí),x>ln(x+1)

二、導(dǎo)數(shù)是近些年來(lái)高中課程加入的新內(nèi)容,是一元微分學(xué)的核心部分。本文就談?wù)剬?dǎo)數(shù)在一元不等式中的應(yīng)用。

例1.已知x∈(0,),求證:sinx

第二篇:應(yīng)用導(dǎo)數(shù)證明不等式

應(yīng)用導(dǎo)數(shù)證明不等式

常澤武指導(dǎo)教師:任天勝

(河西學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院 甘肅張掖 734000)

摘要: 不等式在初等數(shù)學(xué)和高等代數(shù)中有廣泛的應(yīng)用,證明方法很多,本文以函數(shù)的觀點(diǎn)來(lái)認(rèn)識(shí)不等式,以導(dǎo)數(shù)為工具來(lái)證明不等式。

關(guān)鍵字: 導(dǎo)數(shù) 不等式最值中值定理單調(diào)性泰勒公式

中圖分類號(hào): O13

Application derivative to testify inequality

ChangZeWu teachers: RenTianSheng

(HeXi institute of mathematics and statistics Gansu zhang ye 734000)Abstract: He inequality in elementary mathematics and higher algebra is widely used, proved many methods, based on the function point of view to know inequality to derivative tools to prove to inequality.Key words: The most value of derivative inequality value theorem monotonicity Taylor formula

1.利用微分中值定理來(lái)證明不等式

在數(shù)學(xué)分析中,我們學(xué)到了拉格朗日中值定理,其內(nèi)容為:

定理1.如果函數(shù)f?x?在閉區(qū)間?a,b?上連續(xù),在開(kāi)區(qū)間?a,b?上可導(dǎo),則至少存在一點(diǎn)???a,b?,使得f'(?)?

拉格朗日中值定理是探討可微函數(shù)的的幾何特性及證明不等式的重要工具,我們可以根據(jù)以下兩種方法來(lái)證明。

(1)首先,分析不等式通過(guò)變形,將其特殊化。其次,選取合適的函數(shù)和范圍。第三,利用拉格朗日中值定理。最后,在根據(jù)函數(shù)的單調(diào)性和最大值和最小值。

(2)我們可根據(jù)其兩種等價(jià)表述方式

①f(b)?f(a)?f'(a??(b?a))(b?a),0???1

②f?a?h??f?a??f'?a??h?h,0???1

我們可以?的范圍來(lái)證明不等式。f(b)?f(a)。b?a

11(x?0)例1.1證明不等式ln(1?)?x1?x

證明第一步變形1 ln(1?)?ln(1?x)?ln(x)x

第二步選取合適的函數(shù)和范圍

令f(x)?lntt??x,1?x?

第三步應(yīng)用拉格朗日中值定理

存在???x,1?x?使得f'(?)?f(1?x)?f(x)(1?x)?(x)

即ln(1?x)?ln(x)?1

?而 ?<1+x 1 1?x

1?x1)?而0?x??? 即ln(x1?x?ln(1?x)?ln(x)?

例 1.2證明:?h>-1且h?0都有不等式成立:

h?ln(1?h)?h 1?h

證明:令f(x)=ln(1+x),有拉格朗日中值定理,????0,1?使得

ln(1?h)?f(h)?f(0)?f'(?h)h?

當(dāng)h>0時(shí)有

1??h?1?1?h,當(dāng)?1?h?0時(shí)有

1?1??h?1?h?0,即h.1??h1h??h;1?h1??h1h??h.1?h1??h

2.利用函數(shù)單調(diào)性證明不等式

我們?cè)诔醯葦?shù)學(xué)當(dāng)中學(xué)習(xí)不等式的證明時(shí)用到了兩種方法:一種是判斷它們差的正負(fù),另一種是判斷它們的商大于1還是小于1.而我們今天所要討論的是根據(jù)函數(shù)的導(dǎo)數(shù)的思想來(lái)判斷大小。

