久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

高數定理定義總結(共五則范文)

時間:2019-05-12 08:16:04下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關的《高數定理定義總結》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《高數定理定義總結》。

第一篇:高數定理定義總結

高數定理定義總結

第一章函數與極限

1、函數的有界性在定義域內有f(x)≥K1則函數f(x)在定義域上有下界,K1為下界;如果有f(x)≤K2,則有上界,K2稱為上界。函數f(x)在定義域內有界的充分必要條件是在定義域內既有上界又有下界。

2、數列的極限定理(極限的唯一性)數列{xn}不能同時收斂于兩個不同的極限。

定理(收斂數列的有界性)如果數列{xn}收斂,那么數列{xn}一定有界。

如果數列{xn}無界,那么數列{xn}一定發散;但如果數列{xn}有界,卻不能斷定數列{xn}一定收斂,例如數列1,-1,1,-1,(-1)n+1…該數列有界但是發散,所以數列有界是數列收斂的必要條件而不是充分條件。

定理(收斂數列與其子數列的關系)如果數列{xn}收斂于a,那么它的任一子數列也收斂于a.如果數列{xn}有兩個子數列收斂于不同的極限,那么數列{xn}是發散的,如數列1,-1,1,-1,(-1)n+1…中子數列{x2k-1}收斂于1,{xnk}收斂于-1,{xn}卻是發散的;同時一個發散的數列的子數列也有可能是收斂的。

3、函數的極限函數極限的定義中0<|x-x0|表示x≠x0,所以x→x0時f(x)有沒有極限與f(x)在點x0有沒有定義無關。

定理(極限的局部保號性)如果lim(x→x0)時f(x)=A,而且A>0(或A<0),就存在著點那么x0的某一去心鄰域,當x在該鄰域內時就有f(x)>0(或f(x)>0),反之也成立。

函數f(x)當x→x0時極限存在的充分必要條件是左極限右極限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等則limf(x)不存在。

一般的說,如果lim(x→∞)f(x)=c,則直線y=c是函數y=f(x)的圖形水平漸近線。如果lim(x→x0)f(x)=∞,則直線x=x0是函數y=f(x)圖形的鉛直漸近線。

4、極限運算法則定理有限個無窮小之和也是無窮小;有界函數與無窮小的乘積是無窮小;常數與無窮小的乘積是無窮小;有限個無窮小的乘積也是無窮小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b.5、極限存在準則兩個重要極限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夾逼準則如果數列{xn}、{yn}、{zn}滿足下列條件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,對于函數該準則也成立。

單調有界數列必有極限。

6、函數的連續性設函數y=f(x)在點x0的某一鄰域內有定義,如果函數f(x)當x→x0時的極限存在,且等于它在點x0處的函數值f(x0),即lim(x→x0)f(x)=f(x0),那么就稱函數f(x)在點x0處連續。

不連續情形:

1、在點x=x0沒有定義;

2、雖在x=x0有定義但lim(x→x0)f(x)不存在;

3、雖在x=x0有定義且lim(x→x0)f(x)存在,但lim(x→x0)f(x)≠f(x0)時則稱函數在x0處不連續或間斷。

如果x0是函數f(x)的間斷點,但左極限及右極限都存在,則稱x0為函數f(x)的第一類間斷點(左右極限相等者稱可去間斷點,不相等者稱為跳躍間斷點)。非第一類間斷點的任何間斷點都稱為第二類間斷點(無窮間斷點和震蕩間斷點)。

定理有限個在某點連續的函數的和、積、商(分母不為0)是個在該點連續的函數。

定理如果函數f(x)在區間Ix上單調增加或減少且連續,那么它的反函數x=f(y)在對應的區間Iy={y|y=f(x),x∈Ix}上單調增加或減少且連續。反三角函數在他們的定義域內都是連續的。

定理(最大值最小值定理)在閉區間上連續的函數在該區間上一定有最大值和最小值。如果函數在開區間內連續或函數在閉區間上有間斷點,那么函數在該區間上就不一定有最大值和最小值。

定理(有界性定理)在閉區間上連續的函數一定在該區間上有界,即m≤f(x)≤M.定理(零點定理)設函數f(x)在閉區間[a,b]上連續,且f(a)與f(b)異號(即f(a)×f(b)<0),那么在開區間(a,b)內至少有函數f(x)的一個零點,即至少有一點ξ(a<ξ

推論在閉區間上連續的函數必取得介于最大值M與最小值m之間的任何值。

第二章 導數與微分

1、導數存在的充分必要條件函數f(x)在點x0處可導的充分必要條件是在點x0處的左極限lim(h→-0)[f(x0+h)-f(x0)]/h及右極限lim(h→+0)[f(x0+h)-f(x0)]/h都存在且相等,即左導數f-′(x0)右導數f+′(x0)存在相等。

2、函數f(x)在點x0處可導=>函數在該點處連續;函數f(x)在點x0處連續≠>在該點可導。即函數在某點連續是函數在該點可導的必要條件而不是充分條件。

3、原函數可導則反函數也可導,且反函數的導數是原函數導數的倒數。

4、函數f(x)在點x0處可微=>函數在該點處可導;函數f(x)在點x0處可微的充分必要條件是函數在該點處可導。

第三章 中值定理與導數的應用

1、定理(羅爾定理)如果函數f(x)在閉區間[a,b]上連續,在開區間(a,b)內可導,且在區間端點的函數值相等,即f(a)=f(b),那么在開區間(a,b)內至少有一點ξ(a<ξ

2、定理(拉格朗日中值定理)如果函數f(x)在閉區間[a,b]上連續,在開區間(a,b)內可導,那么在開區間(a,b)內至少有一點ξ(a<ξ

3、定理(柯西中值定理)如果函數f(x)及F(x)在閉區間[a,b]上連續,在開區間(a,b)內可導,且F'(x)在(a,b)內的每一點處均不為零,那么在開區間(a,b)內至少有一點ξ,使的等式[f(b)-f(a)]/[F(b)-F(a)]=f'(ξ)/F'(ξ)成立。

4、洛必達法則應用條件只能用與未定型諸如0/0、∞/∞、0×∞、∞-∞、00、1∞、∞ 0等形式。

5、函數單調性的判定法設函數f(x)在閉區間[a,b]上連續,在開區間(a,b)內可導,那么:(1)如果在(a,b)內f'(x)>0,那么函數f(x)在[a,b]上單調增加;(2)如果在(a,b)內f’(x)<0,那么函數f(x)在[a,b]上單調減少。

如果函數在定義區間上連續,除去有限個導數不存在的點外導數存在且連續,那么只要用方程f'(x)=0的根及f’(x)不存在的點來劃分函數f(x)的定義區間,就能保證f'(x)在各個部分區間內保持固定符號,因而函數f(x)在每個部分區間上單調。

6、函數的極值如果函數f(x)在區間(a,b)內有定義,x0是(a,b)內的一個點,如果存在著點x0的一個去心鄰域,對于這去心鄰域內的任何點x,f(x)f(x0)均成立,就稱f(x0)是函數f(x)的一個極小值。

