第一篇:小學三年級奧數下冊雞兔同籠問題教案 2
小學三年級奧數下冊雞兔同籠問題教案
雞兔同籠問題
例1(古典題)雞兔同籠,頭共46,足共128,雞兔各幾只?
分析 如果 46只都是兔,一共應有 4×46=184只腳,這和已知的128只腳相比多了184-128=56只腳.如果用一只雞來置換一只兔,就要減少4-2=2(只)腳.那么,46只兔里應該換進幾只雞才能使56只腳的差數就沒有了呢?顯然,56÷2=28,只要用28只雞去置換28只兔就行了.所以,雞的只數就是28,兔的只數是46-28=18。
解:①雞有多少只?
(4×6-128)÷(4-2)
=(184-128)÷2
=56÷2
=28(只)
②免有多少只?
46-28=18(只)
答:雞有28只,免有18只。
我們來總結一下這道題的解題思路:先假設它們全是兔.于是根據雞兔的總只數就可以算出在假設下共有幾只腳,把這樣得到的腳數與題中給出的腳數相比較,看相差多少.每差2只腳就說明有一只雞;將所差的腳數除以2,就可以算出共有多少只雞.我們稱這種解題方法為假設法.概括起來,解雞兔同籠問題的基本關系式是:
雞數=(每只兔腳數× 兔總數-實際腳數)÷(每只兔子腳數-每只雞的腳數)
兔數=雞兔總數-雞數
當然,也可以先假設全是雞。
例2 雞與兔共有100只,雞的腳比兔的腳多80只,問雞與兔各多少只?
分析 這個例題與前面例題是有區別的,沒有給出它們腳數的總和,而是給出了它們腳數的差.這又如何解答呢?
假設100只全是雞,那么腳的總數是2×100=200(只)這時兔的腳數為0,雞腳比兔腳多200只,而實際上雞腳比兔腳多80只.因此,雞腳與兔腳的差數比已知多了(200-80)=120(只),這是因為把其中的兔換成了雞.每把一只兔換成雞,雞的腳數將增加2只,兔的腳數減少4只.那么,雞腳與兔腳的差數增加(2+4)=6(只),所以換成雞的兔子有120÷6=20(只).有雞(100-20)=80(只)。
解:(2×100-80)÷(2+4)=20(只)。
100-20=80(只)。
答:雞與兔分別有80只和20只。
例3 紅英小學三年級有3個班共135人,二班比一班多5人,三班比二班少7人,三個班各有多少人?
分析1 我們設想,如果條件中三個班人數同樣多,那么,要求每班有多少人就很容易了.由此得到啟示,是否可以通過假設三個班人數同樣多來分析求解。
結合下圖可以想,假設二班、三班人數和一班人數相同,以一班為標準,則二班人數要比實際人數少5人.三班人數要比實際人數多7-5=2(人).那么,請你算一算,假設二班、三班人數和一班人數同樣多,三個班總人數應該是多少?
解法1:
一班:[135-5+(7-5)]÷3=132÷3
=44(人)
二班:44+5=49(人)
三班:49-7=42(人)
答:三年級一班、二班、三班分別有44人、49人和 42人。
分析2 假設一、三班人數和二班人數同樣多,那么,一班人數比實際要多5人,而三班要比實際人數多7人.這時的總人數又該是多少?
解法2:(135+ 5+ 7)÷3
=147÷3
=49(人)
49-5=44(人),49-7=42(人)
答:三年級一班、二班、三班分別有44人、49人和42人。
想一想:根據解法
1、解法2的思路,還可以怎樣假設?怎樣求解?
例4 劉老師帶了41名同學去北海公園劃船,共租了10條船.每條大船坐6人,每條小船坐4人,問大船、小船各租幾條?
