第一篇:《正弦定理和余弦定理》測試卷
《正弦定理和余弦定理》學習成果測評
基礎達標:
1.在△ABC中,a=18,b=24,∠A=45°,此三角形解的情況為()
A.一個解B.二個解C.無解D.無法確定
2.在△ABC
中,若a?2,b?c??A的度數是()
A.30°B.45°C.60°D.75°
2223.ΔABC中,若a=b+c+bc,則∠A=()
A.60?B.45?C.120?D.30?
4.邊長為5、7、8的三角形的最大角與最小角之和為()
A.90°B.120°C.135°D.150°
5.在△ABC中,已知a?3,b?2,B=45?.求A、C及c.06.在?ABC中,若B?
45,c?
b?A.7.在?ABC中,已知a?134.6cm,b?87.8cm,c?161.7cm,解三角形.8.在?ABC中,若a2?b2?c2?bc,求A.能力提升:
AB的取值范圍是()AC
A.(0,2)B.(2,2)C.(2,)D.(,2)9.銳角ΔABC中,若C=2B,則
10.已知在△ABC中,sinA:sinB:sinC=3:2:4,那么cosC的值為()A.?
14B.1
422ABC.?D.銳角ΔABC中,若C=2B,則的取值范圍是 33AC
11.等腰三角形底邊長為6,一條腰長12,則它的外接圓半徑為()
12.在?ABC中,已知三邊a、b、c滿足?a?b?c??a?b?c??3ab,則C=()
A.15B.30C.45D.60
13.鈍角?ABC的三邊長為連續自然數,則這三邊長為()。
A、1、2、3B、2、3、4C、3、4、5D、4、5、6 ????
sinC2?(6?1),則∠A=_______.sinB
5a?b?c?_____.15.在△ABC中,∠A=60°,b=1,c=4,則sinA?sinB?sinC14.在ΔABC中,BC=3,AB=2,16.在△ABC中,∠B=120°,sinA:sinC=3:5,b=14,則a,c長為_____.綜合探究:
17.已知鈍角?ABC的三邊為:a?k,b?k?2,c?k?4,求實數k的取值范圍.a2?b2sin(A?B)?18.在?ABC中,角A、B、C的對邊分別為a、b、c,證明:.2sinCc
參考答案:
基礎達標:
1.B2.A3.C4.B
5.解析:
asinB3sin45?解法1:由正弦定理得:sinA? ??b22
∴∠A=60?或120?
bsinC2sin75?6?2當∠A=60?時,∠C=75?,c?; ??sinB2sin45?
bsinC2sin15?6?2當∠A=120?時,∠C=15?,c?.???sinB2sin45
解法2:設c=x,由余弦定理b?a?c?2accosB 將已知條件代入,整理:x?x?1?0 解之:x?22226?2 2
222?22)?3b?c?a1?3??2??? 當c?時,cosA?2bc26?22(?1)22?2?22?(從而∠A=60?,∠C=75?; ?2時,同理可求得:∠A=120?,∠C=15?.2
bc?6.∵,sinBsinC當c?
csinBsin45???∴sinC?,b∵0?C?180,∴C?60或C?120
∴當C?60時,A?75; ?????
當C?120時,A?15,;
所以A?75或A?15.
7.由余弦定理的推論得: ????
b2?c2?a287.82?161.72?134.62
?0.5543,?cosA?A?56020?;
c2?a2?b2134.62?161.72?87.82
? cosB?B?32053?;
? C?1800?(A?B)?1800?(56020??32053)
8.∵bc?b2?c2?a2,?0.8398,b2?c2?a21∴由余弦定理的推論得:cosA?? ∵0?A?180,∴A?60.能力提升:
9.C10.A11.C
12.D.由?a?b?c??a?b?c??3ab,得a?b?2ab?c?3ab 222??
a2?b2?c21?,∴由余弦定理的推論得:cosC?2ab2
∵0?C?180,∴C?60.13.B;只需要判定最大角的余弦值的符號即可。
選項A不能構成三角形; ??
22?32?421???0,故該三角形為鈍角三角形; 選項B中最大角的余弦值為2?2?34
32?42?52
?0,故該三角形為直角三角形; 選項C中最大角的余弦值為:2?4?3
42?52?621??0,故該三角形為銳角三角形.選項D中最大角的余弦值為2?4?58
14.120?
