久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

最簡(jiǎn)二次根式教案

時(shí)間:2019-05-12 17:32:48下載本文作者:會(huì)員上傳
簡(jiǎn)介:寫寫幫文庫(kù)小編為你整理了多篇相關(guān)的《最簡(jiǎn)二次根式教案》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫(kù)還可以找到更多《最簡(jiǎn)二次根式教案》。

第一篇:最簡(jiǎn)二次根式教案

教學(xué)目的1.使學(xué)生掌握最簡(jiǎn)二次根式的定義,并會(huì)應(yīng)用此定義判斷一個(gè)根式是否為最簡(jiǎn)二次根式;2.會(huì)運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個(gè)二次根式化為最簡(jiǎn)二次根式。教學(xué)重點(diǎn)最簡(jiǎn)二次根式的定義。教學(xué)難點(diǎn)一個(gè)二次根式化成最簡(jiǎn)二次根式的方法。教學(xué)過(guò)程

一、復(fù)習(xí)引入1.把下列各根式化簡(jiǎn),并說(shuō)出化簡(jiǎn)的根據(jù):2.引導(dǎo)學(xué)生觀察考慮:化簡(jiǎn)前后的根式,被開(kāi)方數(shù)有什么不同?化簡(jiǎn)前的被開(kāi)方數(shù)有分?jǐn)?shù),分式;化簡(jiǎn)后的被開(kāi)方數(shù)都是整數(shù)或整式,且被開(kāi)方數(shù)中開(kāi)得盡方的因數(shù)或因式,被移到根號(hào)外。3.啟發(fā)學(xué)生回答:二次根式,請(qǐng)同學(xué)們考慮一下被開(kāi)方數(shù)符合什么條件的二次根式叫做最簡(jiǎn)二次根式?

二、講解新課1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡(jiǎn)二次根式定義:滿足下列兩個(gè)條件的二次根式叫做最簡(jiǎn)二次根式:(1)被開(kāi)方數(shù)的因數(shù)是整數(shù),因式是整式;(2)被開(kāi)方數(shù)中不含能開(kāi)得盡的因數(shù)或因式。最簡(jiǎn)二次根式定義中第(1)條說(shuō)明被開(kāi)方數(shù)不含有分母;分母是1的例外。第(2)條說(shuō)明被開(kāi)方數(shù)中每個(gè)因式的指數(shù)小于2;特別注意被開(kāi)方數(shù)應(yīng)化為因式連乘積的形式。2.練習(xí):下列各根式是否為最簡(jiǎn)二次根式,不是最簡(jiǎn)二次根式的說(shuō)明原因:3.例題:例1 把下列各式化成最簡(jiǎn)二次根式:例2 把下列各式化成最簡(jiǎn)二次根式:4.總結(jié)把二次根式化成最簡(jiǎn)二次根式的根據(jù)是什么?應(yīng)用了什么方法?當(dāng)被開(kāi)方數(shù)為整數(shù)或整式時(shí),把被開(kāi)方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開(kāi)得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號(hào)外面去。當(dāng)被開(kāi)方數(shù)是分?jǐn)?shù)或分式時(shí),根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。此方法是先根據(jù)分式的基本性質(zhì)把被開(kāi)方數(shù)的分母化成能開(kāi)得盡方的因式,然后分子、分母再分別化簡(jiǎn)。

三、鞏固練習(xí)1.把下列各式化成最簡(jiǎn)二次根式:2.判斷下列各根式,哪些是最簡(jiǎn)二次根式?哪些不是最簡(jiǎn)二次根式?如果不是,把它化成最簡(jiǎn)二次根式。

四、小結(jié)本節(jié)課學(xué)習(xí)了最簡(jiǎn)二次根式的定義及化簡(jiǎn)二次根式的方法。同學(xué)們掌握用最簡(jiǎn)二次根式的定義判斷一個(gè)根式是否為最簡(jiǎn)二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個(gè)根式化成最簡(jiǎn)二次根式,特別注意當(dāng)被開(kāi)方數(shù)為多項(xiàng)式時(shí)要進(jìn)行因式分解,被開(kāi)方數(shù)為兩個(gè)分?jǐn)?shù)的和則要先通分,再化簡(jiǎn)。

五、布置作業(yè)(1)把下列各式化成最簡(jiǎn)二次根式:字).

第二篇:最簡(jiǎn)二次根式(說(shuō)課)

最簡(jiǎn)二次根式(說(shuō)課)

作用與地位

作為二次根式乘、除法與加減法的過(guò)渡橋梁的“最簡(jiǎn)二次根式”這一節(jié)課在本章中起著承上啟下的作用,必須先復(fù)習(xí)與鞏固已學(xué)過(guò)的乘、除法知識(shí)。另一方面,本小節(jié)的內(nèi)容,顯然是下一小節(jié)“二次根式的加減法”的基礎(chǔ),因?yàn)榧訙p法就是在識(shí)別“同類的”最簡(jiǎn)二次根式的前提下進(jìn)行的。目的與要求

本課的內(nèi)容比較單純,就是要求學(xué)生掌握化簡(jiǎn)一個(gè)二次根式成最簡(jiǎn)二次根式的方法。當(dāng)然,這首先需要知道什么是最簡(jiǎn)二次根式(即本節(jié)課的重點(diǎn)),讓學(xué)生了解最簡(jiǎn)二次根式的概念,不在于能否背出定義,關(guān)鍵還是遇到實(shí)際式子能夠加以判斷(也就是本節(jié)課的難點(diǎn)),所以應(yīng)在練習(xí)中讓學(xué)生熟悉這個(gè)概念。我采用啟發(fā)式教學(xué)并借助實(shí)物投影以擴(kuò)充教學(xué)容量。背景

在實(shí)際問(wèn)題中,遇到二次根式,一般應(yīng)把它先化簡(jiǎn),這會(huì)給解決問(wèn)題帶來(lái)方便,把二次根式化簡(jiǎn),至少有以下三種用途:

(1)、把一個(gè)二次根式化簡(jiǎn)后,可避免因誤差積累而造成的結(jié)果不準(zhǔn)確。(2)、把兩個(gè)二次根式化簡(jiǎn)后,它們的乘除法運(yùn)算可能變得簡(jiǎn)單,例如: 32?27?42?33?126;1512 ÷245=

15?23532?35=

5=15。

(3)、把一組二次根式化簡(jiǎn)成最簡(jiǎn)二次根式后,可以對(duì)同類二次根式進(jìn)行加法、減法運(yùn)算(這將在下一小節(jié)中學(xué)習(xí)).