在函數取得極值處,曲線上的切線是水平的,但曲線上有水平曲線的地方,函數不一定取得極值,即可導函數的極值點必定是它的駐點(導數為0的點),但函數的駐點卻不一定是極值點。

定理(函數取得極值的必要條件)設函數f(x)在x0處可導,且在x0處取得極值,那么函數在x0的導數為零,即f'(x0)=0.定理(函數取得極值的第一種充分條件)設函數f(x)在x0一個鄰域內可導,且f’(x0)=0,那么:(1)如果當x取x0左側臨近的值時,f'(x)恒為正;當x去x0右側臨近的值時,f’(x)恒為負,那么函數f(x)在x0處取得極大值;(2)如果當x取x0左側臨近的值時,f'(x)恒為負;當x去x0右側臨近的值時,f’(x)恒為正,那么函數f(x)在x0處取得極小值;(3)如果當x取x0左右兩側臨近的值時,f'(x)恒為正或恒為負,那么函數f(x)在x0處沒有極值。

定理(函數取得極值的第二種充分條件)設函數f(x)在x0處具有二階導數且f'(x0)=0,f''(x0)≠0那么:(1)當f''(x0)<0時,函數f(x)在x0處取得極大值;(2)當f''(x0)>0時,函數f(x)在x0處取得極小值;駐點有可能是極值點,不是駐點也有可能是極值點。

7、函數的凹凸性及其判定設f(x)在區間Ix上連續,如果對任意兩點x1,x2恒有f[(x1+x2)/2]<[f(x1)+f(x1)]/2,那么稱f(x)在區間Ix上圖形是凹的;如果恒有f[(x1+x2)/2]>[f(x1)+f(x1)]/2,那么稱f(x)在區間Ix上圖形是凸的。

定理設函數f(x)在閉區間[a,b]上連續,在開區間(a,b)內具有一階和二階導數,那么(1)若在(a,b)內f'’(x)>0,則f(x)在閉區間[a,b]上的圖形是凹的;(2)若在(a,b)內f'’(x)<0,則f(x)在閉區間[a,b]上的圖形是凸的。

判斷曲線拐點(凹凸分界點)的步驟(1)求出f'’(x);(2)令f'’(x)=0,解出這方程在區間(a,b)內的實根;(3)對于(2)中解出的每一個實根x0,檢查f'’(x)在x0左右兩側鄰近的符號,如果f'’(x)在x0左右兩側鄰近分別保持一定的符號,那么當兩側的符號相反時,點(x0,f(x0))是拐點,當兩側的符號相同時,點(x0,f(x0))不是拐點。

在做函數圖形的時候,如果函數有間斷點或導數不存在的點,這些點也要作為分點。

第四章 不定積分

1、原函數存在定理定理如果函數f(x)在區間I上連續,那么在區間I上存在可導函數F(x),使對任一x∈I都有F'(x)=f(x);簡單的說連續函數一定有原函數。

分部積分發如果被積函數是冪函數和正余弦或冪函數和指數函數的乘積,就可以考慮用分部積分法,并設冪函數和指數函數為u,這樣用一次分部積分法就可以使冪函數的冪降低一次。如果被積函數是冪函數和對數函數或冪函數和反三角函數的乘積,就可設對數和反三角函數為u.2、對于初等函數來說,在其定義區間上,它的原函數一定存在,但原函數不一定都是初等函數。

第五章 定積分

1、定積分解決的典型問題(1)曲邊梯形的面積(2)變速直線運動的路程

2、函數可積的充分條件定理設f(x)在區間[a,b]上連續,則f(x)在區間[a,b]上可積,即連續=>可積。

定理設f(x)在區間[a,b]上有界,且只有有限個間斷點,則f(x)在區間[a,b]上可積。

3、定積分的若干重要性質性質如果在區間[a,b]上f(x)≥0則∫abf(x)dx≥0.推論如果在區間[a,b]上f(x)≤g(x)則∫abf(x)dx≤∫abg(x)dx.推論|∫abf(x)dx|≤∫ab|f(x)|dx.性質設M及m分別是函數f(x)在區間[a,b]上的最大值和最小值,則m(b-a)≤∫abf(x)dx≤M(b-a),該性質說明由被積函數在積分區間上的最大值及最小值可以估計積分值的大致范圍。

性質(定積分中值定理)如果函數f(x)在區間[a,b]上連續,則在積分區間[a,b]上至少存在一個點ξ,使下式成立:∫abf(x)dx=f(ξ)(b-a)。

4、關于廣義積分設函數f(x)在區間[a,b]上除點c(a

第六章 定積分的應用

求平面圖形的面積(曲線圍成的面積)

直角坐標系下(含參數與不含參數)

極坐標系下(r,θ,x=rcosθ,y=rsinθ)(扇形面積公式S=R2θ/2)

旋轉體體積(由連續曲線、直線及坐標軸所圍成的面積繞坐標軸旋轉而成)(且體積V=∫abπ[f(x)]2dx,其中f(x)指曲線的方程)

平行截面面積為已知的立體體積(V=∫abA(x)dx,其中A(x)為截面面積)

功、水壓力、引力

函數的平均值(平均值y=1/(b-a)*∫abf(x)dx)

第七章 多元函數微分法及其應用

1、多元函數極限存在的條件極限存在是指P(x,y)以任何方式趨于P0(x0,y0)時,函數都無限接近于A,如果P(x,y)以某一特殊方式,例如沿著一條定直線或定曲線趨于P0(x0,y0)時,即使函數無限接近某一確定值,我們還不能由此斷定函數極限存在。反過來,如果當P(x,y)以不同方式趨于P0(x0,y0)時,函數趨于不同的值,那么就可以斷定這函數的極限不存在。例如函數:f(x,y)={0(xy)/(x^2+y^2)x^2+y^2≠02、多元函數的連續性定義設函數f(x,y)在開區域(或閉區域)D內有定義,P0(x0,y0)是D的內點或邊界點且P0∈D,如果lim(x→x0,y→y0)f(x,y)=f(x0,y0)則稱f(x,y)在點P0(x0,y0)連續。

性質(最大值和最小值定理)在有界閉區域D上的多元連續函數,在D上一定有最大值和最小值。

性質(介值定理)在有界閉區域D上的多元連續函數,如果在D上取得兩個不同的函數值,則它在D上取得介于這兩個值之間的任何值至少一次。

3、多元函數的連續與可導如果一元函數在某點具有導數,則它在該點必定連續,但對于多元函數來說,即使各偏導數在某點都存在,也不能保證函數在該點連續。這是因為各偏導數存在只能保證點P沿著平行于坐標軸的方向趨于P0時,函數值f(P)趨于f(P0),但不能保證點P按任何方式趨于P0時,函數值f(P)都趨于f(P0)。