定理:設(shè)函數(shù)f(x)在?a,b?上連續(xù),在?a,b?可導(dǎo),那么

(1)若在?a,b?內(nèi)f'(x)?0則f(x)在?a,b?內(nèi)單調(diào)遞增。

(2)若在?a,b?內(nèi)f'(x)?0則f(x)在?a,b?內(nèi)單調(diào)遞減。

使用定理:要證明區(qū)間?a,b?上的不等式f(x)?g(x),只需令F(x)?f(?x)。g使在(x)?a,b?上F'(x)>0(F'(x)<0)且F(a)=0或(F(b)=0)例2.1 設(shè)x?0證明不等式ln(1?x)?xe?x

證明:令F(x)?ln(1?x)?xe?x(x>0)

顯然F(0)?0

1ex?x2?1?x?x(x>0)F'(x)??e?xe?x1?x(1?x)e

現(xiàn)在來(lái)證明ex?x2?1?0

令f(x)?ex?x2?1顯然f(0)?0

當(dāng)x?0時(shí)f'(x)?ex?2x?0

于是得f(x)在x?0上遞增

故對(duì)x?0有f(x)?f(0)?f(x)?0

而(1?x)ex?0

所以F'(x)?0故F(x)遞增

又因?yàn)镕(0)?0

所以F(x)?0

所以ln(1?x)?xe?x成立

3.利用函數(shù)的最大值和最小值證明不等式

當(dāng)?shù)仁街泻小?”號(hào)時(shí),不等式f(x)?g(x)(或f(x)?g(x))? g(x)?f(x)?0(或g(x)?f(x)?0),亦即等價(jià)于函數(shù)G(x)?g(x)?f(x)有最小值或F(x)?f(x?)g(有最大值。x)

證明思路:由待正不等式建立函數(shù),通過(guò)導(dǎo)數(shù)求出極值并判斷時(shí)極大值還是極小值,在求出最大值或最小值,從而證明不等式。

1例3.1證明若p>1,則對(duì)于?0,1?中的任意x有p?1?xp?(1?x)p?1 2

證明:構(gòu)造函數(shù)f(x)?xp?(1?x)p(0?x?1)

則有f'(x)?pxp?1?p(1?x)p?1?p(xp?1?(1?x)p?1)

令f'(x)?0,可得xp?1?(1?x)p?1,于是有x?1?x,從而求得x?1。由于2

函數(shù)f(x)在閉區(qū)間?0,1?上連續(xù),因而在閉區(qū)間?0,1?上有最小值和最大值。

由于函數(shù)f(x)內(nèi)只有一個(gè)駐點(diǎn),沒(méi)有不可導(dǎo)點(diǎn),又函數(shù)f(x)在駐點(diǎn)x?1和2

111p1?)?p?1,f(0)?f(1),區(qū)間端點(diǎn)(x?0和x?1)的函數(shù)值為f()?)p?(1所以2222

1f(x)在?0,1?的最小值為p?1,最大值為1,從而對(duì)于?0,1?中的任意x有2

11?f(x)?1?xp?(1?x)p?1。,既有p?1p?122

4.利用函數(shù)的泰勒展式證明不等式

若函數(shù)f(x)在含有x0的某區(qū)間有定義,并且有直到(n?1)階的各階導(dǎo)數(shù),又在x0處有n階導(dǎo)數(shù)f(n)(x0),則有展式: f'(x0)f''(x0)fn(x0)2(x?x0)?(x?x0)??(x?x0)n?Rn(x)f(x)?f(x0)?1!2!n!

在泰勒公式中,取x0=0,變?yōu)辂溈藙诹止?/p>

f'(0)f''(0)2fn(0)nf(x)?f(0)?(x)?(x)??(x)?Rn(x)1!2!n!

在上述公式中若Rn(x)?0(或?0)則可得

f'(0)f''(0)2fn(0)nf(x)?f(0)?(x)?(x)??(x),1!2!n!

f'(0)f''(0)2fn(0)n(x)?(x)??(x)?;騠(x)?f(0)?1!2!n!