分析 我們分步來考慮:
①假設租的 10條船都是大船,那么船上應該坐 6×10= 60(人)。
②假設后的總人數比實際人數多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假設成坐6人。
③一條小船當成大船多出2人,多出的18人是把18÷2=9(條)小船當成大船。
解:[6×10-(41+1)÷(6-4)
= 18÷2=9(條)
10-9=1(條)
答:有9條小船,1條大船。
例5 有蜘蛛、蜻蜓、蟬三種動物共18只,共有腿118條,翅膀20對(蜘蛛8條腿;蜻蜓6條腿,兩對翅膀;蟬6條腿,一對翅膀),求蜻蜓有多少只?
分析 這是在雞兔同籠基礎上發展變化的問題.觀察數字特點,蜻蜓、蟬都是6條腿,只有蜘蛛8條腿.因此,可先從腿數入手,求出蜘蛛的只數.我們假設三種動物都是6條腿,則總腿數為 6×18=108(條),所差 118-108=10(條),必然是由于少算了蜘蛛的腿數而造成的.所以,應有(118-108)÷(8-6)=5(只)蜘蛛.這樣剩下的18-5=13(只)便是蜻蜓和蟬的只數.再從翅膀數入手,假設13只都是蟬,則總翅膀數1×13=13(對),比實際數少 20-13=7(對),這是由于蜻蜓有兩對翅膀,而我們只按一對翅膀計算所差,這樣蜻蜓只數可求7÷(2-1)=7(只).解:①假設蜘蛛也是6條腿,三種動物共有多少條腿?
6×18=108(條)
②有蜘蛛多少只?
(118-108)÷(8-6)=5(只)
③蜻蜒、蟬共有多少只?
18-5=13(只)
④假設蜻蜒也是一對翅膀,共有多少對翅膀?1×13=13(對)
⑤蜻蜒多少只?
(20-13)÷ 2-1)= 7(只)
答:蜻蜒有7只.
第二篇:奧數雞兔同籠問題專題教案
奧數之雞兔同籠問題(交換問題)一.講解
1.雞兔同籠,有20個頭,54條腿,雞,兔各有多少只? 用方程解
2.雞兔同籠,共有45個頭,146只腳。籠中雞兔各有多少只?
分析 題目中給出了雞、兔共45只。如果假設這45只全都是兔子,那么就應該有180只腳。而題目只告訴我們有146只腳,我們算的180只腳和實際相比多算了34只腳。為什么呢?因為一只雞是兩只腳,而我們把它當成4只腳算了。如果用一只雞來置換一只兔,就要減少2之腳,那么,34只腳里包含多少個2只腳,也就是我們把多少只雞當成了兔子,顯然34÷2=17(只)。所以雞有17只,兔子有28只。當然,我們也可以把45只都假設成是雞,把以上問題反過來考慮。
解法一 假設全是兔子。
(4×45-146)÷(4-2)=17(只)——雞 45-17=28(只)——兔 解法二 假設全是雞。
(146-2×45)÷(4-2)=28(只)——兔 45-28=17(只)——雞 答:雞有17只,兔子有28只。
解“雞兔同籠問題”的常用方法是“替換法”、“轉換法”、“置換法”等。通常把其中一個未知數暫時當作另一個未知數,然后根據已知條件進行假設性的運算,直到求出結果。概括起來,解“雞兔同籠問題”的基本公式是:
雞數=(每只兔腳數×雞兔總數-實際腳數)÷(每只兔子腳數-每只雞的腳數)
兔數=雞兔總數-雞數 二.隨堂練習
1.盒子里有大、小兩種鋼珠共10個,共重28克,已知大鋼珠每個4克,小鋼珠每個2克。盒中大鋼珠、小鋼珠各有多少個?
分析 假設全部都是大鋼珠,則共重:10×4=40(克); 比原來的克數重:40-28=12(克);
小鋼珠的個數是:12÷(4-2)=6(個)大鋼珠的個數是:10-6=4(個)
同樣,也可以假設全部都是小鋼珠。算法一樣。解法一 假設全是大鋼珠。
(10×4-28)÷(4-2)=6(個)——小鋼珠 10-6=4(個)——大鋼珠
2.一個集郵愛好者買了10分和20分的郵票共100張,總值18元8角。這個集郵愛好者買這兩種郵票各多少張?