學(xué)生們?cè)谇懊嬉呀?jīng)看到了這些用途,實(shí)際上,看到這些用途是第二位的,最重要的是從這些用途中領(lǐng)會(huì)把復(fù)雜化為簡(jiǎn)單,把未知化為已知,從而使問(wèn)題得以解決的思想方法。教學(xué)過(guò)程分成以下幾個(gè)步驟

一、提出問(wèn)題:(投影顯示)

兩個(gè)問(wèn)題首先是對(duì)二次根式乘、除法的復(fù)習(xí);其次通過(guò)兩種解法對(duì) 比得出將繁雜的二次根式化為簡(jiǎn)單的二次根式后,使解決問(wèn)題更加容易。

二、問(wèn)題解決:

依照學(xué)生的認(rèn)知規(guī)律引導(dǎo)學(xué)生從從簡(jiǎn)單的問(wèn)題中發(fā)現(xiàn)規(guī)律,突出本 節(jié)課的重點(diǎn)。并由此引出新課“最簡(jiǎn)二次根式”,達(dá)到本課的第一個(gè)教學(xué)目的(理解最簡(jiǎn)二次根式的定義)。對(duì)于最簡(jiǎn)二次根式的定義以開(kāi)門見(jiàn)山的方式直接給出。

三、解決問(wèn)題:

接著通過(guò)訓(xùn)練將最簡(jiǎn)二次根式的定義加以熟練并總結(jié)出化簡(jiǎn)最簡(jiǎn)二

次根式的步驟,從而達(dá)到本課的第二個(gè)教學(xué)目的(會(huì)將不是最簡(jiǎn)二次根式的根式化成最簡(jiǎn)二次根式)。

在訓(xùn)練內(nèi)容的選擇上考慮到學(xué)生接受新知識(shí)的能力一是以常用運(yùn)算

為主,采用由淺入深,層層遞進(jìn)的方式,二是以基本技能為主,而不追求繁難式子化簡(jiǎn)的特殊技巧。在進(jìn)行最簡(jiǎn)二次根式的化簡(jiǎn)時(shí),始終圍繞二次根式的概念和性質(zhì),抓住學(xué)生問(wèn)題的癥結(jié)培養(yǎng)學(xué)生獨(dú)立學(xué)習(xí),思考解決問(wèn)題的能力。

四、總結(jié)問(wèn)題:

采用學(xué)生小結(jié)教師補(bǔ)充的方式來(lái)概括本節(jié)課的知識(shí)。

第三篇:最簡(jiǎn)二次根式的優(yōu)秀教學(xué)設(shè)計(jì)

教學(xué)目標(biāo)

1.使學(xué)生進(jìn)一步理解最簡(jiǎn)二次根式的概念;

2.較熟練地掌握把一個(gè)式子化為最簡(jiǎn)二次根式的方法.

教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):較熟練地把二次根式化為最簡(jiǎn)二次根式.

難點(diǎn):把被開(kāi)方數(shù)是多項(xiàng)式和分式的二次根式化為最簡(jiǎn)二次根式.

教學(xué)過(guò)程設(shè)計(jì)

一、復(fù)習(xí)

1.把下列各式化為最簡(jiǎn)二次根式:

請(qǐng)說(shuō)出第(3),(4)題的解題過(guò)程.

答:第(3)題的被開(kāi)方數(shù)是一個(gè)多項(xiàng)式,先把它分解因式,再運(yùn)用積的算術(shù)平方根的性質(zhì),把根號(hào)中的平方式及平方數(shù)開(kāi)出來(lái),運(yùn)算結(jié)果應(yīng)化為最簡(jiǎn)二次根式.

理化.

二、新課

例1 把下列各式化成最簡(jiǎn)二次根式:

請(qǐng)說(shuō)出各題的特點(diǎn)和解題思路.

答:(1)題的被開(kāi)方數(shù)及(2)題的被開(kāi)方數(shù)的分子是多項(xiàng)式,應(yīng)化成因式積的形式,可以先分解因式,再化簡(jiǎn).

(3)題的被開(kāi)方數(shù)的分母是兩個(gè)數(shù)的平方差,先利用平方差公式把它化為乘積形式,再根據(jù)商的算術(shù)平方根和積的算術(shù)平方根的性質(zhì)及分母有理化的方法,使運(yùn)算結(jié)果為最簡(jiǎn)二次根式.

例2 計(jì)算:

分析:依據(jù)二次根式的乘除法的法則進(jìn)行計(jì)算,最后要把計(jì)算結(jié)果化成最簡(jiǎn)二次根式.

三、課堂練習(xí)

1.選擇題:

(1)下列二次根式中,最簡(jiǎn)二次根式是

(2)下列二次根式中,最簡(jiǎn)二次根式是

(3)下列二次根式中,最簡(jiǎn)二次根式是

(4)下列二次根式中,最簡(jiǎn)二次根式是

(5)下列二次根式中,最簡(jiǎn)二次根式是

(7)下列化簡(jiǎn)中,正確的是

(8)下列化簡(jiǎn)中,錯(cuò)誤的是

2.把下列各式化為最簡(jiǎn)二次根式:

3.計(jì)算:

答案:

四、小結(jié)

1.把一個(gè)式子化為最簡(jiǎn)二次根式時(shí),如果被開(kāi)方數(shù)是多項(xiàng)式,應(yīng)把它化成積的形式,一般可考慮先分解因式,然后再化簡(jiǎn).

2.如果一個(gè)式子的被開(kāi)方數(shù)的分母是一個(gè)多項(xiàng)式,而這個(gè)多項(xiàng)式又不能分解因式(如課堂練習(xí)2(2)),在分母有理化時(shí),把分子分母同乘以這個(gè)多項(xiàng)式.

3.二次根式的乘除法運(yùn)算,運(yùn)算結(jié)果一定要化為最簡(jiǎn)二次根式.