帶有拉格朗日余項(xiàng)的泰勒公式的實(shí)質(zhì)是拉格朗日微分中值定理的深化,他是一個(gè)定量估計(jì)式,該公式在不等式證明和微分不等式證明及較為復(fù)雜的極限計(jì)算中有廣泛的應(yīng)用。

用此公式證明不等式就是要把所證不等式化簡(jiǎn),其中函數(shù)用此公式,在把公式右邊放大或縮小得到所證不等式。

例4.1若函數(shù)f(x)滿足:(1)在區(qū)間?a,b?上有二階導(dǎo)函數(shù)f''(x),(2)

f'(a)?f'(b)?0,則在區(qū)間?a,b?內(nèi)至少存在一點(diǎn)c,使

f''(c)?4f(b)?f(a)。2(b?a)

證明:由f(x)在x?a和x?b處的泰勒公式,并利用f'(a)?f'(b)?0,得f(x)?f(a)?f''(?)(x?a)2

2!f''(?)f(x)?f(b)?(x?b)2,于是2!

a?bf''(?)(b?a)2a?bf()?f(a)??(a???),22!42

a?bf''(?)(b?a)2a?bf()?f(b)??(a???),22!42

f''(?)?f''(?)(b?a)2

相減,得f(b)-f(a)=,24

4f(b)?f(a)1(b?a)2

即?f''(?)?f(?)?,(b?a)224

當(dāng)f''(?)?f''(?)時(shí),記c??否則記c=?,那么

f''(c)?4f(b)?f(a)(a?b?c)(b?a)2

參 考 文 獻(xiàn)

《數(shù)學(xué)分析》上冊(cè),高等教育出版社,1990.?1?鄭英元,毛羽輝,宋國(guó)棟編,?2?趙煥光,林長(zhǎng)勝編《數(shù)學(xué)分析》上冊(cè),四川大學(xué)出版社,2006。?3?歐陽(yáng)光中,姚允龍,周淵編《數(shù)學(xué)分析》上冊(cè),復(fù)旦大學(xué)出版社,2004.?4?華東師范大學(xué)數(shù)學(xué)系編《數(shù)學(xué)分析》上冊(cè),第三版,高等教育出版社2001.

第三篇:利用導(dǎo)數(shù)證明不等式

利用導(dǎo)數(shù)證明不等式

例1.已知x>0,求證:x>ln(1+x)分析:設(shè)f(x)=x-lnx。x?[0,+??。考慮到f(0)=0,要證不等式變?yōu)椋簒>0時(shí),f(x)>f(0),這只要證明:

f(x)在區(qū)間[0,??)是增函數(shù)。

證明:令:f(x)=x-lnx,容易看出,f(x)在區(qū)間[0,??)上可導(dǎo)。

且limf(x)?0?f(0)?x?0 由f'(x)?1?1x 可得:當(dāng)x?(0,??)時(shí),f'(x)?f(0)?0 ?x?1x?1 即x-lnx>0,所以:x>0時(shí),x>lnx 評(píng)注:要證明一個(gè)一元函數(shù)組成的不等式成立,首先根據(jù)題意構(gòu)造出一個(gè)

函數(shù)(可以移項(xiàng),使右邊為零,將移項(xiàng)后的左式設(shè)為函數(shù)),并利 用導(dǎo)數(shù)判斷所設(shè)函數(shù)的單調(diào)性,再根據(jù)函數(shù)單調(diào)性的定義,證明要 證的不等式。

例2:當(dāng)x??0,??時(shí),證明不等式sinx?x成立。證明:設(shè)f(x)?sinx?x,則f'(x)?cosx?1.∵x?(0,?),∴f'(x)?0.∴f(x)?sinx?x在x?(0,?)內(nèi)單調(diào)遞減,而f(0)?0.∴f(x)?sinx?x?f(0)?0, 故當(dāng)x?(0,?)時(shí),sinx?x成立。