分析 先假定買來的100張郵票全部是20分一張的,那么總值應是2000分,比原來的總值多120分。而多的120分,是把10分一張的看作是20分的一張的,每張多算10分。因此可以先求出10分一張的郵票有多少張。解 10分一張的郵票的張數有:
(2000-1880)÷(20-10)=12(張)20分一張的郵票張數有: 100-12=88(張)
答:10分一張的郵票有12張,20分一張的郵票有88張。3.買2支鋼筆的價錢等于買8支圓珠筆的價錢。如果買3支鋼筆和5支圓珠筆共花17元,問兩種筆每支各多少元?
分析 根據“買2支鋼筆的價錢等于買8支圓珠筆的價錢”,可知“買1支鋼筆的價錢等于買4支圓珠筆的價錢”,買3支鋼筆的價錢可以買(4×3)支圓珠筆。這樣,我們就可以將買鋼筆的支數轉換為買圓珠筆的支數了。從而順利地求出每支圓珠筆的價錢。解 一支圓珠筆的價錢:
5+(8÷2)×3=17(支)17÷17=1(元)一支鋼筆的價錢: 1×8÷2=4(元)
答:一支鋼筆4元,一支圓珠筆1元。
4. 蜘蛛有8條腿,蜻蜓有6條腿和2對翅膀,蟬有6條腿和1對翅膀.現在這三種小蟲共18只,有118條腿和20對翅膀.每種小蟲各幾只?
解:因為蜻蜓和蟬都有6條腿,所以從腿的數目來考慮,可以把小蟲分成“8條腿”與“6條腿”兩種.利用公式就可以算出8條腿的 蜘蛛數=(118-6×18)÷(8-6)=5(只).因此就知道6條腿的小蟲共 18-5=13(只).也就是蜻蜓和蟬共有13只,它們共有20對翅膀.再利用一次公式
蟬數=(13×2-20)÷(2-1)=6(只).因此蜻蜓數是13-6=7(只).答:有5只蜘蛛,7只蜻蜓,6只蟬.三.課堂習題
1.龜鶴共有100個頭,350只腳.龜、鶴各多少只?
2.學校有象棋、跳棋共26副,恰好可供120個學生同時進行活 動.象棋2人下一副棋,跳棋6人下一副.象棋和跳棋各有幾副?
3.學校買來3個排球和2個足球,共花去111元。每個足球比每個排球貴3元。每個排球和每個足球各多少元?
4.某人領得工資240元,有2元、5元、10元三種人民幣,共50張,其中2元與5元的張數一樣多.那么2元、5元、10元各有多少張?
第三篇:小學三年級奧數下冊和倍問題教案范文
小學三年級奧數下冊和倍問題教案
和倍問題
和倍問題是已知大小兩個數的和與它們的倍數關系,求大小兩個數的應用題.為了幫助我們理解題意,弄清兩種量彼此間的關系,常采用畫線段圖的方法來表示兩種量間的這種關系,以便于找到解題的途徑。
例1 甲班和乙班共有圖書160本.甲班的圖書本數是乙班的3倍,甲班和乙班各有圖書多少本?
分析 設乙班的圖書本數為1份,則甲班圖書為乙班的3倍,那么甲班和乙班圖書本數的和相當于乙班圖書本數的4倍.還可以理解為4份的數量是160本,求出1份的數量也就求出了乙班的圖書本數,然后再求甲班的圖書本數.用下圖表示它們的關系:
解:乙班:160÷(3+1)=40(本)
甲班:40×3=120(本)
或 160-40=120(本)
答:甲班有圖書120本,乙班有圖書40本。
這道應用題解答完了,怎樣驗算呢?