4、多元函數可微的必要條件一元函數在某點的導數存在是微分存在的充分必要條件,但多元函數各偏導數存在只是全微分存在的必要條件而不是充分條件,即可微=>可偏導。

5、多元函數可微的充分條件定理(充分條件)如果函數z=f(x,y)的偏導數存在且在點(x,y)連續,則函數在該點可微分。

6.多元函數極值存在的必要、充分條件定理(必要條件)設函數z=f(x,y)在點(x0,y0)具有偏導數,且在點(x0,y0)處有極值,則它在該點的偏導數必為零。

定理(充分條件)設函數z=f(x,y)在點(x0,y0)的某鄰域內連續且有一階及二階連續偏導數,又fx(x0,y0)=0,fy(x0,y0)=0,令fxx(x0,y0)=0=A,fxy(x0,y0)=B,fyy(x0,y0)=C,則f(x,y)在點(x0,y0)處是否取得極值的條件如下:(1)AC-B2>0時具有極值,且當A<0時有極大值,當A>0時有極小值;(2)AC-B2<0時沒有極值;(3)AC-B2=0時可能有也可能沒有。

7、多元函數極值存在的解法(1)解方程組fx(x,y)=0,fy(x,y)=0求的一切實數解,即可求得一切駐點。

(2)對于每一個駐點(x0,y0),求出二階偏導數的值A、B、C.(3)定出AC-B2的符號,按充分條件進行判定f(x0,y0)是否是極大值、極小值。

注意:在考慮函數的極值問題時,除了考慮函數的駐點外,如果有偏導數不存在的點,那么對這些點也應當考慮在內。

第八章 二重積分

1、二重積分的一些應用曲頂柱體的體積曲面的面積(A=∫∫√[1+f2x(x,y)+f2y(x,y)]dσ)

平面薄片的質量平面薄片的重心坐標(x=1/A∫∫xdσ,y=1/A∫∫ydσ;其中A=∫∫dσ為閉區域D的面積。

平面薄片的轉動慣量(Ix=∫∫y2ρ(x,y)dσ,Iy=∫∫x2ρ(x,y)dσ;其中ρ(x,y)為在點(x,y)處的密度。

平面薄片對質點的引力(FxFyFz)

2、二重積分存在的條件當f(x,y)在閉區域D上連續時,極限存在,故函數f(x,y)在D上的二重積分必定存在。

3、二重積分的一些重要性質性質如果在D上,f(x,y)≤ψ(x,y),則有不等式∫∫f(x,y)dxdy≤∫∫ψ(x,y)dxdy,特殊地由于-|f(x,y)|≤f(x,y)≤|f(x,y)|又有不等式|∫∫f(x,y)dxdy|≤∫∫|f(x,y)|dxdy.性質設M,m分別是f(x,y)在閉區域D上的最大值和最小值,σ是D的面積,則有mσ≤∫∫f(x,y)dσ≤Mσ。

性質(二重積分的中值定理)設函數f(x,y)在閉區域D上連續,σ是D的面積,則在D上至少存在一點(ξ,η)使得下式成立:∫∫f(x,y)dσ=f(ξ,η)*σ

4、二重積分中標量在直角與極坐標系中的轉換把二重積分從直角坐標系換為極坐標系,只要把被積函數中的x,y分別換成ycosθ、rsinθ,并把直角坐標系中的面積元素dxd

第二篇:高數總結

高數總結

公式總結:

1.函數

定義域

值域

Y=arcsinx

[-1,1]

[-π/2, π/2] Y=arccosx

[-1,1]

[0, π] Y=arctanx

(-∞,+∞)

(-π/2, π/2)Y=arccotx

(-∞,+∞)

(0, π)Y=shx

(-∞,+∞)

(-∞,+∞)奇函數,遞增

Y=chx

(-∞,+∞)

[1, +∞)偶函數,(-∞,0)遞減 Y=thx

(-∞,+∞)

(-1,1)奇函數,遞增

Y=arshx

(-∞,+∞)

(-∞,+∞)奇函數,遞增 Y=archx

[1,+∞)

[0,+∞)遞增

Y=arthx

(-1,1)

奇函數,遞增 2.雙曲函數和反雙曲函數:

shx = [(e^x-e^(-x))/2,sh(x+y)=shxchy+chxshy(shx)' =chx

sh(x-y)=shxchy-chxshy chx = [(e^x + e^(-x)]/2

ch(x+y)=chxchy+shxshy ,(chx)' =shx

ch(x-y)=chxchy-shxshy thx = shx / chx,(chx)^2-(shx)^2=1(thx)' = 1/(chx)^2

sh2x=2shxchx arsh x = ln[ x+(x^2+1)^(1/2)]

ch2x=(chx)^2+(shx)^2 ,(arsh x)' = 1/(x^2+1)^(1/2)arch x = ln[ x+(x^2-1)^(1/2)] ,(arch x)' = 1/(x^2-1)^(1/2)arth x =(1/2)[ ln(1+x)/(1-x)],(arth x)' = 1/(1-x^2)我只記得考了幾個這里的公式,不過不記得是哪次考試了,所以就給你們寫上咯

3.對于x趨近于∞,f(x)/g(x)的極限,f(x)和g(x)均為多項式時,分子分母同時除以其中x的最高次項,利用x趨近于∞時,由1/(x^k)的極限為0(k>0),可以求得結果。4.極限存在準則:

夾逼準則:證明極限存在并求得極限

單調有界準則:僅用于證明極限存在,對于有遞推式的數列比較常用。一般都是先根據單調有界準則證明極限存在 P54例3 P55例5 5.兩個重要極限:

(1)當x趨近于0時,sinx/x的極限等于1(2)當x趨近于∞時,(1+1/x)^x的極限為e,也可以說當x趨近于0時,(1+x)^(1/x)的極限為e,但是不能說當x趨近于0時,(1+1/x)^x的極限為e.要求(1+在x趨近于∞或0時,該部分極限為0),指數部分為∞ 6.無窮小的比較:

b/a的極限為0,則稱b是比a高階的無窮小,b=o(a)b/a的極限為∞,則稱b是比a低階的無窮小 b/a的極限為常數,則為同階無窮小,常數為1,為等價無窮小,記作a~b b/a^k的極限為常數(k>0),則稱b是a的k階無窮小 7.等價無窮小:

Sinx~x

tanx~x

arcsinx~x

arctanx~x

1-cosx~(1/2)x^2

ln(1+x)~x

e^x-1~x

a^x-1~xlna

(1+x)^a-1~ax

(1+ax)^b-1~abx

tanx-x~(1/3)x^3

x-sinx~(1/6)x^3

loga(x+1)~x/lna

加減運算時不能用等價無窮小,乘除的時候可以。如P61例5 8.函數的連續與間斷:

函數f(x)在某點連續的充要條件為f(x)在該點處既左連續又右連續。函數的各種間斷點以及間斷點的條件要記住。我們上一年有考這種題。P64-P68 9.函數在某點可導的充要條件為函數在該點的左右導數均存在且相等。

如果函數在某點可導,則它在該點處連續。逆命題不成立。10.熟記函數的求導法則: P96-97初等函數的求導法則。

反函數的導數等于直接函數導數的倒數。會求復合函數的導數。11.n階導:

X ln(1+x)的n階導=[(-1)^(n-1)](n-1)!/(1+x)^n

sinkx

=(k^n)sin(kx+nπ/2)

coskx

=(k^n)cos(kx+nπ/2)

1/x

=[(-1)^n]n!/[x^(n+1)]

x^a

=a(a-1)…(a-n+1)x^(a-n)

a^x

=a^x(lna)^n

e^x

=e^x

lnx

=[(-1)^(n-1)](n-1)!/x^n

1/(ax+b)

=[(-1)^n]n!a^n/[(ax+b)^(n+1)]

u(ax+b)

=a^n(ax+b)u(n)

u(n)為u的n階導

cu(x)

=cu(x)(n)

u(x)(n)為u(x)的n階導

u(x)+-v(x)

=u(x)(n)+-v(x)(n)

v(x)(n)為v(x)的n階導

x^n

=n!

x^n的(n+1)階導為0 至于萊布尼茨公式,我也不知道考不考,要是不放心還是背會吧,同情你們。

12.隱函數的導數:

求隱函數的導數時,只需將確定隱函數的方程兩邊對自變量x求導。(1)對數求導法:注意x=e^(lnx)的化簡

(2)參數方程表示的函數的導數:一階導和二階導的公式都要記住。(3)極坐標表示的函數的導數:同參數都需把公式記住或者自己會推導。(4)相關變化率:以應用題的形式出現,看一下書上的例題P111-112。13.函數的微分:重要

熟記基本初等函數的微分公式,考試會考,而且同求導法則一樣,在下學期的高數中可能會有用。P117

應用題中,可用微分 dA近似代替△A。復合函數的微分:dy=f’(u)du 14.函數的線性化:

L(x)=f(x0)+f’(x0)(x-x0)稱為f(x)在點x0處的線性化。近似式f(x)≈L(x)稱為f(x)在點x0處的標準線性近似,點x0稱為該近似的中心。

常用函數在x=0處的標準線性近似公式:

(1+x)^(1/n)≈1+x/n sinx~x(x為弧度)tanx~x(x為弧度)e^x~1+x ln(1+x)~x 常用于估計某式的近似值。15,誤差計算: P123表格

16.費馬引理,羅爾定理,拉格朗日中值定理,柯西中值定理。這些定理的條件以及結論均需記住,會考。17.洛必達法則:

0/0型:當x趨近于a時,函數f(x)及g(x)都趨于0

在點a的某去心領域內,函數的導數均存在,且g’(x)不等于0 X趨近于a時,f’(x)/g’(x)存在或為無窮大

則有x趨近于a時,f(x)/g(x)的極限與f’(x)/g’(x)的極限相等 ∞/∞型:當x趨近于∞時,函數f(x)及g(x)都趨于0

對于充分大的|x|,函數的導數均存在,且g’(x)不等于0 X趨近于∞時,f’(x)/g’(x)存在或為無窮大

則有x趨近于∞時,f(x)/g(x)的極限與f’(x)/g’(x)的極限相等 0*∞型:化為0/0或者∞/∞型來計算 ∞-∞型:通分化為0/0型來計算

0^0,1^∞, ∞^0型:可先化為以e為底的指數函數,再求極限 X趨近于a時,lnf(x)的極限為A可化為

X趨近于a時,f(x)的極限等于e^(lnf(x))的極限等于e^(x趨近于a時,lnf(x)的極限)等于A。P141 18.泰勒公式:

e^x=1+x+x^2/2!+…+x^n/n!+o(x^n)sinx=x-x^3/3!+x^5/5!-…+[(-1)^n]x^(2n+1)/(2n+1)!+o(x^(2n+2))cosx=1-x^2/2!+x^4/4!-x^6/6!+…+[(-1)^n]x^(2n)/(2n)!+o(x^(2n+1))ln(1+x)=x-x^2/2+x^3/3-…+[(-1)^(n-1)]x^n/n+o(x^n)1/(1-x)=1+X+x^2+…+x^n+o(x^n)(1+x)^m=1+mx+[m(m-1)/2!]x^2+…+[m(m-1)…(m-n+1)/n!]x^n+o(x^n)泰勒公式和麥克勞林公式的一般形式也要記住。我們上一年有考過一題,不過不記得是啥題了。

19.補充一些關于三角函數的知識,可能會用到:

tan(x/2)=(1-cosx)/sinx

1+(tanx)^2=(secx)^2

1+(cotx)^2=(cscx)^2 和差化積公式:

sinx+siny=2sin[(x+y)/2]cos[(x-y)/2]

sinx-siny=2cos[(x+y)/2]sin[(x-y)/2]

cosx+cosy=2cos[(x+y)/2]cos[(x-y)/2]

cosx-cosy=-2sin[(x+y)/2]sin[(x-y)/2] 積化和差公式:

sinxcosy=1/2[sin(x+y)+sin(x-y)]

cosxsiny=1/2[sin(x+y)-sin(x-y)]

cosxcosy=1/2[cos(x+y)+cos(x-y)]

sinxsiny=-1/2[cos(x+y)-cos(x-y)] 補充兩個公式:

(1)x^n-1=(x-1)[x^(n-1)+x^(n-2)+…+x+1](2)n^(1/n)-1=(n-1)/[1+n^(1/n)+n^(2/n)+…+n^((n-1)/n)] <(n-1)/[(1/2)(n-1)n^(1/2)]=2/[n^(1/2)]

第三篇:2018考研高數重要定理證明微積分基本定理

2018考研高數重要定理證明微積分基本定理

來源:智閱網

微積分基本定理是考研數學中的重要定理,考察的頻率較高,難度也比較大,下面詳細的講解一下,希望大家有所收獲。

微積分定理包括兩個定理:變限積分求導定理和牛頓-萊布尼茨公式。

變限積分求導定理的條件是變上限積分函數的被積函數在閉區間連續,結論可以形式地理解為變上限積分函數的導數為把積分號扔掉,并用積分上限替換被積函數的自變量。注意該求導公式對閉區間成立,而閉區間上的導數要區別對待:對應開區間上每一點的導數是一類,而區間端點處的導數屬單側導數。花開兩朵,各表一枝。我們先考慮變上限積分函數在開區間上任意點x處的導數。一點的導數仍用導數定義考慮。至于導數定義這個極限式如何化簡,筆者就不能剝奪讀者思考的權利了。單側導數類似考慮。

“牛頓-萊布尼茨公式是聯系微分學與積分學的橋梁,它是微積分中最基本的公式之一。它證明了微分與積分是可逆運算,同時在理論上標志著微積分完整體系的形成,從此微積分成為一門真正的學科。”這段話精彩地指出了牛頓-萊布尼茨公式在高數中舉足輕重的作用。而多數考生能熟練運用該公式計算定積分。不過,提起該公式的證明,熟悉的考生并不多。

該公式和變限積分求導定理的公共條件是函數f(x)在閉區間連續,該公式的另一個條件是F(x)為f(x)在閉區間上的一個原函數,結論是f(x)在該區間上的定積分等于其原函數在區間端點處的函數值的差。該公式的證明要用到變限積分求導定理。若該公式的條件成立,則不難判斷變限積分求導定理的條件成立,故變限積分求導定理的結論成立。