點(diǎn)評(píng):一般地,證明f(x)?g(x),x?(a,b),可以構(gòu)造函數(shù)F(x)?f(x)?g(x),如果F'(x)?0,,則F(x)在(a,b)上是減函數(shù),同時(shí)若F(a)?0,由減函數(shù)的定義可知,x?(a,b)時(shí),有F(x)?0,即證明了f(x)?g(x)。

x練習(xí):1.當(dāng)x?0時(shí),證明不等式e?1?x?12x成立。2證明:設(shè)f?x??e?1?x?x12x,則f'?x??ex?1?x.2xxx令g(x)?e?1?x,則g'(x)?e?1.當(dāng)x?0時(shí),g'?x??e?1?0.?g(x)在?0,???上單調(diào)遞增,而g(0)?0.?g?x??g(0)?0,?g(x)?0在?0,???上恒成立,?f(x)在即f'(x)?0在?0,???恒成立。?0,???上單調(diào)遞增,又f(0)?0,?ex?1?x?1x2?0,即x?0時(shí),ex222.證明:當(dāng)x?1時(shí),有l(wèi)n(x?1)?lnx?ln(x?2).?1?x?12x成立。2分析 只要把要證的不等式變形為

ln(x?1)ln(x?2)?,然后把x相對(duì)固定看作常數(shù),并選取輔助函

lnxln(x?1)數(shù)f(x)?ln(x?1).則只要證明f(x)在(0,??)是單調(diào)減函數(shù)即可.lnx證明: 作輔助函數(shù)f(x)?ln(x?1)(x?1)lnxlnxln(x?1)?xlnx?(x?1)ln(x?1)?于是有f?(x)?x?12x

lnxx(x?1)ln2x因?yàn)?1?x?x?1, 故0?lnx?ln(x?1)所以 xlnx?(x?1)ln(x?1)

(1,??)因而在內(nèi)恒有f'(x)?0,所以f(x)在區(qū)間(1,??)內(nèi)嚴(yán)格遞減.又因?yàn)??x?1?x,可知f(x)?f(x?1)即 ln(x?1)ln(x?2)?lnxln(x?1)所以 ln2(x?1)?lnx?ln(x?2).利用導(dǎo)數(shù)知識(shí)證明不等式是導(dǎo)數(shù)應(yīng)用的一個(gè)重要方面,也成為高考的一個(gè)新熱點(diǎn),其關(guān)鍵是構(gòu)造適當(dāng)?shù)暮瘮?shù),判斷區(qū)間端點(diǎn)函數(shù)值與0的關(guān)系,其實(shí)質(zhì)就是利用求導(dǎo)的方法研究函數(shù)的單調(diào)性,通過(guò)單調(diào)性證明不等式。

x2例3.證明不等式x??ln(1?x)?x,其中x?0.2x2分析 因?yàn)槔?中不等式的不等號(hào)兩邊形式不一樣,對(duì)它作差ln(1?x)?(x?),則發(fā)現(xiàn)作差以后

21?x)求導(dǎo)得不容易化簡(jiǎn).如果對(duì)ln(1,這樣就能對(duì)它進(jìn)行比較.1?xx2證明: 先證 x??ln(1?x)

2x2設(shè) f(x)?ln(1?x)?(x?)(x?0)

21x21?0)?0?0 f(x)?則 f(0)?ln(?1?x?1?x1?x'? x?0 即 1?x?0 x2?0

x2? f?(x)??0 ,即在(0,??)上f(x)單調(diào)遞增

1?xx2? f(x)?f(0)?0 ? ln(1?x)?x?