可把求出的甲班本數和乙班本數相加,看和是不是160本;再把甲班的本數除以乙班本數,看是不是等于3倍.如果與條件相符,表明這題作對了.注意驗算決不是把原式再算一遍。
驗算:120+40=160(本)
120÷40=3(倍)。
例2 甲班有圖書120本,乙班有圖書30本,甲班給乙班多少本,甲班的圖書是乙班圖書的2倍?
分析 解這題的關鍵是找出哪個量是變量,哪個量是不變量.從已知條件中得出,不管甲班給乙班多少本書,還是乙班從甲班得到多少本書,甲、乙兩班圖書總和是不變的量.最后要求甲班圖書是乙班圖書的2倍,那么甲、乙兩班圖書總和相當于乙班現有圖書的3倍.依據解和倍問題的方法,先求出乙班現有圖書多少本,再與原有圖書本數相比較,可以求出甲班給乙班多少本書(見上圖)。
解:①甲、乙兩班共有圖書的本數是:
30+120=150(本)
②甲班給乙班若干本圖書后,甲、乙兩班共有的倍數是:
2+1=3(倍)
③乙班現有的圖書本數是:150÷3=50(本)
④甲班給乙班圖書本數是:50-30=20(本)
綜合算式:
(30+120)÷(2+1)=50(本)
50-30=20(本)
答:甲班給乙班20本圖書后,甲班圖書是乙班圖書的2倍。
驗算:(120-20)÷(30+20)=2(倍)
(120-20)+(30+20)=150(本)。
例3 光明小學有學生760人,其中男生比女生的3倍少40人,男、女生各有多少人?
分析 把女生人數看作一份,由于男生人數比女生人數的3倍還少40人,如果用男、女生人數總和760人再加上40人,就等于女生人數的4倍(見下圖)。
解:①女生人數:(760+40)÷(3+1)=200(人)
②男生人數:200×3-40=560(人)
或 760-200=560(人)
答:男生有560人,女生有200人。
驗算:560+200=760(人)
(560+40)÷200=3(倍)。
例4 果園里有桃樹、梨樹、蘋果樹共552棵.桃樹比梨樹的2倍多12棵,蘋果樹比梨樹少20棵,求桃樹、梨樹和蘋果樹各有多少棵?
分析 下圖可以看出桃樹比梨樹的2倍多12棵,蘋果樹比梨樹少20棵,都是同梨樹相比較、以梨樹的棵數為標準、作為1份數容易解答.又知三種樹的總數是552棵.如果給蘋果樹增加20棵,那么就和梨樹同樣多了;再從桃樹里減少12棵,那么就相當于梨樹的2倍了,而總棵樹則變為552+20-12=560(棵),相當于梨樹棵數的4倍。
解:①梨樹的棵數:
(552+20-12)÷(1+1+2)
=560÷4=140(棵)
②桃樹的棵數:140×2+12=292(棵)
③蘋果樹的棵數: 140-20=120(棵)
答:桃樹、梨樹、蘋果樹分別是292棵、140棵和120棵。
例5 549是甲、乙、丙、丁4個數的和.如果甲數加上2,乙數減少2,丙數乘以2,丁數除以2以后,則4個數相等.求4個數各是多少?
分析 上圖可以看出,丙數最小.由于丙數乘以2和丁數除以2相等,也就是丙數的2倍和丁數的一半相等,即丁數相當于丙數的4倍.乙減2之后是丙的2倍,甲加上2之后也是丙的2倍.根據這些倍數關系,可以先求出丙數,再分別求出其他各數。
解:①丙數是:(549+2-2)÷(2+2+1+4)
=549÷9
=61
②甲數是:61×2-2=120
③乙數是:61×2+2=124
④丁數是:61×4=244
驗算:120+124+61+244=549
120+2=122 124-2=122
61×2=122 244÷2=122
答:甲、乙、丙、丁分別是120、124、61、244.