注意到該公式的另一個條件提到了原函數,那么我們把變限積分求導定理的結論用原函數的語言描述一下,即f(x)對應的變上限積分函數為f(x)在閉區間上的另一個原函數。根據原函數的概念,我們知道同一個函數的兩個原函數之間只差個常數,所以F(x)等于f(x)的變上限積分函數加某個常數C。萬事俱備,只差寫一下。將該公式右側的表達式結合推出的等式變形,不難得出結論。

上面講述的微積分基本定理是考研數學的高頻考點,考生們要認真學習其解題方法,并且學會運用。湯神《考研數學接力題典1800》可以檢驗大家的復習效果,總結做題經驗,對我們現階段的復習幫助很大。

第四篇:高數下冊總結

篇一:高數下冊總結

高數(下)小結

一、微分方程復習要點

解微分方程時,先要判斷一下方程是屬于什么類型,然后按所屬類型的相應解法 求出其通解.一階微分方程的解法小結:

二階微分方程的解法小結:

非齊次方程y???py??qy?f(x)的特解y?

主要: 量方程、線性微分方程的求解;

2、二階常系數齊次線性微分方程的求解;

二、多元函數微分學復習要點

1、顯函數的偏導數的求法 在求

?z?x 量,對x求導,在求

?z?y 量,對y求導,所運

求導法則與求導公式.2數的求法

u???x,y?,v???x,y?,則

?z?x ?z?u ?u?x ?z?v ?v?x ?z?y ? 的形式為:

一階

1、可分離變、二階常系數非齊次線性微分方程的特解

一、偏導數的求法 時,應將y看作常時,應將x看作常用的是一元函數的、復合函數的偏導設z?f?u,v?,3 ?z?u ? ?u?y ? ?z?v ? ?v?y 幾種特殊情況:

1u???x?,v???x?,則2)z?f?x,v?,v???x,y?,則

?z?x dzdx???f?vdzdu???u?x ??z?v ?dvdx ?v?y ? ?f?x ?v?x ?z?y ? ?f?u ? 3則

3、隱函數求偏導數的求法 1)一個方程的情況

?z?x ? dzdu ? ?u?x ?z?y ? dzdu ? ?u?y 設z?z?x,y?是由方程f?x,y,z??0唯一確定的隱函數,則

?z?x fxfz ??)z?f?u,v?,)z?f?u?,u???x,y?,?fz ?0?,?z?y ?? fyfz ?fz ?0? 或者視z?z?x,y?,由方程f?x,y,z??0兩邊同時對x(或y)求導解出

2)方程組的情況 ?z?x(或 ?z?y).?f?x,y,u,v??0?z?z)即可.由方程組?兩邊同時對x(或y)求導解出(或

?x?y??gx,y,u,v?0?

二、全微分的求法 方法1:利用公式du? ?u?x dx? ?u?y dy? ?u?z dz 方法2:直接兩邊同時求微分,解出du即可.其中要注意應用微分形式的不變性:

??z du???u? dz?? ?z?dx??x?? ?z?v?z?y dv dy

三、空間曲線的切線及空間曲面的法平面的求法

?x???t? ? 1)設空間曲線г的參數方程為 ?y???t?,則當t?t0時,在曲線上對應點 ?z???t??p0?x0,y0 ? ,z0?處的切線方向向量為t???t0?,? ?

?t0?,??t0??,切線方程為

x?x0 ??t0? ? y?y0 ? ?t0? ? z?z0 ? ?t0?

法平面方程為 ??t0??x?x0t0??y?y0t0??z?z0??0 2)若曲面?的方程為f? x,y,z??0,則在點p0?x0,y0,z0?處的法向量

?n? ?f x ,fy,fz ? p0,切平面方程為

fx?x0,y0,z0??x?x0??fy?x0,y0,z0??y?y0??fz?x0,y0,z0??z?z0??0 法線方程為 x?x0 fx?x0,y0,z0? ? y?y0 fy?x0,y0,z0? ? z?z0 fz?x0,y0,z0? 若曲面?的方程為z?f?x,y?,則在點p0?x0,y0,z0?處的法向量

? n??fx?x0,y0?,fy?x0,y0?,?1?,切平面方程為

fx?x0,y0??x?x0??fy?x0,y0??y?y0???z?z0??0 法線方程為

x?x0fx?x0,y0? ? y?y0fy?x0,y0? ?z?z0?1

四、多元函數極值(最值)的求法 1 無條件極值的求法

在點p0?x0,y0?的某鄰域內具有二階連續偏導數,由fx?x,y??0,fy ?x,y??0點? x0,y0 ? a?fxx ?x0 ,y0 ? b?fxy ?x0 ,y0 ? c?fyy ?x0,y0?.2 c?b1 ?x ,y?取得極值,且當a?0時有極大值,當a?0 2則f?x,y?在點?x0,y0?處無極值.3)若ac?b 2 ?0 ?x ,y?是否取得極值.設函數z?f?x,y?,解出駐,記,)若a?0,則f 在點?x0,y0?處時有極小值.)若ac?b2?0,不能判定f 在點?x0,y0?處 2 條件極值的求法

函數z?f?x,y?在滿足條件??x,y??0下極值的方法如下:

1)化為無條件極值:若能從條件??x,y??0解出y代入f?x,y?中,則使函數z?z(x,y)成為一元函數無條件的極值問題.2)拉格朗日乘數法

作輔助函數f?x,y??f?x,y?x,y?,其中?為參數,解方程組

篇二:高數下冊總結(同濟第六版)高數(下)小結

一、微分方程復習要點

解微分方程時,先要判斷一下方程是屬于什么類型,然后按所屬類型的相應解法 求出其通解.一階微分方程的解法小結:

二階微分方程的解法小結:

? 非齊次方程y???py??qy?f(x)的特解y的形式為:

主要: 一階

1、可分離變量方程、線性微分方程的求解;

2、二階常系數齊次線性微分方程的求解;

3、二階常系數非齊次線性微分方程的特解

二、多元函數微分學復習要點

一、偏導數的求法

1、顯函數的偏導數的求法 在求

?z?z時,應將y看作常量,對x求導,在求時,應將x看作常量,對y求導,所運?x?y 用的是一元函數的求導法則與求導公式.2、復合函數的偏導數的求法

設z?f?u,v?,u???x,y?,v???x,y?,則

?z?z?u?z?v?z?z?u?z?v,?x?u?x?v?x?y?u?y?v?y 幾種特殊情況: 1)z?f?u,v?,u???x?,v???x?,則2)z?f dzdz?u?zdv dxdu?x?vdx?f?v ?x,v?則?x??x??v??x,?z?f ?z?f?v?? ?y?u?y 3則