21?x)?x;令 g(x)?ln(1?x)?x 再證 ln(則 g(0)?0 g?(x)?1?1 1?x1?ln(1?x)?x ? x?0 ? ?1 ? g?(x)?0 1?xx2? x??ln(1?x)?x 練習(xí):3(2001年全國(guó)卷理20)已知i,m,n是正整數(shù),且1?i?m?n

證明:(1?m)n?(1?n)m

分析:要證(1?m)n?(1?n)m成立,只要證

ln(1?m)n?ln(1?n)m

即要證11ln(1?m)?ln(1?n)成立。因?yàn)閙

11ln(1?m)?ln(1?n); mn從而:(1?m)n?(1?n)m。

評(píng)注:這類非明顯一元函數(shù)式的不等式證明問(wèn)題,首先變換成某一個(gè)一元函數(shù)式分別在兩個(gè)不同點(diǎn)處的函數(shù)值的大小比較問(wèn)題,只要將這個(gè)函數(shù)式找到了,通過(guò)設(shè)函數(shù),求導(dǎo)判斷它的單調(diào)性,就可以解決不等式證明問(wèn)題。難點(diǎn)在于找這個(gè)一元函數(shù)式,這就是“構(gòu)造函數(shù)法”,通過(guò)這類數(shù)學(xué)方法的練習(xí),對(duì)培養(yǎng)分析問(wèn)題、解決問(wèn)題的能力是有很大好處的,這也是進(jìn)一步學(xué)習(xí)高等數(shù)學(xué)所需要的。

第四篇:利用導(dǎo)數(shù)證明不等式

利用導(dǎo)數(shù)證明不等式

沒(méi)分都沒(méi)人答埃。覺(jué)得可以就給個(gè)好評(píng)!

最基本的方法就是將不等式的的一邊移到另一邊,然后將這個(gè)式子令為一個(gè)函數(shù)f(x).對(duì)這個(gè)函數(shù)求導(dǎo),判斷這個(gè)函數(shù)這各個(gè)區(qū)間的單調(diào)性,然后證明其最大值(或者是最小值)大于0.這樣就能說(shuō)明原不等式了成立了!

1.當(dāng)x>1時(shí),證明不等式x>ln(x+1)

設(shè)函數(shù)f(x)=x-ln(x+1)

求導(dǎo),f(x)'=1-1/(1+x)=x/(x+1)>0

所以f(x)在(1,+無(wú)窮大)上為增函數(shù)

f(x)>f(1)=1-ln2>o

所以x>ln(x+

12..證明:a-a^2>0其中0

F(a)=a-a^

2F'(a)=1-2a

當(dāng)00;當(dāng)1/2

因此,F(xiàn)(a)min=F(1/2)=1/4>0

即有當(dāng)00

3.x>0,證明:不等式x-x^3/6

先證明sinx

因?yàn)楫?dāng)x=0時(shí),sinx-x=0

如果當(dāng)函數(shù)sinx-x在x>0是減函數(shù),那么它一定<在0點(diǎn)的值0,求導(dǎo)數(shù)有sinx-x的導(dǎo)數(shù)是cosx-1

因?yàn)閏osx-1≤0

所以sinx-x是減函數(shù),它在0點(diǎn)有最大值0,知sinx

再證x-x3/6

對(duì)于函數(shù)x-x3/6-sinx

當(dāng)x=0時(shí),它的值為0

對(duì)它求導(dǎo)數(shù)得

1-x2/2-cosx如果它<0那么這個(gè)函數(shù)就是減函數(shù),它在0點(diǎn)的值是最大值了。

要證x2/2+cosx-1>0x>0

再次用到函數(shù)關(guān)系,令x=0時(shí),x2/2+cosx-1值為0

再次對(duì)它求導(dǎo)數(shù)得x-sinx

根據(jù)剛才證明的當(dāng)x>0sinx

x2/2-cosx-1是減函數(shù),在0點(diǎn)有最大值0

x2/2-cosx-1<0x>0

所以x-x3/6-sinx是減函數(shù),在0點(diǎn)有最大值0

得x-x3/6

利用函數(shù)導(dǎo)數(shù)單調(diào)性證明不等式X-X2>0,X∈(0,1)成立

令f(x)=x-x2x∈

則f'(x)=1-2x

當(dāng)x∈時(shí),f'(x)>0,f(x)單調(diào)遞增

當(dāng)x∈時(shí),f'(x)<0,f(x)單調(diào)遞減

故f(x)的最大值在x=1/2處取得,最小值在x=0或1處取得

f(0)=0,f(1)=0

故f(x)的最小值為零

故當(dāng)x∈(0,1)f(x)=x-x2>0。

i、m、n為正整數(shù),且1

第五篇:談利用導(dǎo)數(shù)證明不等式.