第四篇:四年級奧數——雞兔同籠問題
第6講 雞兔同籠問題與假設法
雞兔同籠問題是按照題目的內容涉及到雞與兔而命名的,它是一類有名的中國古算題。許多小學算術應用題,都可以轉化為雞兔同籠問題來加以計算。
【例題講解及思維拓展訓練題】
例1 小梅數她家的雞與兔,數頭有16個,數腳有44只。問:小梅家的雞與兔各有多少只?
分析:假設16只都是雞,那么就應該有2×16=32(只)腳,但實際上有44只腳,比假設的情況多了44-32=12(只)腳,出現這種情況的原因是把兔當作雞了。如果我們以同樣數量的兔去換同樣數量的雞,那么每換一只,頭的數目不變,腳數增加了2只。因此只要算出12里面有幾個2,就可以求出兔的只數。
解:有兔(44-2×16)÷(4-2)=6(只),有雞16-6=10(只)。
答:有6只兔,10只雞。
當然,我們也可以假設16只都是兔子,那么就應該有4×16=64(只)腳,但實際上有44只腳,比假設的情況少了64-44=20(只)腳,這是因為把雞當作兔了。我們以雞去換兔,每換一只,頭的數目不變,腳數減少了4-2=2(只)。因此只要算出20里面有幾個2,就可以求出雞的只數。
有雞(4×16-44)÷(4-2)=10(只),有兔16——10=6(只)。
由例1看出,解答雞兔同籠問題通常采用假設法,可以先假設都是雞,然后以兔換雞;也可以先假設都是兔,然后以雞換兔。因此這類問題也叫置換問題。
【思維拓展訓練一】 1、100個和尚140個饃,大和尚1人分3個饃,小和尚1人分1個饃。問:大、小和尚各有多少人? 分析與解:本題由中國古算名題“百僧分饃問題”演變而得。如果將大和尚、小和尚分別看作雞和兔,饃看作腿,那么就成了雞兔同籠問題,可以用假設法來解。
假設100人全是大和尚,那么共需饃300個,比實際多300-140=160(個)。現在以小和尚去換大和尚,每換一個總人數不變,而饃就要減少3——1=2(個),因為160÷2=80,故小和尚有80人,大和尚有
100-80=20(人)。
同樣,也可以假設100人都是小和尚,同學們不妨自己試試。
在下面的例題中,我們只給出一種假設方法。
2、彩色文化用品每套19元,普通文化用品每套11元,這兩種文化用品共買了16套,用錢280元。問:兩種文化用品各買了多少套?
分析與解:我們設想有一只“怪雞”有1個頭11只腳,一種“怪兔”有1個頭19只腳,它們共有16個頭,280只腳。這樣,就將買文化用品問題轉換成雞兔同籠問題了。
假設買了16套彩色文化用品,則共需19×16=304(元),比實際多304——280=24(元),現在用普通文化用品去換彩色文化用品,每換一套少用19——11=8(元),所以
買普通文化用品 24÷8=3(套),買彩色文化用品 16-3=13(套)。
學習,就是努力爭取獲得自然沒有賦予我們的東西。/ 4
例2 雞、兔共100只,雞腳比兔腳多20只。問:雞、兔各多少只?
分析:假設100只都是雞,沒有兔,那么就有雞腳200只,而兔的腳數為零。這樣雞腳比兔腳多200只,而實際上只多20只,這說明假設的雞腳比兔腳多的數比實際上多200——20=180(只)。
現在以兔換雞,每換一只,雞腳減少2只,兔腳增加4只,即雞腳比兔腳多的腳數中就會減少4+2=6(只),而180÷6=30,因此有兔子30只,雞100——30=70(只)。解:有兔(2×100——20)÷(2+4)=30(只),有雞100——30=70(只)。
答:有雞70只,兔30只。
【思維拓展訓練二】
1、現有大、小油瓶共50個,每個大瓶可裝油4千克,每個小瓶可裝油2千克,大瓶比小瓶共多裝20千克。問:大、小瓶各有多少個?