五、作業(yè)

1.把下列各式化成最簡(jiǎn)二次根式:

2.計(jì)算:

答案:

課堂教學(xué)設(shè)計(jì)說(shuō)明

最簡(jiǎn)二次根式教學(xué)分二課時(shí)進(jìn)行.教學(xué)設(shè)計(jì)中首先安排討論二次根式的被開(kāi)方數(shù)是單項(xiàng)式以及被開(kāi)方數(shù)的分母是單項(xiàng)式的情況,然后再討論被開(kāi)方數(shù)是多項(xiàng)式和分母是多項(xiàng)式的情況.通過(guò)5個(gè)例題及課堂練習(xí),最后達(dá)到使學(xué)生比較深刻地理解最簡(jiǎn)二次根式的概念,達(dá)到熟練地掌握把二次根式化為最簡(jiǎn)二次根式的教學(xué)目標(biāo).的是引導(dǎo)學(xué)生能把一個(gè)式子化簡(jiǎn)為最簡(jiǎn)二次根式應(yīng)用于有關(guān)計(jì)算問(wèn)題中去,把最簡(jiǎn)二次根式和已學(xué)過(guò)的二次根式的乘除運(yùn)算進(jìn)行聯(lián)系,促使學(xué)生把單個(gè)概念和方法納入認(rèn)知系統(tǒng)中,啟發(fā)學(xué)生認(rèn)識(shí)到二次根式的乘除運(yùn)算與最簡(jiǎn)二次根式是密切關(guān)聯(lián)的.

第四篇:二次根式教案

I.二次根式的定義和概念:

1、定義:一般地,形如√ā(a≥0)的代數(shù)式叫做二次根式.當(dāng)a>0時(shí),√a表示a的算數(shù)平方根,√0=0

2、概念:式子√ā(a≥0)叫二次根式.√ā(a≥0)是一個(gè)非負(fù)數(shù).II.二次根式√ā的簡(jiǎn)單性質(zhì)和幾何意義 1)a≥0;√ā≥0 [ 雙重非負(fù)性 ] 2)(√ā)^2=a(a≥0)[任何一個(gè)非負(fù)數(shù)都可以寫成一個(gè)數(shù)的平方的形式] 3)√(a^2+b^2)表示平面間兩點(diǎn)之間的距離,即勾股定理推論.III.二次根式的性質(zhì)和最簡(jiǎn)二次根式 1)二次根式√ā的化簡(jiǎn) a(a≥0)√ā=|a|={-a(a<0)2)積的平方根與商的平方根 √ab=√a·√b(a≥0,b≥0)√a/b=√a /√b(a≥0,b>0)3)最簡(jiǎn)二次根式 條件:

(1)被開(kāi)方數(shù)的因數(shù)是整數(shù)或字母,因式是整式;

(2)被開(kāi)方數(shù)中不含有可化為平方數(shù)或平方式的因數(shù)或因式.如:不含有可化為平方數(shù)或平方式的因數(shù)或因式的有√

2、√

3、√a(a≥0)、√x+y等;

含有可化為平方數(shù)或平方式的因數(shù)或因式的有√

4、√

9、√a^

2、√(x+y)^

2、√x^2+2xy+y^2等 IV.二次根式的乘法和除法 1 運(yùn)算法則

√a·√b=√ab(a≥0,b≥0)√a/b=√a /√b(a≥0,b>0)

二數(shù)二次根之積,等于二數(shù)之積的二次根.2 共軛因式

如果兩個(gè)含有根式的代數(shù)式的積不再含有根式,那么這兩個(gè)代數(shù)式叫做共軛因式,也稱互為有理化根式.V.二次根式的加法和減法 1 同類二次根式

一般地,把幾個(gè)二次根式化為最簡(jiǎn)二次根式后,如果它們的被開(kāi)方數(shù)相同,就把這幾個(gè)二次根式叫做同類二次根式.2 合并同類二次根式

把幾個(gè)同類二次根式合并為一個(gè)二次根式就叫做合并同類二次根式.3二次根式加減時(shí),可以先將二次根式化為最簡(jiǎn)二次根式,再將被開(kāi)方數(shù)相同的進(jìn)行合并

Ⅵ.二次根式的混合運(yùn)算 1確定運(yùn)算順序 2靈活運(yùn)用運(yùn)算定律 3正確使用乘法公式 4大多數(shù)分母有理化要及時(shí) 5在有些簡(jiǎn)便運(yùn)算中也許可以約分,不要盲目有理化 VII.分母有理化 分母有理化有兩種方法 I.分母是單項(xiàng)式

如:√a/√b=√a×√b/√b×√b=√ab/b II.分母是多項(xiàng)式 要利用平方差公式

如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b 如圖

II.分母是多項(xiàng)式 要利用平方差公式

如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b

第五篇:二次根式教案

二次根式教案匯編七篇

二次根式教案 篇1

【1】二次根式的加減教案

教材分析:

本節(jié)內(nèi)容出自九年級(jí)數(shù)學(xué)上冊(cè)第二十一章第三節(jié)的第一課時(shí),本節(jié)在研究最簡(jiǎn)二次根式和二次根式的乘除的基礎(chǔ)上,來(lái)學(xué)習(xí)二次根式的加減運(yùn)算法則和進(jìn)一步完善二次根式的化簡(jiǎn)。本小節(jié)重點(diǎn)是二次根式的加減運(yùn)算,教材從一個(gè)實(shí)際問(wèn)題引出二次根式的加減運(yùn)算,使學(xué)生感到研究二次根式的加減運(yùn)算是解決實(shí)際問(wèn)題的需要。通過(guò)探索二次根式加減運(yùn)算,并用其解決一些實(shí)際問(wèn)題,來(lái)提高我們用數(shù)學(xué)解決實(shí)際問(wèn)題的意識(shí)和能力。另外,通過(guò)本小節(jié)學(xué)習(xí)為后面學(xué)生熟練進(jìn)行二次根式的加減運(yùn)算以及加、減、乘、除混合運(yùn)算打下了鋪墊。

學(xué)生分析:

本節(jié)課的內(nèi)容是知識(shí)的延續(xù)和創(chuàng)新,學(xué)生積極主動(dòng)的投入討論、交流、建構(gòu)中,自主探索、動(dòng)手操作、協(xié)作交流,全班學(xué)生具有較扎實(shí)的知識(shí)和創(chuàng)新能力,通過(guò)自學(xué)、小組討論大部分學(xué)生能夠達(dá)到教學(xué)目標(biāo),少部分學(xué)生有困難,基礎(chǔ)差、自學(xué)能力差,因此要提供賞識(shí)性評(píng)價(jià)教學(xué)策略,給予個(gè)別關(guān)照、心理暗示以及適當(dāng)?shù)木窦?lì),克服自卑心理,讓他們逐步樹(shù)立自尊心與自信心,從而完成自己的'學(xué)習(xí)任務(wù)。

設(shè)計(jì)理念:

新課程有效課堂教學(xué)明確倡導(dǎo),學(xué)生是學(xué)習(xí)的主人,在學(xué)生自學(xué)文本的基礎(chǔ)上動(dòng)手實(shí)踐、自主探究、合作交流,來(lái)倡導(dǎo)新的學(xué)習(xí)觀,讓他們完成二次根式加減知識(shí)研究。教師從過(guò)去知識(shí)的傳授者轉(zhuǎn)變?yōu)閷W(xué)生的自主性、探究性、合作性學(xué)習(xí)活動(dòng)的設(shè)計(jì)者和組織者,與學(xué)生零距離接觸共同探究。在教學(xué)過(guò)程中教師設(shè)置開(kāi)放的、面向?qū)嶋H的、富有挑戰(zhàn)性的問(wèn)題情境,使學(xué)生在嘗試、探索、思考、交流與合作中培養(yǎng)分析、歸納、總結(jié)的能力,把“要我學(xué)”變成“我要學(xué)”,通過(guò)開(kāi)放式命題,嘗試從不同角度尋求解決問(wèn)題的方法,養(yǎng)成良好的學(xué)習(xí)習(xí)慣,掌握學(xué)習(xí)策略,并根據(jù)活動(dòng)中示范和指導(dǎo)培養(yǎng)學(xué)生大膽闡述并討論觀點(diǎn),說(shuō)明所獲討論的有效性,并對(duì)推論進(jìn)行評(píng)價(jià)。從而營(yíng)造一個(gè)接納的、支持的、寬容的良好氛圍進(jìn)行學(xué)習(xí)。

教學(xué)目標(biāo)知識(shí)與技能目標(biāo):

會(huì)化簡(jiǎn)二次根式,了解同類二次根式的概念,會(huì)進(jìn)行簡(jiǎn)單的二次根式的加減法;通過(guò)加減運(yùn)算解決生活的實(shí)際問(wèn)題。

過(guò)程與方法目標(biāo):

通過(guò)類比整式加減法運(yùn)算體驗(yàn)二次根式加減法運(yùn)算的過(guò)程;學(xué)生經(jīng)歷由實(shí)際問(wèn)題引入數(shù)學(xué)問(wèn)題的過(guò)程,發(fā)展學(xué)生的抽象概括能力。

情感態(tài)度與價(jià)值觀:

通過(guò)對(duì)二次根式加減法的探究,激發(fā)學(xué)生的探索熱情,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過(guò)程中來(lái),使他們體驗(yàn)到成功的樂(lè)趣.

重點(diǎn)、難點(diǎn):重點(diǎn):

合并被開(kāi)放數(shù)相同的同類二次根式,會(huì)進(jìn)行簡(jiǎn)單的二次根式的加減法。

難點(diǎn):

二次根式加減法的實(shí)際應(yīng)用。

關(guān)鍵問(wèn)題 :

了解同類二次根式的概念,合并同類二次根式,會(huì)進(jìn)行二次根式的加減法。

教學(xué)方法:.

1. 引導(dǎo)發(fā)現(xiàn)法:在教師的啟發(fā)引導(dǎo)下,鼓勵(lì)學(xué)生積極參與,與實(shí)際問(wèn)題相結(jié)合,采用“問(wèn)題—探索—發(fā)現(xiàn)”的研究模式,讓學(xué)生自主探索,合作學(xué)習(xí),歸納結(jié)論,掌握規(guī)律。

2. 類比法:由實(shí)際問(wèn)題導(dǎo)入二次根式加減運(yùn)算;類比合并同類項(xiàng)合并同類二次根式。

3.嘗試訓(xùn)練法:通過(guò)學(xué)生嘗試,教師針對(duì)個(gè)別問(wèn)題進(jìn)行點(diǎn)撥指導(dǎo),實(shí)現(xiàn)全優(yōu)的教育效果。

【2】二次根式的加減教案

教學(xué)目標(biāo):

1.知識(shí)目標(biāo):二次根式的加減法運(yùn)算

2.能力目標(biāo):能熟練進(jìn)行二次根式的加減運(yùn)算,能通過(guò)二次根式的加減法運(yùn)算解決實(shí)際問(wèn)題。

3.情感態(tài)度:培養(yǎng)學(xué)生善于思考,一絲不茍的科學(xué)精神。

重難點(diǎn)分析:

重點(diǎn):能熟練進(jìn)行二次根式的加減運(yùn)算。

難點(diǎn):正確合并被開(kāi)方數(shù)相同的二次根式,二次根式加減法的實(shí)際應(yīng)用。

教學(xué)關(guān)鍵:通過(guò)復(fù)習(xí)舊知識(shí),運(yùn)用類比思想方法,達(dá)到溫故知新的目的;運(yùn)用創(chuàng)設(shè)問(wèn)題激發(fā)學(xué)生求知欲;通過(guò)學(xué)生全面參與學(xué)習(xí)(分層次要求),達(dá)到每個(gè)學(xué)生在學(xué)習(xí)數(shù)學(xué)上有不同的發(fā)展。

運(yùn)用教具:小黑板等。

教學(xué)過(guò)程:

問(wèn)題與情景

師生活動(dòng)

設(shè)計(jì)目的

活動(dòng)一:

情景引入,導(dǎo)學(xué)展示

1.把下列二次根式化為最簡(jiǎn)二次根式: , ; , , 。上述兩組二次根式,有什么特點(diǎn)?

2.現(xiàn)有一塊長(zhǎng)7.5dm、寬5dm的木板,能否采用如教科書(shū)圖21.3-所示的方式,在這塊木板上截出兩個(gè)面積分別是8dm 和18dm 的正方形木板?

這道題是舊知識(shí)的回顧,老師可以找同學(xué)直接回答。對(duì)于問(wèn)題,老師要關(guān)注:學(xué)生是否能熟練得到正確答案。 教師傾聽(tīng)學(xué)生的交流,指導(dǎo)學(xué)生探究。

問(wèn):什么樣的二次根式能進(jìn)行加減運(yùn)算,運(yùn)算到那一步為止。

由此也可以看到二次根式的加減只有通過(guò)找出被開(kāi)方數(shù)相同的二次根式的途徑,才能進(jìn)行加減。

加強(qiáng)新舊知識(shí)的聯(lián)系。通過(guò)觀察,初步認(rèn)識(shí)同類二次根式。

引出二次根式加減法則。

3. A、B層同學(xué)自主學(xué)習(xí)15頁(yè)例1、例2、例3,C層同學(xué)至少完成例1、例2的學(xué)習(xí)。

例1.計(jì)算:

(1) ;

(2) - ;

例2. 計(jì)算:

1)

2)

例3.要焊接一個(gè)如教科書(shū)圖21.3—2所示的鋼架,大約需要多少米鋼材(精確到0.1米)?