談利用導(dǎo)數(shù)證明不等式

數(shù)學(xué)組

鄒黎華

在高考試題中,不等式的證明往往與函數(shù)、導(dǎo)數(shù)、數(shù)列的內(nèi)容綜合,屬于在知識(shí)網(wǎng)絡(luò)的交匯處設(shè)計(jì)的試題,有一定的綜合性和難度,突出體現(xiàn)對(duì)理性思維的考查,特別是利用高中新增內(nèi)容的導(dǎo)數(shù)來(lái)證明不等式,體現(xiàn)了導(dǎo)數(shù)的工具,也是與高等數(shù)學(xué)接軌的有力點(diǎn)。本文通過(guò)一些實(shí)例,來(lái)說(shuō)明利用導(dǎo)數(shù)增證明不等式的基本方法。

例1.已知x>0,求證:x>ln(1+x)

分析:設(shè)f(x)=x-lnx。x?[0,+????紤]到f(0)=0,要證不等式變?yōu)椋簒>0時(shí),f(x)>f(0),這只要證明:

f(x)在區(qū)間[0,??)是增函數(shù)。

證明:令:f(x)=x-lnx,容易看出,f(x)在區(qū)間[0,??)上可導(dǎo)。

且limf(x)?0?f(0)?x?0

由f'(x)?1?1x

可得:當(dāng)x?(0,??)時(shí),f'(x)?f(0)?0 ?x?1x?

1即x-lnx>0,所以:x>0時(shí),x>lnx

評(píng)注:要證明一個(gè)一元函數(shù)組成的不等式成立,首先根據(jù)題意構(gòu)造出一個(gè)

函數(shù)(可以移項(xiàng),使右邊為零,將移項(xiàng)后的左式設(shè)為函數(shù)),并利 用導(dǎo)數(shù)判斷所設(shè)函數(shù)的單調(diào)性,再根據(jù)函數(shù)單調(diào)性的定義,證明要 證的不等式。

例2:(2001年全國(guó)卷理20)已知i,m,n是正整數(shù),且1?i?m?n

證明:(1?m)n?(1?n)m

分析:要證(1?m)n?(1?n)m成立,只要證

ln(1?m)n?ln(1?n)m

11ln(1?m)?ln(1?n)成立。因?yàn)閙

x1111'

證明:設(shè)函數(shù)f(x)?ln(1?x),則f(x)??2ln(1?x)??

xx1?xx1x'?ln(1?x)] 即:f(x)?2[x1?xx?1,ln(1?x)?ln3?1 因?yàn)椋簒?2,0?1?x即要證所以:f(x)?0,所以f(x)在[2,??)是減函數(shù),而m?n 所以f(m)?f(n),即n''11ln(1?m)?ln(1?n); mnm從而:(1?m)?(1?n)。

評(píng)注:這類非明顯一元函數(shù)式的不等式證明問(wèn)題,首先變換成某一個(gè)一元函數(shù)式分別在兩個(gè)不同點(diǎn)處的函數(shù)值的大小比較問(wèn)題,只要將這個(gè)函數(shù)式找到了,通過(guò)設(shè)函數(shù),求導(dǎo)判斷它的單調(diào)性,就可以解決不等式證明問(wèn)題。難點(diǎn)在于找這個(gè)一元函數(shù)式,這就是“構(gòu)造函數(shù)法”,通過(guò)這類數(shù)學(xué)方法的練習(xí),對(duì)培養(yǎng)分析問(wèn)題、解決問(wèn)題的能力是有很大好處的,這也是進(jìn)一步學(xué)習(xí)高等數(shù)學(xué)所需要的。