1516.4綜合探究:
17.∵?ABC中邊a?k,b?k?2,c?k?4,∴a?k?0,且邊c最長,∵?ABC為鈍角三角形
∴當C為鈍角時 a2?b2?c2
?0,∴cosC?2ab
∴a?b?c?0, 即a?b?c
∴k2?(k?2)2?(k?4)2, 解得?2?k?6,又由三角形兩邊之和大于第三邊:k?(k?2)?k?4,得到k?2,故實數k的取值范圍:2?k?6.18.證法一:由正弦定理得: 222222
a2?b2sin2A?sin2Bcos2B?cos2A?? c2sin2C2sin2C
=?2sin(B?A)sin(B?A)sinCsin(A?B)sin(A?B)==.222sinCsinCsinC
222證法二:由余弦定理得a=b+c-2bccosA,a2?b2c2?2bccosA2b??1??cosA,則22ccc
又由正弦定理得bsinB?,csinC
a2?b22sinBsinC?2sinBcosA?1??cosA?∴ 2csinCsinC
sin(A?B)?2sinBcosA sinC
sinAcosB?sinBcosAsin(A?B)??.sinCsinC
sin(A?B)sinAcosB?sinBcosA?證法三:.sinCsinC
sinAasinBb?,?,由正弦定理得sinCcsinCc
sin(A?B)acosB?bcosA?∴,sinCc?
又由余弦定理得
a2?c2?b2b2?c2?a2a??b?sin(A?B)?sinCc
(a2?c2?b2)?(b2?c2?a2)? 22c
a2?b2
?.c2
第二篇:正弦定理余弦定理[推薦]
正弦定理 余弦定理
一、知識概述
主要學習了正弦定理、余弦定理的推導及其應用,正弦定理是指在一個三角形中,各邊和它所對角的正弦的比相等.即余弦定理是指三角形任何一邊的平方等于其它兩邊平方的和減去這兩邊與它們夾角的余弦的積的兩倍,即a2=b2+c2-2bccosA,b2=c2+a2-2cacosB, c2=a2+b2-2abcosC.通過兩定理的學習,掌握正弦定理和余弦定理,并能利用這兩個定理去解斜三角形,學會用計算器解決解斜三角形的計算問題,熟悉兩定理各自解決不同類型的解三角形的問題.認識在三角形中,已知兩邊和其中一邊的對角解三角形,產生多解的原因,并能準確判斷解的情況.
二、重點知識講解
1、三角形中的邊角關系
在△ABC中,設角A、B、C的對邊分別為a、b、c,則有
(1)角與角之間的關系:A+B+C=180°;
(2)邊與角之間的關系:
正弦定理:
余弦定理:a2=b2+c2-2bccosA
b2=c2+a2-2accosB
c2=a2+b2-2abcosC
射影定理:a=bcosC+ccosB
b=ccosA+acosC c=acosB+
bcosA
2、正弦定理的另三種表示形式:
3、余弦定理的另一種表示形式:
4、正弦定理的另一種推導方法——面積推導法
在△ABC中,易證明再在上式各邊同時除
以在此方法推導過程中,要注意對
面積公式的應用.
例
1、在△ABC中,ab=60, sinB=cosB.面積S=15,求△ABC的三個內角. 分析:
在正弦定理中,由
進而可以利用三角函數之間的關系進行解題. 解:
可以把面積進行轉化,由公式
∴C=30°或150°
又sinA=cosB∴A+B=90°或A-B=90°顯然A+B=90°不可能成立
當C=30°時,由A+B=150°,A-B=90°得A=120°B=30°
當C=150°時,由A-B=90°得B為負值,不合題意故所求解為A=120°,B=30°,C=30°.例
2、在△ABC中,a、b、c分別是內角A、B、C的外邊,若b=2a,B=A+60°,求A的值. 分析:
把題中的邊的關系b=2a利用正弦定理化為角的關系,2RsinB=4RsinA,即sinB=2sinA. 解:
∵B=A+60°
∴sinB=sin(A+60°)=sinAcos60°+cosAsin60°
=
又∵b=2a
∴2RsinB=4RsinA,∴sinB=2sinA
例
3、在△ABC中,若tanA︰tanB=a2︰b2,試判斷△ABC的形狀. 分析:
三角形分類是按邊或角進行的,所以判定三角形形狀時一般要把條件轉化為邊之間關系或角之間關系式,從而得到諸如a+b=c,a+b>c(銳角三角形),a+b<c(鈍角三角形)或sin(A-B)=0,sinA=sinB,sinC=1或cosC=0等一些等式,進而判定其形狀,但在選擇轉化為邊或是角的關系上,要進行探索.