活動(dòng)二:分層練習(xí),合作互助

1.下列計(jì)算是否正確?為什么?

(1)

(2) ;

(3) 。

2.計(jì)算:

(1) ;

(2)

(3)

(4)

3.(見(jiàn)課本16頁(yè))

補(bǔ)充:

活動(dòng)三:分層檢測(cè),反饋小結(jié)

教材17頁(yè)習(xí)題:

A層、B層:2、3.

C層1、2.

小結(jié):

這節(jié)課你學(xué)到了什么知識(shí)?你有什么收獲?

作業(yè):課堂練習(xí)冊(cè)第5、6頁(yè)。

自學(xué)的'同時(shí)抽查部分同學(xué)在黑板上板書(shū)計(jì)算過(guò)程。抽2名C層同學(xué)在黑板上完成例1板書(shū)過(guò)程,學(xué)生在計(jì)算時(shí)若出現(xiàn)錯(cuò)誤,抽2名B層同學(xué)訂正。抽2名B層同學(xué)在黑板上完成例2板書(shū)過(guò)程,若出現(xiàn)錯(cuò)誤,再抽2名A層同學(xué)訂正。抽1名A層同學(xué)在黑板上完成例3板書(shū)過(guò)程,并做適當(dāng)?shù)姆治鲋v解。

此題是聯(lián)系實(shí)際的題目,需要學(xué)生先列式,再計(jì)算。并將結(jié)果精確到0.1 m, 學(xué)生考慮問(wèn)題要全面,不能漏掉任何一段鋼材。

老師提示:

1)解決問(wèn)題的方案是否得當(dāng);2)考慮的問(wèn)題是否全面。3)計(jì)算是否準(zhǔn)確。

A層同學(xué)完成16頁(yè)練習(xí)1、2、3;B層同學(xué)完成練習(xí)1、2,可選做第3題;C層同學(xué)盡量完成練習(xí)1、2。多數(shù)同學(xué)完成后,讓學(xué)生在小組內(nèi)互相檢查,有問(wèn)題時(shí)共同分析矯正或請(qǐng)教老師。也可以抽查部分同學(xué)。例如:抽3名C層同學(xué)口答練習(xí)1;抽4名B層或C層同學(xué)在黑板上板書(shū)練習(xí)第2題;抽1名A層或B層同學(xué)在黑板上板書(shū)練習(xí)第3題后再分析講解。

點(diǎn)撥:1)對(duì) 的化簡(jiǎn)是否正確;2)當(dāng)根式中出現(xiàn)小數(shù)、分?jǐn)?shù)、字母時(shí),是否能正確處理;

3)運(yùn)算法則的運(yùn)用是否正確

先測(cè)試,再小組內(nèi)互批,查找問(wèn)題。學(xué)生反思本節(jié)課學(xué)到的知識(shí),談自己的感受。

小結(jié)時(shí)教師要關(guān)注:

1)學(xué)生是否抓住本課的重點(diǎn);

2)對(duì)于常見(jiàn)錯(cuò)誤的認(rèn)識(shí)。

把學(xué)習(xí)目標(biāo)由高到低分為A、B、C三個(gè)層次,教學(xué)中做到分層要求。

學(xué)生學(xué)習(xí)經(jīng)歷由淺到深的過(guò)程,可以提高學(xué)生能力,同時(shí)有利于激發(fā)學(xué)生的探索知識(shí)的欲望。

二次根式的加減運(yùn)算融入實(shí)際問(wèn)題中去,提高了學(xué)生的學(xué)習(xí)興趣和對(duì)數(shù)學(xué)知識(shí)的應(yīng)用意識(shí)和能力。

小組成員互相檢查學(xué)生對(duì)于新的知識(shí)掌握的情況,鞏固學(xué)生剛掌握的知識(shí)能力。達(dá)到共同把關(guān)、合作互助的目的。

培養(yǎng)學(xué)生的計(jì)算的準(zhǔn)確性,以培養(yǎng)學(xué)生科學(xué)的精神。

對(duì)課堂的問(wèn)題及時(shí)反饋,使學(xué)生熟練掌握新知識(shí)。

每個(gè)學(xué)生對(duì)于知識(shí)的理解程度不同,學(xué)生回答時(shí)教師要多鼓勵(lì)學(xué)生。

二次根式教案 篇2

教學(xué)目的:

1、在二次根式的混合運(yùn)算中,使學(xué)生掌握應(yīng)用有理化分母的方法化簡(jiǎn)和計(jì)算二次根式;

2、會(huì)求二次根式的代數(shù)的值;

3、進(jìn)一步提高學(xué)生的綜合運(yùn)算能力。

教學(xué)重點(diǎn):在二次根式的混合運(yùn)算中,靈活選擇有理化分母的方法化簡(jiǎn)二次根式

教學(xué)難點(diǎn):正確進(jìn)行二次根式的混合運(yùn)算和求含有二次根式的代數(shù)式的值

教學(xué)過(guò)程:

一、二次根式的混合運(yùn)算

例1 計(jì)算:

分析:(1)題是二次根式的加減運(yùn)算,可先把前三個(gè)二次根式化最簡(jiǎn)二次根式,把第四式的分母有理化,然后再進(jìn)行二次根式的加減運(yùn)算。

(2)題是含乘方、加、減和除法的混合運(yùn)算,應(yīng)按運(yùn)算的順序進(jìn)行計(jì)算,先算括號(hào)內(nèi)的式子,最后進(jìn)行除法運(yùn)算。注意的'計(jì)算。

練習(xí)1:P206 / 8--① P207 / 1①②

例2 計(jì)算

問(wèn):計(jì)算思路是什么?