例3.(2004年全國(guó)卷理工22題)已知函數(shù)f(x)?ln(1?x)?x,g(x)?xlnx,設(shè)0?a?b

證明:0?g(a)?g(b)?2g(a?b)?(b?a)ln2 2證明:設(shè)g(x)?xlnx,g'(x)?lnx?1 設(shè)F(x)?g(a)?g(x)?2g(a?x)2則F'(x)?g'(x)?2[g(a?xa?x)]?lnx?ln22

當(dāng)0?x?a時(shí),F(xiàn)'(x)?0,當(dāng)x?a時(shí),F(xiàn)'(x)?0 因此,F(xiàn)(x)

在區(qū)間(0,a)內(nèi)是減函數(shù),在區(qū)間[a,??)內(nèi)為增函數(shù),于是在x?a 時(shí),F(xiàn)(x)有最小值F(a)?0又b?a,所以0?g(a)?g(b)?2g(a?b)2設(shè)G(x)?g(a)?g(x)?2g(a?x)?(x?a)ln2,則G'(x)?lnx?lna?x?ln2?lnx?ln(a?x)2當(dāng)x?0時(shí),G'(x)?0,因此G(x)在區(qū)間(0,??)內(nèi)為減函數(shù); 因?yàn)镚(a)?0,b?a,所以G(b)?0,即:g(a)?g(b)?2g(a?b)?(b?a)ln2。2評(píng)注:本題在設(shè)輔助函數(shù)時(shí),考慮到不等式涉及的變量是區(qū)間的兩個(gè)端點(diǎn),因此,設(shè)輔助函數(shù)時(shí)就把其中一個(gè)端點(diǎn)設(shè)為自變量,范例中選用右

端點(diǎn),讀者不妨設(shè)為左端點(diǎn)試一試,就更能體會(huì)到其中的奧妙了。

通過(guò)以上例題,我們可以體會(huì)到用導(dǎo)數(shù)來(lái)證明不等式的基本要領(lǐng)和它的簡(jiǎn)捷。總之,利用導(dǎo)數(shù)證明不等式的關(guān)鍵是“構(gòu)造函數(shù)”,解決問(wèn)題的依據(jù)是函數(shù)的單調(diào)性,這一方法在高等數(shù)學(xué)中應(yīng)用的非常廣泛,因此,希望同學(xué)門(mén)能認(rèn)真對(duì)待,并通過(guò)適當(dāng)?shù)木毩?xí)掌握它。

下載導(dǎo)數(shù)證明不等式word格式文檔
下載導(dǎo)數(shù)證明不等式.doc
將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
點(diǎn)此處下載文檔

文檔為doc格式


聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

相關(guān)范文推薦

    導(dǎo)數(shù)證明不等式的幾個(gè)方法

    導(dǎo)數(shù)證明不等式的幾個(gè)方法 1、直接利用題目所給函數(shù)證明(高考大題一般沒(méi)有這么直接) 已知函數(shù)f(x)?ln(x?1)?x,求證:當(dāng)x??1時(shí),恒有 1?1?ln(x?1)?x x?1 如果f(a)是函數(shù)f(x)在區(qū)間上的最大(?。┲?.....

    2014-2-30導(dǎo)數(shù)證明不等式答案

    1、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值和最值,再由單調(diào)性來(lái)證明不等式是函數(shù)、導(dǎo)數(shù)、不等式綜合中的一個(gè)難點(diǎn),也是近幾年高考的熱點(diǎn)。2、解題技巧是構(gòu)造輔助函數(shù),把不等式的證明轉(zhuǎn)化......

    利用導(dǎo)數(shù)證明不等式(全文5篇)

    克維教育(82974566)中考、高考培訓(xùn)專家鑄就孩子輝煌的未來(lái)函數(shù)與導(dǎo)數(shù)(三)核心考點(diǎn)五、利用導(dǎo)數(shù)證明不等式一、函數(shù)類不等式證明函數(shù)類不等式證明的通法可概括為:證明不等式f(x)?g(......