解法一:由同角三角函數關系及正弦定理可推得,∵A、B為三角形的內角,∴sinA≠0,sinB≠0.
.
∴2A=2B或2A=π-2B,∴A=B或A+B=所以△ABC為等腰三角形或直角三角形.解法二:由已知和正弦定理可得:
整理得a-ac+bc-b=0,即(a-b)(a+b-c)=0,于是a=b或a+b-c=0,∴a=b或a+b=c.∴△ABC是等腰三角形或直角三角形.
5、利用正弦定理和余弦定理判定三角形形狀,此類問題主要考查邊角互化、要么同時化邊為角,要么同時化角為邊,然后再找出它們之間的關系,注意解答問題要周密、嚴謹.
例
4、若acosA=bcosB,試判斷△ABC的形狀. 分析:
本題既可以利用正弦定理化邊為角,也可以利用余弦定理化角為邊. 解:
解法一:由正弦定理得:2RsinAcosA=2RsinBcosB∴sin2A=sin2B
∴2A=2B或2A+2B=180°∴A=B或A+B=90°
故△ABC為等腰三角形或直角三角形解法二:由余弦定理得
∴a(b+c-a)=b(a+c-b)∴(a-b)(a+b-c)=0∴a=b或a+b=c
故△ABC為等腰三角形或直角三角形.
6、正弦定理,余弦定理與函數之間的相結合,注意運用方程的思想.
例
5、如圖,設P是正方形ABCD的一點,點P到頂點A、B、C的距離分別是
1,2,3,求正方形的邊長.
分析:
本題運用方程的思想,列方程求未知數. 解:
設邊長為x(1 設x=t,則1 -5)=16t 三、難點剖析 1、已知兩邊和其中一邊的對角,解三角形時,將出現無解、一解和兩解的情況,應分情況予以討論. 下圖即是表示在△ABC中,已知a、b和A時解三角形的各種情況. (1)當A為銳角時(如下圖),(2)當A為直角或鈍角時(如下圖),也可利用正弦定理進行討論. 如果sinB>1,則問題無解; 如果sinB=1,則問題有一解; 如果求出sinB<1,則可得B的兩個值,但要通過“三角形內角和定理”或“大邊對大角”等三角形有關性質進行判斷. 2、用方程的思想理解和運用余弦定理:當等式a2=b2+c2-2bccosA中含有未知數時,等式便成為方程.式中有四個量,知道任意三個,便可以解出另一個,運用此式可以求a或b或c或cosA. 3、向量方法證明三角形中的射影定理 在△ABC中,設三內角A、B、C的對邊分別是a、b、c. 4、正弦定理解三角形可解決的類型:(1)已知兩角和任一邊解三角形; (2)已知兩邊和一邊的對角解三角形. 5、余弦定理解三角形可解決的類型:(1)已知三邊解三角形; (2)已知兩邊和夾角解三角形. 6、三角形面積公式: 例 6、不解三角形,判斷三角形的個數. ①a=5,b=4,A=120° ②a=30,b=30,A=50° ③a=7,b=14,A=30° ④a=9,b=10,A=60° ⑤a=6,b=9,A=45° ⑥c=50,b=72,C=135° 解析: ①a>b,A=120°,∴△ABC有一解.②a=b,A=50°<90°,∴△ABC有一解. ③a ④a0 ∴△ABC有兩解. ⑤b>c,C=45°,∴△ABC無解(不存在).⑥b>c,C=135°>90°,又由b>c知∠B>∠C=135°,這樣B+C>180°,∴△ABC無解. 正弦定理和余弦定理練習 一、選擇題 1、已知?ABC中,a?4,b?43,A?300,則B=() A.300B.300或1500 C.600D.600或12002、已知?ABC中,AB?6,A?300,B?1200,則S?ABC?() A.9B.18C.93D.1833、已知?ABC中,a:b:c?1:3:2,則A:B:C?() A.1:2:3B.2:3:1C.1:3:2D.3:1:24、已知?ABC中,sinA:sinB:sinC?k:(k?1):2k(k?0),則k的取值范圍是() A.?2,???B.???,0?C.