3、隱函數求偏導數的求法 1)一個方程的情況

?zdz?u?zdz?u,?xdu?x?ydu?y 方程f?x,y,z??0唯一確定的隱函數,則

f?z ??x ?xfz ?fz ?z ?0? ?y fyfz ?fz ?0? 或者視z?z?x,y?,由方程f?x,y,z??0兩邊同時對x(或y)求導解出 2由方程組? ?z?z(?f?x,y,u,v??0?z?z 求導解出(或)即可.?x?y?g?x,y,u,v??0 方法1:利用公式du? ?u?u?u,v???x,y?,)z?f?u?,u???x,y?設z?z?x,y?是由,??)方程組的情況 或).?x?y 兩邊同時對x(或y)

二、全微分的求法 dx?dy?dz ?x?y?z 方法2:直接兩邊同時求微分,解出du即可.其中要注意應用微分形式的不變性:

?z??z du?dv??v??u dz?? ?z?z?dx?dy ?y???x

三、空間曲線的切線及空間曲面的法平面的求法

?x???t? ? 1)設空間曲線г的參數方程為 ?y???t?,則當t?t0時,在曲線上對應點

?z???t?? ? p0?x0,y0,z0?處的切線方向向量為t???t0?,??t0?,??t0?,切線方程為

?? x?x0y?y0z?z0 ?? ?t0?t0?t0法平面方程為 ??t0??x?x0t0??y?y0t0??z?z0??0 2)若曲面?的方程為f?x,y,z??0,則在點p0?x0,y0,z0?處的法向量

? n??fx,fy,fz? p0,切平面方程為

fx?x0,y0,z0??x?x0??fy?x0,y0,z0??y?y0??fz?x0,y0,z0??z?z0??0 法線方程為

x?x0y?y0z?z0 ?? fxx0,y0,z0fyx0,y0,z0fzx0,y0,z0 若曲面?的方程為z?f?x,y?,則在點p0?x0,y0,z0?處的法向量

? n??fx?x0,y0?,fy?x0,y0?,?1?,切平面方程為

fx?x0,y0??x?x0??fy?x0,y0??y?y0???z?z0??0 法線方程為

x?x0y?y0z?z0 ?? fxx0,y0fyx0,y0?1

四、多元函數極值(最值)的求法 1 無條件極值的求法

設函數z?f?x,y?在點p0?x0,y0?的某鄰域內具有二階連續偏導數,由fx?x,y??0,fy?x,y??0,解出駐點?x0,y0?,記a?fxx?x0,y0?,b?fxy?x0,y0?,c?fyy?x0,y0?.c?b1)若a 時有極小值.2)若ac?b2?0,則f?x,y?在點?x0,y0?處無極值.3)若ac?b?0,不能判定f?x,y?在點?x0,y0?處是否取得極值.2 2 ?0,則f?x,y?在點?x0,y0?處取得極值,且當a?0時有極大值,當a?0 2 條件極值的求法

函數z?f?x,y?在滿足條件??x,y??0下極值的方法如下:

1)化為無條件極值:若能從條件??x,y??0解出y代入f?x,y?中,則使函數z?z(x,y)成為一元函數無條件的極值問題.2)拉格朗日乘數法

作輔助函數f?x,y??f?x,y?x,y?,其中?為參數,解方程組 篇三:高數下冊公式總結

第八章 向量與解析幾何

第十章 重積分

第十一章曲線積分與曲面積分

篇四:高數下冊積分方法總結

積分方法大盤點

現把我們學了的積分方法做個大總結。

1、二重積分

1.1 x型區域上二重積分(必須的基本方法)

(1)后x先y積分,d往x軸上的投影得區間[a,b];(2)x [a,b],x=x截d得截線y1(x)#yy2(x)(小y邊界y=y1(x)大y邊界y=y2(x));

(3)b y(x)蝌f(x,y)dxdy= 蝌dx 2f(x,y)dya yd 1(x)1.2 y型區域上二重積分(必須的基本方法)

(1)后y先x積分,d往y軸上的投影得區間[c,d];(2)y [c,d],y=y截d得截線x1(y)#xx2(y)(小x邊界x=x1(y)大x邊界x=x2(y));

(3)d x蝌f(x,y)dxdy= 蝌dy 2(y)f(x,y)dxc x d 1(y)1.2 極坐標二重積分(為簡單的方法)

(1)總是后q先r積分;(2)b r蝌f(x,y)ds= 蝌dq 2(q)f(rcosq,rsinq)rdra r(q)d 1其中,在d上a是最小的q,b是最大的q;q [a,b],射線q=q截d得截線r1(q)#r r2(q)(小r邊界r=r1(q)大r邊界r=r2(q))。用坐標關系

x=rcosq,y=rsinq和面積元素ds=dxdy=rdqdr代入(多一個因子r)。

當積分區域d的邊界有圓弧,或被積函數有x2+y2 時,用極坐標計算二重

積分特別簡單。

離 散

數 學

2、三重積分 2.1 二套一方法(必須的基本方法)(1)幾何準備

(i)將積分區域w投影到xoy面,得投影區域dxy;

(ii)以dxy的邊界曲線為準線,作一個母線平行于z軸的柱面.柱面將閉區域w的邊界曲面分割為上、下兩片曲面s2:z=z2(x,y()大z邊界);

s 1 :z=z1(x,y()小z邊界)

((x,y)dxy,過(x,y)點平行于z軸的直線截w得截線z1(x,y)#z z2(x,y))

;(2)z蝌蝌 f(x,y,z)dxdydz=蝌

dxdy2(x,y)f(x,y,z)dzz。

w d1(x,y)xy 還有兩種(w往xoz或yoz面投影)類似的二套一方法(舉一反三)。2.2 一套二方法(為簡單的方法)(1)幾何準備

(i)把w往z投影得輊犏臌 c,d;(ii)任意給定z?輊犏臌

c,d,用平面z=z截w得截面(與z有關)dz;(2)d蝌蝌

f(x,y,z)dxdydz=dz f(x,y,z)dxdy,c 蝌 w dz 還有兩種(w往x或y軸投影)類似的一套二方法(舉一反三)。2.3 柱面坐標計算三重積分(為簡單的方法)

(1)把積分寫成二套一zx,y)蝌蝌

f(x,y,z)dxdydz=蝌

dxdy2(f(x,y,z)dzz,y)w d1(xxy(2)用極坐標計算外層的二重積分

z蝌蝌f(x,y,z)dv= 蝌

dxdy2(x,y)f(x,y,z)dz zw d1(x,y)xyb r2(q)zrcosq,rsinq)= 蝌dqrdr f(rcosq,rsinq,z)dz a r 2(1(q)z 1(rcosq,rsinq)(注意:里層的上下限也要用x=rcosq,y=rsinq代入)。(當用極坐標計算

外層二重積分簡單時。)

還有兩種(w往xoz或yoz面投影的二套一)類似的極坐標計算方法(舉

第1章

集 合

離 散

數 學

2.3 三重積分(為簡單的方法)

x=rcosqsinjy,=rsiqn sjinz=,r jc dv=dxdydz=r 2 sinjdrdqdj個因子r 2 sinj

f(rcosqsinj,rsinqsinj,rcosj)r 2 sinjdrdqdj w w 下限變成三次積分(總是先r后j最后q積分)

f(x,y,z)dvw b jr dq2(q)dj 2(q,j)