    構(gòu)造函數(shù),結(jié)合導(dǎo)數(shù)證明不等式

    構(gòu)造函數(shù),結(jié)合導(dǎo)數(shù)證明不等式 摘 要:運(yùn)用導(dǎo)數(shù)法證明不等式首先要構(gòu)建函數(shù),以函數(shù)作為載體可以用移項(xiàng)作差,直接構(gòu)造;合理變形,等價(jià)構(gòu)造;分析(條件)結(jié)論,特征構(gòu)造;定主略從,減元構(gòu)造;挖掘......

    第五講 利用導(dǎo)數(shù)證明不等式

    利用導(dǎo)數(shù)證明不等式的兩種通法 利用導(dǎo)數(shù)證明不等式是高考中的一個(gè)熱點(diǎn)問(wèn)題,利用導(dǎo)數(shù)證明不等式主要有兩種通法,即函數(shù)類不等式證明和常數(shù)類不等式證明。下面就有關(guān)的兩種通法......

    導(dǎo)數(shù)與不等式證明(絕對(duì)精華)(合集5篇)

    二輪專題 (十一) 導(dǎo)數(shù)與不等式證明 【學(xué)習(xí)目標(biāo)】 1. 會(huì)利用導(dǎo)數(shù)證明不等式. 2. 掌握常用的證明方法. 【知識(shí)回顧】 一級(jí)排查:應(yīng)知應(yīng)會(huì) 1.利用導(dǎo)數(shù)證明不等式要考慮構(gòu)造新的函數(shù)......

    用導(dǎo)數(shù)證明不等式(共5篇)

    用導(dǎo)數(shù)證明不等式最基本的方法就是將不等式的的一邊移到另一邊,然后將這個(gè)式子令為一個(gè)函數(shù)f(x).對(duì)這個(gè)函數(shù)求導(dǎo),判斷這個(gè)函數(shù)這各個(gè)區(qū)間的單調(diào)性,然后證明其最大值(或者是最小......

    構(gòu)造函數(shù),利用導(dǎo)數(shù)證明不等式

    構(gòu)造函數(shù),利用導(dǎo)數(shù)證明不等式湖北省天門(mén)中學(xué)薛德斌2010年10月例1、設(shè)當(dāng)x??a,b?時(shí),f/(x)?g/(x),求證:當(dāng)x??a,b?時(shí),f(x)?f(a)?g(x)?g(a).例2、設(shè)f(x)是R上的可導(dǎo)函數(shù),且當(dāng)x?1時(shí)(x?1)f/(x)?0.求證:(1)f(......

主站蜘蛛池模板: 综合成人亚洲网友偷自拍| 日韩人妻无码免费视频一二区| 久久人与动人物a级毛片| 中文字幕乱码无码人妻系列蜜桃| 人妻系列av无码专区| 中出人妻中文字幕无码| 青青草国产精品欧美成人| 国内精品人妻无码久久久影院导航| 亚洲av无码乱码在线观看富二代| 亚洲一区波多野结衣在线| 最新欧美精品一区二区三区| 亚洲日本乱码中文在线电影| 国产精品亚洲专区无码电影| 无码免费毛片手机在线| 亚洲女人自熨在线视频| 欧美激情a∨在线视频播放| 亚洲成a人片77777群色| 40岁成熟女人牲交片| 国产在线拍偷自揄拍无码| 久久国产高潮流白浆免费观看| 久久综合九色综合网站| 久久亚洲精品无码av| 菠萝菠萝蜜午夜视频在线播放观看| av无码中文字幕不卡一区二区三区| 亚洲伊人久久大香线蕉| 久久久久久国产精品无码下载| 国产日本精品视频在线观看| 国产精品久久久久久成人影院| 国产精品a免费一区久久电影| 99尹人香蕉国产免费天天| 亚洲综合最新无码2020av| 体验区试看120秒啪啪免费| 日韩a人毛片精品无人区乱码| 亚洲aⅴ天堂av天堂无码麻豆| 亚洲综合一区无码精品| 欧美金发尤物大战黑人| 国产精品一区二区在线观看| 国产精品欧美成人| 成人麻豆精品激情视频在线观看| 精品国内综合一区二区| 无码亲近乱子伦免费视频在线观看|