二、填空題 1、已知?ABC中,B?300,AB?23,AC?2,則S?ABC? 2、已知?ABC中,b?2csinB,則角 3、設?ABC的外接圓的半徑為R,且AB?4,C?450,則R= 4、已知S?ABC?32,b?2,c?3,則角1??,0???2??D.?1?,????2?? A= 5、已知?ABC中,B?450,C?600,a?2(3?1),則S?ABC? 三、簡答題 01、在?ABC中,若B?30,AB?23,AC?2,求S?ABC.2、已知?ABC中,C?60,BC?a,AC?b,a?b?6.(1)寫出?ABC的面積S與a的函數關系式;(2)當a等于多少時,Smax?并求出Smax.23、已知?ABC中,a?a?2(b?c),a?2b?2c?3,若sinC:sinA?4:,求a,b,c.04、a,b,c是?ABC的三內角A,B,C的對邊,4sin (1)求角A;(2)若a?3,b?c?3,2B?C2?cos2A?72.求b,c的值. 第十九教時 教材:正弦定理和余弦定理的復習《教學與測試》76、77課 目的:通過復習、小結要求學生對兩個定理的掌握更加牢固,應用更自如。過程: 一、復習正弦定理、余弦定理及解斜三角形 解之:x?6?2 22?(6?22)?3b?c?a1?3?6?22??? 當c?時cosA?222 二、例一 證明在△ABC中asinA=bsinB=csinC=2R,其中R是三角形外接圓半徑 證略 見P159 注意:1.這是正弦定理的又一種證法(現在共用三種方法證明)2.正弦定理的三種表示方法(P159)例二 在任一△ABC中求證:a(sinB?sinC)?b(sinC?sinA)?c(sinA?sinB)?0 證:左邊=2RsinA(sinB?sinC)?2RsinB(sinC?sinA)?2RsinC(sinA?sinB) =2R[sinAsinB?sinAsinC?sinBsinC?sinBsinA?sinCsinA?sinCsinB]=0=右邊 例三 在△ABC中,已知a?3,b?2,B=45 求A、C及c 解一:由正弦定理得:sinA?asinB3sin45?3b?2?2 ∵B=45<90 即b ?當A=60時C=7c?bsinC2sinsinB?756?2sin45??2 當A=120時C=15 c?bsinC2sin15?6sinB?sin45???22 解二:設c=x由余弦定理 b2?a2?c2?2accosB 將已知條件代入,整理:x2?6x?1?0 22bc2?2?6?22(3?1)22從而A=60 C=75 當c?6?22時同理可求得:A=120 C=15 例四 試用坐標法證明余弦定理 證略見P161 例五 在△ABC中,BC=a, AC=b, a, b是方程x2?23x?2?0的兩個根,且 2cos(A+B)=1 求 1角C的度數 2AB的長度 3△ABC的面積 解: 1cosC=cos[ (A+B)]= cos(A+B)=∴C=120 2由題設:??a?b?23?a?b?2 ∴AB 2=AC2 +BC 2AC?BC?osC?a2?b2?2abcos120? ?a2?b2?ab?(a?b)2?ab?(23)2?2?10 即AB=10 3S1113△ABC=2absinC?2absin120??2?2?2?32 例六 如圖,在四邊形ABCD中,已知AD CD, AD=10, AB=14,BDA=60BCD=135 求BC的長 D C 解:在△ABD中,設BD=x 則BA2?BD2?AD2?2BD?AD?cos?BDA A B ,即142?x2?102?2?10x?cos60? 