一反三)。

球面坐標計算(1)用坐標關系和o體積元素(多一)代入

蝌蝌f(x,y,z)dv=;(2)三種情況定上蝌

=蝌f(rcosqsinj,rsinqsinj,rcosj)r 2 sinjdr a j 1(q)r 1(q,j)當w是課堂講的三種情況或被積函數有x2+y2+z2時用球面坐標計算簡單。第1章

集 合

3曲線積分 3.1平面情形

(1)準備 ?l:?x=x(t), ?y=y(t)(t?[a,b])ds=

?? ,f(x,y)ds= f(x(t),y(tt l a l:?l:y=y(x)(x [a,b])時用x作?í

x=x ?(x?[a,b])當??y=y(x)ì?l:x= x(y)(y [c,數l:?í

x=x(y)??? y=y(y?[c,d])3.2 空間情形

、第一類對弧長的ì

í,(2)代入b蝌。ì

當參數;時用d]y作參。ì??x=x(t)

(1)準備 l:? ? íy=y(t)(t [a,b? ]),ds=

z=z(t)蝌f(x,y,z)ds= f(x(t),y(t),z(tt l a y=y(x)??x=x ?(x?[a,b])作參數l:?x)x(ab[,;??z=z(x)í?y=y(] ?? z=z(x)l:?? x=x(y)?z=z(y(y?[c,d])時用y作參數

l:??)? y=y(y [c,d])z=z(y)ì?x=x(??x=x(z)l:? z)?(z?[c,d])作參數l:??í?? y=y(z)? y=y(z)(z [c,d])。z=z 間的特例。

篇五:高數下冊復習知識點總結

下冊復習知識點總結:

(2)代入b。ìì 當l:???í時用x當?? ìì??x=x(y)í í?? ;當 ìí 時用z平面是空高數 8空間解析幾乎與向量代數

1.給定向量的坐標表達式,如何表示單位向量、方向數與方向余弦、投影。

2.向量的數量積、向量積的定義式與坐標式,掌握兩個向量垂直和平行的條件。3.了解常用二次曲面的方程及其圖形,以坐標軸為旋轉軸的旋轉曲面方程。空間曲線在坐標平面上的投影方程。

4.平面方程和直線方程及其求法。

5.平面與平面、平面與直線、直線與直線之間的夾角,利用平面、直線的相互關系(平行、垂直、相交等)解決有關問題。

6.點到直線以及點到平面的距離。

多元函數微分法及其應用

1.有關偏導數和全微分的求解方法,偏導要求求到二階。

2.復合函數的鏈式法則,隱函數求導公式和方法。

3.空間曲線的切線和法平面方程,空間曲面的切平面與法線方程;函數沿著一條直線的方向導數與梯度。4.利用充分條件判斷函數的極值問題;利用拉格朗日乘子法(即條件極值)分析實際問題或給定函數的最值問題。

重積分

1.二重積分直角坐標交換積分次序;選擇合適的坐標系計算二重積分。

2.選擇合適的坐標系計算三重積分。

3.利用二重積分計算曲面的面積;利用三重積分計算立體體積;

4.利用質心和轉動慣量公式求解問題。

11曲面積分與曲線積分

1.兩類曲線積分的計算與聯系;

2.兩類曲面積分的計算與聯系;

3.格林公式和高斯公式的應用。

第五篇:高數積分總結

高數積分總結

一、不定積分

1、不定積分的概念也性質

定義1:如果在區間I上,可導函數F(x)的導函數為f(x),即對任一x?I,都有

F`(x)=f(x)或dF(x)=f(x)dx, 那么函數F(x)就稱為f(x)(或f(x)dx)在區間I上的原函數。定義2:在區間I上,函數f(x)的帶有任意常數項的原函數稱為f(x)(或者f(x)dx)在區間I上的不定積分,記作

?f(x)dx。

性質1:設函數f(x)及g(x)的原函數存在,則

?[f(x)?g(x)]dx??f(x)dx??g(x)dx。

性質2:設函數f(x)的原函數存在,k為非零常數,則

?kf(x)dx?k?f(x)dx。

2、換元積分法(1)第一類換元法:

定理1:設f(u)具有原函數,???(x)可導,則有換元公式

?f[?(x)]?'(x)dx?[?f(?)d?]??

?(x)。例:求?2cos2xdx

解 ?2cos2xdx??cos2x?2dx??cos2x?(2x)'dx??cos?d? 將??2x代入,既得

?2cos2xdx?sin2x?C

(2)第二類換元法:

定理2:設x??(t)是單調的、可導的函數,并且?'(t)?0.又設f[?(t)]?'(t)具有原函數,則有換元公式

?f(x)dx?[?f[?(t)]?'(t)dt]?1其中?(x)是x??(t)的反函數。

t???1(x),例:求?dxx?a22(a?0)

22解

∵1?tant?sect,????設x??tant???t??,那么

2??2x2?a2?a2?a2tan2t?a1?tan2t?asect,dx?asec2tdt,于是

?asec2t??dt??sectdt 22asectx?adx∴?∵sect?∴?dxdxx?a22?lnsect?tant?C

x2?a2,且sect?tant?0 a???C?ln(x?x2?a2)?C,C?C?lna 11??22?xx?a?ln???aax2?a2?

3、分部積分法

定義:設函數???(x)及???(x)具有連續導數。那么,兩個函數乘積的導數公式為

????'??'????'

移項得

??'?(??)'??'?

對這個等式兩邊求不定積分,得

???'dx??????'?dx

此公式為分部積分公式。例:求?xcosxdx 解 ?xcosxdx?xsinx??sinxdx

∴xcosxdx?xsinx?cosx?C ?分部積分的順序:反對冪三指。

4、有理函數的積分 例:求?x?1dx 2x?5x?62解

∵x?5x?6?(x?3)(x?2),故設

x?1AB??

x2?5x?6x?3x?2其中A,B為待定系數。上式兩端去分母后,得

x?1?A(x?2)?B(x?3)

x?1?(A?B)x?2A?3B

比較上式兩端同次冪的系數,既有

?A?B?1 ??2A?3B??1從而解得

A?4,B??3 于是

x?13??4??dx?4lnx?3?3lnx?2?C ?x2?5x?6dx????x?3x?2?其他有些函數可以化做有理函數。

5、積分表的查詢

二、定積分

1、定積分的定義和性質

(1)定義:設函數f(x)在?a,b?上有界,在?a,b?中任意插入若干個分點

a?x0?x1?x2???xn?1?xn?b

把區間?a,b?分成n個小區間

?x0,x1?,?x1,x2?,?,?xn?1,xn?