分析:本題與例4非常類似,仿照例4的解法即可。解:小瓶有(4×50-20)÷(4+2)=30(個),大瓶有50-30=20(個)。
答:有大瓶20個,小瓶30個。
2、一批鋼材,用小卡車裝載要45輛,用大卡車裝載只要36輛。已知每輛大卡車比每輛小卡車多裝4噸,那么這批鋼材有多少噸?
分析:要算出這批鋼材有多少噸,需要知道每輛大卡車或小卡車能裝多少噸。
利用假設法,假設只用36輛小卡車來裝載這批鋼材,因為每輛大卡車比每輛小卡車多裝4噸,所以要剩下4×36=144(噸)。根據條件,要裝完這144噸鋼材還需要45-36=9(輛)小卡車。這樣每輛小卡車能裝144÷9=16(噸)。由此可求出這批鋼材有多少噸。解:4×36÷(45-36)×45=720(噸)。
答:這批鋼材有720噸。
例3 樂樂百貨商店委托搬運站運送500只花瓶,雙方商定每只運費0.24元,但如果發生損壞,那么每打破一只不僅不給運費,而且還要賠償1.26元,結果搬運站共得運費115.5元。問:搬運過程中共打破了幾只花瓶?
分析:假設500只花瓶在搬運過程中一只也沒有打破,那么應得運費0.24×500=120(元)。實際上只得到115.5元,少得120-115.5=4.5(元)。搬運站每打破一只花瓶要損失0.24+1.26=1.5(元)。因此共打破花瓶4.5÷1.5=3(只)。
解:(0.24×500-115.5)÷(0.24+1.26)=3(只)。
答:共打破3只花瓶。
【思維拓展訓練三】
1、小樂與小喜一起跳繩,小喜先跳了2分鐘,然后兩人各跳了3分鐘,一共跳了780下。已知小喜比小樂每分鐘多跳12下,那么小喜比小樂共多跳了多少下?
分析與解:利用假設法,假設小喜的跳繩速度減少到與小樂一樣,那么兩人跳的總數減少了
12×(2+3)=60(下)。
可求出小樂每分鐘跳
(780——60)÷(2+3+3)=90(下),小樂一共跳了90×3=270(下),因此小喜比小樂共多跳
780——270×2=240(下)。
學習,就是努力爭取獲得自然沒有賦予我們的東西。/ 4
【課堂鞏固訓練題】
1.雞、兔共有頭100個,腳350只,雞、兔各有多少只?
2.學校有象棋、跳棋共26副,2人下一副象棋,6人下一副跳棋,恰好可供120個學生進行活動。問:象棋與跳棋各有多少副?
3.班級購買活頁簿與日記本合計32本,花錢74元。活頁簿每本1.9元,日記本每本3.1元。問:買活頁簿、日記本各幾本?
4.龜、鶴共有100個頭,鶴腿比龜腿多20只。問:龜、鶴各幾只?
5.小蕾花40元錢買了14張賀年卡與明信片。賀年卡每張3元5角,明信片每張2元5角。問:賀年卡、明信片各買了幾張?
6.一個工人植樹,晴天每天植樹20棵,雨天每天植樹12棵,他接連幾天共植樹112棵,平均每天植樹14棵。問:這幾天中共有幾個雨天?
學習,就是努力爭取獲得自然沒有賦予我們的東西。/ 4
7.振興小學六年級舉行數學競賽,共有20道試題。做對一題得5分,沒做或做錯一題都要扣3分。小建得了60分,那么他做對了幾道題?
8.有一批水果,用大筐80只可裝運完,用小筐120只也可裝運完。已知每只大筐比每只小筐多裝運20千克,那么這批水果有多少千克?
9.蜘蛛有8條腿,蜻蜓有6條腿和2對翅膀,蟬有6條腿和1對翅膀。現有三種小蟲共18只,有118條腿和20對翅膀。問:每種小蟲各有幾只?
10.雞、兔共有腳100只,若將雞換成兔,兔換成雞,則共有腳92只。問:雞、兔各幾只?