答:先把第一人的括號(hào)內(nèi)的式子通分,把第二個(gè)括號(hào)內(nèi)的式子的分母有理化,再進(jìn)行計(jì)算。

二、求代數(shù)式的值。 注意兩點(diǎn):

(1)如果已知條件為含二次根式的式子,先把它化簡(jiǎn);

(2)如果代數(shù)式是含二次根式的式子,應(yīng)先把代數(shù)式化簡(jiǎn),再求值。

例3 已知,求的值。

分析:多項(xiàng)式可轉(zhuǎn)化為用與表示的式子,因此可根據(jù)已知條件中的及的值。求得與的值。在計(jì)算中,先把及的式了有理化分母。可使計(jì)算簡(jiǎn)便。

例4 已知,求的值。

觀察代數(shù)式的特點(diǎn),請(qǐng)說(shuō)出求這個(gè)代數(shù)式的值的思路。

答:所求的代數(shù)式中,相減的兩個(gè)式子的分母都含有二次根式,為化去它們的分母中的根號(hào),可以分別先把各自的分母有理化或進(jìn)行]通分,把這個(gè)代數(shù)式化簡(jiǎn)后,再求值。

三、小結(jié)

1、對(duì)于二次根式的混合混合運(yùn)算。應(yīng)根據(jù)二次根式的加、減、乘除和乘方運(yùn)算的順序進(jìn)行,即先進(jìn)行乘方運(yùn)算,再進(jìn)行乘、除運(yùn)算,最后進(jìn)行加、減運(yùn)算。如果有括號(hào),先進(jìn)行括號(hào)內(nèi)的式子的運(yùn)算,運(yùn)算結(jié)果要化為最簡(jiǎn)二次根式。

2、在代數(shù)式求值問(wèn)題中,如果已知條件所求式子中有含二次根式(或分式)的式子,應(yīng)先把它們化簡(jiǎn),然后再求值。

3、在進(jìn)行二次根式的混合運(yùn)算時(shí),要根據(jù)題目特點(diǎn),靈活選擇解題方法,目的在于使計(jì)算更簡(jiǎn)捷。

四、作業(yè)

P206 / 7 P206 / 8---②③

二次根式教案 篇3

第十六章 二次根式

代數(shù)式用運(yùn)算符號(hào)把數(shù)和表示數(shù)的字母連接起來(lái)的式子叫代數(shù)式①式子中不能出現(xiàn)“=,≠,≥,≤,<,>”;②單個(gè)的數(shù)字或單個(gè)的字母也是代數(shù)式

5.5(解析:這類題保證被開(kāi)方數(shù)是最小的完全平方數(shù)即可得出結(jié)論.20=22×5,所以正整數(shù)的最小值為5.)

6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:關(guān)鍵是逆用2=a(a≥0)將3變成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)

7.解:(1) . (2)寬:3 ;長(zhǎng):5 .

8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.

9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.

10.解析:在利用=|a|=化簡(jiǎn)二次根式時(shí),當(dāng)根號(hào)內(nèi)的因式移到根號(hào)外面時(shí),一定要注意原來(lái)根號(hào)里面的符號(hào),這也是化簡(jiǎn)時(shí)最容易出錯(cuò)的地方.

解:乙的解答是錯(cuò)誤的.因?yàn)楫?dāng)a=時(shí),=5,a-<0,所以 ≠a-,而應(yīng)是 =-a.

本節(jié)課通過(guò)“觀察——?dú)w納——運(yùn)用”的模式,讓學(xué)生對(duì)知識(shí)的形成與掌握變得簡(jiǎn)單起來(lái),將一個(gè)一個(gè)知識(shí)點(diǎn)落實(shí)到位,適當(dāng)增加了拓展性的練習(xí),層層遞進(jìn),使不同的學(xué)生得到了不同的發(fā)展和提高.

在探究二次根式的性質(zhì)時(shí),通過(guò)“提問(wèn)——追問(wèn)——討論”的形式展開(kāi),保證了活動(dòng)有一定的針對(duì)性,但是學(xué)生發(fā)揮主體作用不夠.

在探究完成二次根式的性質(zhì)1后,總結(jié)學(xué)習(xí)方法,再放手讓學(xué)生自主探究二次根式的性質(zhì)2.既可以提高學(xué)習(xí)效率,又可以培養(yǎng)學(xué)生自學(xué)能力.

練習(xí)(教材第4頁(yè))

1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.

2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.

習(xí)題16.1(教材第5頁(yè))

1.解:(1)欲使有意義,則必有a+2≥0,∴a≥-2,∴當(dāng)a≥-2時(shí),有意義. (2)欲使有意義,則必有3-a≥0,∴a≤3,∴當(dāng)a≤3時(shí),有意義. (3)欲使有意義,則必有5a≥0,∴a≥0,∴當(dāng)a≥0時(shí),有意義. (4)欲使有意義,則必有2a+1≥0,∴a≥-,∴當(dāng)a≥-時(shí),有意義.

2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.

3.解:(1)設(shè)圓的半徑為R,由圓的`面積公式得S=πR2,所以R2=,所以R=± .因?yàn)閳A的半徑不能是負(fù)數(shù),所以R=-不符合題意,舍去,故R= ,即面積為S的圓的半徑為 . (2)設(shè)較短的邊長(zhǎng)為2x,則它的鄰邊長(zhǎng)為3x.由長(zhǎng)方形的面積公式得2x3x=S,所以x=±,因?yàn)閤=-不符合題意,舍去,所以x=,所以2x=2=,3x=3=,即這個(gè)長(zhǎng)方形的相鄰兩邊的長(zhǎng)分別為和.

4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.

5.解:由題意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合題意,舍去,∴r=,即r的值是.

6.解:設(shè)AB=x,則AB邊上的高為4x,由題意,得x4x=12,則x2=6,∴x=±.∵x=-不符合題意,舍去,∴x=.故AB的長(zhǎng)為.

7.解:(1)∵x2+1>0恒成立,∴無(wú)論x取任何實(shí)數(shù),都有意義. (2)∵(x-1)2≥0恒成立,∴無(wú)論x取任何實(shí)數(shù),都有意義. (3)∵即x>0,∴當(dāng)x>0時(shí), 在實(shí)數(shù)范圍內(nèi)有意義. (4)∵即x>-1,∴當(dāng)x>-1時(shí),在實(shí)數(shù)范圍內(nèi)有意義.

8.解:設(shè)h=t2, 則由題意,得20=×22,解得=5,∴h=5t2,∴t= (負(fù)值已舍去).當(dāng)h=10時(shí),t= =,當(dāng)h=25時(shí),t= =.故當(dāng)h=10和h=25時(shí),小球落地所用的時(shí)間分別為 s和 s.

9.解:(1)由題意知18-n≥0且為整數(shù),則n≤18,n為自然數(shù)且為整數(shù),∴符合條件的n的所有可能的值為2,9,14,17,18. (2)∵24n≥0且是整數(shù),n為正整數(shù),∴符合條件的n的最小值是6.