整理得:x2?10x?96?0 解之:x1?16 x2??6(舍去)由余弦定理: BCBD16???sin30?82 ∴BC??sin?CDBsin?BCDsin135 例七(備用)△ABC中,若已知三邊為連續正整數,最大角為鈍角,1求最大角 2 求以此最大角為內角,夾此角兩邊之和為4的平行四邊形的最大面積。解:1設三邊a?k?1,b?k,c?k?1 k?N?且k?1 a2?b2?c2k?4∵C為鈍角 ∴cosC???0解得1?k?4 2ac2(k?1)∵k?N? ∴k?2或3 但k?2時不能構成三角形應舍去 1當k?3時 a?2,b?3,c?4,cosC??,C?109? 42設夾C角的兩邊為x,y x?y?4 1515??(?x2?4x)44S?xysinC?x(4?x)?當x?2時S最大=15 三、作業:《教學與測試》76、77課中練習 a2?b2b2?c2c2?a2???0 補充:1.在△ABC中,求證: cosA?cosBcosB?cosCcosC?cosAD A 2.如圖ABBCD=75 BC CD=33 BDC=45 ACB=30 求AB的長(112) B C 《正弦定理、余弦定理》教學反思 我對教學所持的觀念是:數學學習的主要目的是:“在掌握知識的同時,領悟由其內容反映出來的數學思想方法,要在思維能力、情感態度與價值觀等多方面得到進步和發展。”數學學習的有效方式是“主動、探究、合作。”現代教育應是開放性教育,師生互動的教育,探索發現的教育,充滿活力的教育。可是這些說起來容易,做起來卻困難重重,平時我在教學過程中迫于升學的壓力,課堂任務完不成的擔心,總是顧慮重重,不敢大膽嘗試,畏首畏尾,放不開,走不出以知識傳授為主的課堂教學形式,教師講的多,學生被動的聽、記、練,教師唱獨角戲,師生互動少,這種形式單一的教法大大削弱了學生主動學習的興趣,壓抑了學生的思維發展,從而成績無法大幅提高。今后要改變這種狀況,我想在課堂上多給學生發言機會、板演機會,創造條件,使得學生總想在老師面前同學面前表現自我,讓學生在思維運動中訓練思維,讓學生到前面來講,促進學生之間聰明才智的相互交流。 三角形中的幾何計算的主要內容是利用正弦定理和余弦定理解斜三角形,是對正、余弦定理的拓展和強化,可看作前兩節課的習題課。本節課的重點是運用正弦定理和余弦定理處理三角形中的計算問題,難點是如何在理解題意的基礎上將實際問題數學化。在求解問題時,首先要確定與未知量之間相關聯的量,把所求的問題轉化為由已知條件可直接求解的量上來。為了突出重點,突破難點,結合學生的學習情況,我是從這幾方面體現的:我在這節課里所選擇的例題就考常出現的三種題型:解三形、判斷三角形形狀及三角形面積,題目都是很有代表性的,并在學生練習過程中將例題變形讓學生能觀察到此類題的考點及易錯點。這節課我試圖根據新課標的精神去設計,去進行教學,試圖以“問題”貫穿我的整個教學過程,努力改進自己的教學方法,讓學生的接受式學習中融入問題解決的成份,企圖把講授式與活動式教學有機整合,希望在學生鞏固基礎知識的同時,能夠發展學生的創新精神和實踐能力,但我覺得自己還有如下幾點做得還不夠:①課堂容量中體來說比較適中,但由于學生的整體能力比較差,沒有給出一定的時間讓同學們進行討論,把老師自己認為難的,學生不易懂得直接讓優等生進行展示,學生缺乏對這幾個題目事先認識,沒有引起學生的共同參與,效果上有一定的折扣;②沒有充分挖掘學生探索解題思路,對學生的解題思維只給出了點評,而沒有引起學生對這一問題的深入研究,例如對于運用正弦定理求三角形的角的時候,出了給學生們常規方法外,還應給出老教材中關于三角形個數的方法,致少應介紹一下;③沒有很好對學生的解題過程和方法進行點評,沒起到“畫龍點睛”的作用。④ 00第三篇:正弦定理余弦定理練習
第四篇:正弦定理和余弦定理的復習
第五篇:《正弦定理和余弦定理》教學反思