學習,就是努力爭取獲得自然沒有賦予我們的東西。/ 4
第五篇:四年級奧數雞兔同籠問題
雞兔同籠問題
雞兔同籠問題是按照題目的內容涉及到雞與兔而命名的,它是一類有名的中國古算題。許多小學算術應用題,都可以轉化為雞兔同籠問題來加以計算。
【例題講解及思維拓展訓練題】
例1 小梅數她家的雞與兔,數頭有16個,數腳有44只。問:小梅家的雞與兔各有多少只?
【思維拓展訓練一】 1、100個和尚140個饃,大和尚1人分3個饃,小和尚1人分1個饃。問:大、小和尚各有多少人?
2、彩色文化用品每套19元,普通文化用品每套11元,這兩種文化用品共買了16套,用錢280元。問:兩種文化用品各買了多少套?
例2 雞、兔共100只,雞腳比兔腳多20只。問:雞、兔各多少只?
【思維拓展訓練二】
學習,就是努力爭取獲得自然沒有賦予我們的東西。1 / 5
1、現有大、小油瓶共50個,每個大瓶可裝油4千克,每個小瓶可裝油2千克,大瓶比小瓶共多裝20千克。問:大、小瓶各有多少個?
2、一批鋼材,用小卡車裝載要45輛,用大卡車裝載只要36輛。已知每輛大卡車比每輛小卡車多裝4噸,那么這批鋼材有多少噸?
例3 樂樂百貨商店委托搬運站運送500只花瓶,雙方商定每只運費0.24元,但如果發生損壞,那么每打破一只不僅不給運費,而且還要賠償1.26元,結果搬運站共得運費115.5元。問:搬運過程中共打破了幾只花瓶?
【思維拓展訓練三】
1、小樂與小喜一起跳繩,小喜先跳了2分鐘,然后兩人各跳了3分鐘,一共跳了780下。已知小喜比小樂每分鐘多跳12下,那么小喜比小樂共多跳了多少下?
【課堂鞏固訓練題】
1.雞、兔共有頭100個,腳350只,雞、兔各有多少只?
學習,就是努力爭取獲得自然沒有賦予我們的東西。2 / 5
2.學校有象棋、跳棋共26副,2人下一副象棋,6人下一副跳棋,恰好可供120個學生進行活動。問:象棋與跳棋各有多少副?
3.班級購買活頁簿與日記本合計32本,花錢74元。活頁簿每本1.9元,日記本每本3.1元。問:買活頁簿、日記本各幾本?
4.龜、鶴共有100個頭,鶴腿比龜腿多20只。問:龜、鶴各幾只?
5.小蕾花40元錢買了14張賀年卡與明信片。賀年卡每張3元5角,明信片每張2元5角。問:賀年卡、明信片各買了幾張?
學習,就是努力爭取獲得自然沒有賦予我們的東西。3 / 5
6.一個工人植樹,晴天每天植樹20棵,雨天每天植樹12棵,他接連幾天共植樹112棵,平均每天植樹14棵。問:這幾天中共有幾個雨天?
7.振興小學六年級舉行數學競賽,共有20道試題。做對一題得5分,沒做或做錯一題都要扣3分。小建得了60分,那么他做對了幾道題?
8.有一批水果,用大筐80只可裝運完,用小筐120只也可裝運完。已知每只大筐比每只小筐多裝運20千克,那么這批水果有多少千克?
9.蜘蛛有8條腿,蜻蜓有6條腿和2對翅膀,蟬有6條腿和1對翅膀。現有三種小蟲共18只,有118條腿和20對翅膀。問:每種小蟲各有幾只?
學習,就是努力爭取獲得自然沒有賦予我們的東西。4 / 5
10.雞、兔共有腳100只,若將雞換成兔,兔換成雞,則共有腳92只。問:雞、兔各幾只?
學習,就是努力爭取獲得自然沒有賦予我們的東西。/ 5