10.解:V=πr2×10,r= (負(fù)值已舍去),當(dāng)V=5π時(shí), r= =,當(dāng)V=10π時(shí),r= =1,當(dāng)V=20π時(shí),r= =.

如圖所示,根據(jù)實(shí)數(shù)a,b在數(shù)軸上的位置,化簡(jiǎn):+.

〔解析〕 根據(jù)數(shù)軸可得出a+b與a-b的正負(fù)情況,從而可將二次根式化簡(jiǎn).

解:由數(shù)軸可得:a+b<0,a-b>0,

∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.

[解題策略] 結(jié)合數(shù)軸得出字母的取值范圍,再化簡(jiǎn)二次根式,此題體現(xiàn)了數(shù)形結(jié)合的思想.

已知a,b,c為三角形的三條邊,則+= .

〔解析〕 根據(jù)三角形三邊的關(guān)系,先判斷a+b-c與b-a-c的符號(hào),再去根號(hào)、絕對(duì)值符號(hào)并化簡(jiǎn).因?yàn)閍,b,c為三角形的三條邊,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.

[解題策略] 此類化簡(jiǎn)問(wèn)題要特別注意符號(hào)問(wèn)題.

化簡(jiǎn):.

〔解析〕 題中并沒(méi)有明確字母x的取值范圍,需要分x≥3和x<3兩種情況考慮.

解:當(dāng)x≥3時(shí),=|x-3|=x-3;

當(dāng)x<3時(shí),=|x-3|=-(x-3)=3-x.

[解題策略] 化簡(jiǎn)時(shí),先將它化成|a|,再根據(jù)絕對(duì)值的意義分情況進(jìn)行討論.

5

O

M

二次根式教案 篇4

【 學(xué)習(xí)目標(biāo) 】

1、知識(shí)與技能:了解二次根式的概念,能求根號(hào)內(nèi)字母范圍,理解二次根式的雙重非負(fù)性,并能應(yīng)用它解決相關(guān)問(wèn)題。

2、過(guò)程與方法:進(jìn)一步體會(huì)分類討論的數(shù)學(xué)思想。

3、情感、態(tài)度與價(jià)值觀:通過(guò)小組合作學(xué)習(xí),體驗(yàn)在合作探索中學(xué)習(xí)數(shù)學(xué)的樂(lè)趣。

【 學(xué)習(xí)重難點(diǎn) 】

1、重點(diǎn):準(zhǔn)確理解二次根式的概念,并能進(jìn)行簡(jiǎn)單的計(jì)算。

2、難點(diǎn):準(zhǔn)確理解二次根式的雙重非負(fù)性。

【 學(xué)習(xí)內(nèi)容 】課本第2— 3頁(yè)

【 學(xué)習(xí)流程 】

一、課前準(zhǔn)備(預(yù)習(xí)學(xué)案見(jiàn)附件1)

學(xué)生在家中認(rèn)真閱讀理解課本中相關(guān)內(nèi)容的知識(shí),并根據(jù)自己的理解完成預(yù)習(xí)學(xué)案。

二、課堂教學(xué)

(一)合作學(xué)習(xí)階段。

教師出示課堂教學(xué)目標(biāo)及引導(dǎo)材料,各學(xué)習(xí)小組結(jié)合本節(jié)課學(xué)習(xí)目標(biāo),根據(jù)課堂引導(dǎo)材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結(jié),并記錄合作學(xué)習(xí)中碰到的問(wèn)題。組內(nèi)各成員根據(jù)課堂引導(dǎo)材料的要求在小組合作的前提下認(rèn)真完成課堂引導(dǎo)材料。教師在巡視中觀察各小組合作學(xué)習(xí)的情況,并進(jìn)行及時(shí)的引導(dǎo)、點(diǎn)撥,對(duì)普遍存在的問(wèn)題做好記錄。

(二)集體講授階段。(15分鐘左右)

1. 各小組推選代表依次對(duì)課堂引導(dǎo)材料中的問(wèn)題進(jìn)行解答,不足的本組成員可以補(bǔ)充。

2. 教師對(duì)合作學(xué)習(xí)中存在的普遍的不能解決的.問(wèn)題進(jìn)行集體講解。

3. 各小組提出本組學(xué)習(xí)中存在的困惑,并請(qǐng)其他小組幫助解答,解答不了的由教師進(jìn)行解答。

(三)當(dāng)堂檢測(cè)階段

為了及時(shí)了解本節(jié)課學(xué)生的學(xué)習(xí)效果,及對(duì)本節(jié)課進(jìn)行及時(shí)的鞏固,對(duì)學(xué)生進(jìn)行當(dāng)堂檢測(cè),測(cè)試完試卷上交。

(注:合作學(xué)習(xí)階段與集體講授階段可以根據(jù)授課內(nèi)容進(jìn)行適當(dāng)調(diào)整次序或交叉進(jìn)行)

三、課后作業(yè)(課后作業(yè)見(jiàn)附件2)

教師發(fā)放根據(jù)本節(jié)課所學(xué)內(nèi)容制定的針對(duì)性作業(yè),以幫助學(xué)生進(jìn)一步鞏固提高課堂所學(xué)。

四、板書(shū)設(shè)計(jì)

課題:二次根式(1)

二次根式概念 例題 例題

二次根式性質(zhì)

反思:

二次根式教案 篇5

一、復(fù)習(xí)引入

學(xué)生活動(dòng):請(qǐng)同學(xué)們完成下列各題:

1.計(jì)算

(1)(2x+y)·zx(2)(2x2y+3xy2)÷xy

二、探索新知

如果把上面的x、y、z改寫成二次根式呢?以上的運(yùn)算規(guī)律是否仍成立呢?仍成立.

整式運(yùn)算中的`x、y、z是一種字母,它的意義十分廣泛,可以代表所有一切,當(dāng)然也可以代表二次根式,所以,整式中的運(yùn)算規(guī)律也適用于二次根式.

例1.計(jì)算:

(1)(+)×(2)(4-3)÷2分析:剛才已經(jīng)分析,二次根式仍然滿足整式的運(yùn)算規(guī)律,所以直接可用整式的運(yùn)算規(guī)律.

解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.計(jì)算

(1)(+6)(3-)(2)(+)(-)

分析:剛才已經(jīng)分析,二次根式的多項(xiàng)式乘以多項(xiàng)式運(yùn)算在乘法公式運(yùn)算中仍然成立.

解:(1)(+6)(3-)

=3-2+18-6=13-3(2)(+)(-)=()2-()2

=10-7=3

三、鞏固練習(xí)

課本P20練習(xí)1、2.