各個小區間的長度依次為

?x1?x1?x0,?x2?x2?x1,?,?xn?xn?xn?1

在每個小區間?xi?1,xi?上任取一點?i?xi?1??i?xi?,作函數值f(?i)與小區間長度?xi的乘積f(?i)?xi?i?1,2,?,n?,并作出和

S??f(?i)?xi

i?1n記??max??x1,?x2,?,?xn?,如果不論對?a,b?怎么劃分,也不論在小區間xi?1,xi上點?i怎么選取,只要當??0時,和S總趨于確定??的極限I,那么稱這個極限I為函數(簡稱積分),記作

f(x)在區間?a,b?上的定積分

?baf(x)dx,即

n?其中變量,baf(x)dx?I?lim?f(?i)?xi

??0i?1f(x)叫做被積函數,f(x)dx叫做被積表達式,x叫做積分a叫做積分下限,b叫做積分上限,?a,b?叫做積分區間。

f(x)在區間?a,b?上有界,且只有有限個間斷點,則f(x)定理1:設f(x)在區間?a,b?上連續,則f(x)在?a,b?上可積。定理2:設在?a,b?上可積。(2)性質1:

性質2:??f(x)?g(x)?dx??abbaf(x)dx??g(x)dx

ab?kf(x)dx?k?abbaf(x)dx

(k是常數)

性質3:設a?c?b,則

?baf(x)dx??f(x)dx??f(x)dx

accb

性質4:如果在區間?a,b?上f(x)?1,則

?1dx??dx?b?a

aabb

性質5:如果在區間?a,b?上,f(x)?0,則

??babaf(x)dx?0?a?b?

推論1:如果在區間?a,b?上,f(x)?g(x),則

f(x)dx??g(x)dx?a?b?

ab

推論2:

?baf(x)dx??f(x)dx(a?b)

ab

性質6:設M及m分別是函數最小值,則

f(x)在區間?a,b?上的最大值和m(b?a)??f(x)dx?M(b?a)(a?b)

ab

性質7(定積分中值定理):如果函數f(x)在積分區間?a,b?上連續,則在?a,b?上至少存在一個點?,使下式成立

?baf(x)dx?f(?)(b?a)(a???b)

2、微積分基本公式(1)積分上限函數及其導數

定理1:如果函數f(x)在區間?a,b?上連續,則積分上限的函數

??x???f(t)dt

ax在?a,b?上可導,并且它的導數

dx?'(x)?f(t)dt?f(x)(a?x?b)?adx定理2:如果函數f(x)在區間?a,b?上連續,則函數

?(x)??f(t)dt

ax就是f(x)在區間?a,b?上的一個原函數。

f(x)在區間?a,b?上的一個原函(2)牛頓-萊布尼茨公式

定理3:如果函數F(x)是連續函數數,則

?(1)定積分的換元法 定理:

三、多元函數微分

四、重積分

五、曲面和曲線積分

baf(x)dx?F(b)?F(a)

3、定積分的換元法和分部積分法

下載高數定理定義總結(共五則范文)word格式文檔
下載高數定理定義總結(共五則范文).doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點此處下載文檔

文檔為doc格式


聲明:本文內容由互聯網用戶自發貢獻自行上傳,本網站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發現有涉嫌版權的內容,歡迎發送郵件至:645879355@qq.com 進行舉報,并提供相關證據,工作人員會在5個工作日內聯系你,一經查實,本站將立刻刪除涉嫌侵權內容。

相關范文推薦

    高數下冊總結

    第四講 向量代數、多元函數微分與空間解析幾何 一、理論要求 1.向量代數 理解向量的概念(單位向量、方向余弦、模) 了解兩個向量平行、垂直的條件 向量計算的幾何意義與坐標表......

    高數符號總結(合集)

    數量符號 如:i,2+i,a,x,自然對數底e,圓周率π。運算符號 除號(÷或/) 兩個集合的并集(∪) 交集(∩) 根號(↗) 對數(log,lg,ln),比(:) 微分(dx) 積分(∫) 曲線積分(?)等。結合符號 如小括號“”中括號“[]”......

    高數積分總結

    高數積分總結 一、不定積分 1、不定積分的概念也性質 定義1:如果在區間I上,可導函數F(x)的導函數為f(x),即對任一x?I,都有 F`(x)=f(x)或dF(x)=f(x)dx, 那么函數F(x)就稱為f(x)(或f......

    高數知識點總結

    高數重點知識總結 1、基本初等函數:反函數(y=arctanx),對數函數(y=lnx),冪函數(y=x),指數函數(y?ax),三角函數(y=sinx),常數函數(y=c) 2、分段函數不是初等函數。 x2?xx?lim?1 3、無窮......

    高數積分總結

    第四章 一元函數的積分及其應用 第一節 不定積分 一、原函數與不定積分的概念 定義1.設f(x)是定義在某區間的已知函數,若存在函數F(x),使得F?(x)或dF?f(x)(x)?f(x)dx,則稱F(x)......

    高數中需要掌握證明過程的定理

    高數中的重要定理與公式及其證明(一) 考研數學中最讓考生頭疼的當屬證明題,而征服證明題的第一關就是教材上種類繁多的定理證明。如果本著嚴謹的對待數學的態度,一切定理的推導......

    高數(上)總結 ver1.0

    高等數學(上)總結二、單元函數積分。1. 不定積分。 ① 原函數:在一個區間上若F’(x)=f(x),則稱F(x)為f(x)的一個原函數。 ② 不定積分:已知被積函數f(X)求原函數F(x)。∫f(x)dx=F(......

    高數極限求法總結

    首先說下我的感覺, 假如高等數學是棵樹木得話,那么 極限就是他的根, 函數就是他的皮。樹沒有跟,活不下去,沒有皮,只能枯萎, 可見這一章的重要性。 為什么第一章如此重要? 各個章節......

主站蜘蛛池模板: 日韩精品久久久肉伦网站| 欧美黑吊大战白妞| 内射爽无广熟女亚洲| 日本阿v网站在线观看中文| 亚洲成a人片在线观看www| 久久久久无码精品国产h动漫| 香蕉人人超人人超碰超国产| 久久久精品2020免费观看| 国产精品无码无片在线观看3d| 亚洲人成网站18禁止大app| 亚洲精品99久久久久久欧美版| 99精品国产在热久久无毒不卡| 久久久久亚洲AV成人无码电影| 少妇人妻在线视频| 高清国产亚洲精品自在久久| 无码人妻日韩一区日韩二区| 麻豆成人精品国产免费| 无码人妻一区二区三区一| 一区二区亚洲精品国产精华液| 亚洲av永久无无码精品一区二区三区| 国产精品一区二区久久不卡| 成 人 在 线 免费观看| 日韩 另类 综合 自拍 亚洲| 丰满少妇呻吟高潮经历| 中文字幕乱码一区二区三区免费| 吃奶呻吟打开双腿做受在线视频| 亚洲成a人片在线观看天堂无码| 玩弄丰满奶水的女邻居| 欧美喷潮久久久xxxxx| 国产精品久久久久久无毒不卡| 午夜伦4480yy私人影院久久| 品色堂永远免费| 欧美xxxxx性喷潮| 成 人色 网 站 欧美大片在线观看| 久久综合狠狠色综合伊人| 97精品人妻系列无码人妻| 国产成人a视频高清在线观看| 免费现黄频在线观看国产| 学生妹亚洲一区二区| 久久天天躁狠狠躁夜夜2020老熟妇| 久久亚洲春色中文字幕久久久|