四、應(yīng)用拓展

例3.已知=2-,其中a、b是實(shí)數(shù),且a+b≠0,

化簡(jiǎn)+,并求值.

分析:由于(+)(-)=1,因此對(duì)代數(shù)式的化簡(jiǎn),可先將分母有理化,再通過(guò)解含有字母系數(shù)的一元一次方程得到x的值,代入化簡(jiǎn)得結(jié)果即可?

二次根式教案 篇6

教學(xué)目的

1.使學(xué)生掌握最簡(jiǎn)二次根式的定義,并會(huì)應(yīng)用此定義判斷一個(gè)根式是否為最簡(jiǎn)二次根式;

2.會(huì)運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個(gè)二次根式化為最簡(jiǎn)二次根式。

教學(xué)重點(diǎn)

最簡(jiǎn)二次根式的定義。

教學(xué)難點(diǎn)

一個(gè)二次根式化成最簡(jiǎn)二次根式的方法。

教學(xué)過(guò)程

一、復(fù)習(xí)引入

1.把下列各根式化簡(jiǎn),并說(shuō)出化簡(jiǎn)的根據(jù):

2.引導(dǎo)學(xué)生觀察考慮:

化簡(jiǎn)前后的根式,被開(kāi)方數(shù)有什么不同?

化簡(jiǎn)前的被開(kāi)方數(shù)有分?jǐn)?shù),分式;化簡(jiǎn)后的被開(kāi)方數(shù)都是整數(shù)或整式,且被開(kāi)方數(shù)中開(kāi)得盡方的因數(shù)或因式,被移到根號(hào)外。

3.啟發(fā)學(xué)生回答:

二次根式,請(qǐng)同學(xué)們考慮一下被開(kāi)方數(shù)符合什么條件的二次根式叫做最簡(jiǎn)二次根式?

二、講解新課

1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡(jiǎn)二次根式定義:

滿足下列兩個(gè)條件的二次根式叫做最簡(jiǎn)二次根式:

(1)被開(kāi)方數(shù)的因數(shù)是整數(shù),因式是整式;

(2)被開(kāi)方數(shù)中不含能開(kāi)得盡的'因數(shù)或因式。

最簡(jiǎn)二次根式定義中第(1)條說(shuō)明被開(kāi)方數(shù)不含有分母;分母是1的例外。第(2)條說(shuō)明被開(kāi)方數(shù)中每個(gè)因式的指數(shù)小于2;特別注意被開(kāi)方數(shù)應(yīng)化為因式連乘積的形式。

2.練習(xí):

下列各根式是否為最簡(jiǎn)二次根式,不是最簡(jiǎn)二次根式的說(shuō)明原因:

3.例題:

例1 把下列各式化成最簡(jiǎn)二次根式:

例2 把下列各式化成最簡(jiǎn)二次根式:

4.總結(jié)

把二次根式化成最簡(jiǎn)二次根式的根據(jù)是什么?應(yīng)用了什么方法?

當(dāng)被開(kāi)方數(shù)為整數(shù)或整式時(shí),把被開(kāi)方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開(kāi)得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號(hào)外面去。

當(dāng)被開(kāi)方數(shù)是分?jǐn)?shù)或分式時(shí),根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

此方法是先根據(jù)分式的基本性質(zhì)把被開(kāi)方數(shù)的分母化成能開(kāi)得盡方的因式,然后分子、分母再分別化簡(jiǎn)。

三、鞏固練習(xí)

1.把下列各式化成最簡(jiǎn)二次根式:

2.判斷下列各根式,哪些是最簡(jiǎn)二次根式?哪些不是最簡(jiǎn)二次根式?如果不是,把它化成最簡(jiǎn)二次根式。

二次根式教案 篇7

一、教學(xué)目標(biāo)

1。使學(xué)生知道什么是最簡(jiǎn)二次根式,遇到實(shí)際式子能夠判斷是不是最簡(jiǎn)二次根式。

2。使學(xué)生掌握化簡(jiǎn)一個(gè)二次根式成最簡(jiǎn)二次根式的方法。

3。使學(xué)生了解把二次根式化簡(jiǎn)成最簡(jiǎn)二次根式在實(shí)際問(wèn)題中的應(yīng)用。

二、教學(xué)重點(diǎn)和難點(diǎn)

1。重點(diǎn):能夠把所給的二次根式,化成最簡(jiǎn)二次根式。

2。難點(diǎn):正確運(yùn)用化一個(gè)二次根式成為最簡(jiǎn)二次根式的方法。

三、教學(xué)方法

通過(guò)實(shí)際運(yùn)算的例子,引出最簡(jiǎn)二次根式的概念,再通過(guò)解題實(shí)踐,總結(jié)歸納化簡(jiǎn)二次根式的方法。

四、教學(xué)手段

利用投影儀。

五、教學(xué)過(guò)程

(一)引入新課

提出問(wèn)題:如果一個(gè)正方形的面積是0。5m2,那么它的邊長(zhǎng)是多少?能不能求出它的.近似值?

了。這樣會(huì)給解決實(shí)際問(wèn)題帶來(lái)方便。

(二)新課

由以上例子可以看出,遇到一個(gè)二次根式將它化簡(jiǎn),為解決問(wèn)題創(chuàng)

這兩個(gè)二次根式化簡(jiǎn)前后有什么不同,這里要引導(dǎo)學(xué)生從兩個(gè)方面考慮,一方面是被開(kāi)方數(shù)的因數(shù)化簡(jiǎn)后是否是整數(shù)了,另一方面被開(kāi)方數(shù)中還有沒(méi)有開(kāi)得盡方的因數(shù)。

總結(jié)滿足什么樣的條件是最簡(jiǎn)二次根式。即:滿足下列兩個(gè)條件的二次根式,叫做最簡(jiǎn)二次根式:

1。被開(kāi)方數(shù)的因數(shù)是整數(shù),因式是整式。

2。被開(kāi)方數(shù)中不含能開(kāi)得盡方的因數(shù)或因式。

例1 指出下列根式中的最簡(jiǎn)二次根式,并說(shuō)明為什么。

分析:

說(shuō)明:這里可以向?qū)W生說(shuō)明,前面兩小節(jié)化簡(jiǎn)二次根式,就是要求化成最簡(jiǎn)二次根式。前面二次根式的運(yùn)算結(jié)果也都是最簡(jiǎn)二次根式。

例2 把下列各式化成最簡(jiǎn)二次根式:

說(shuō)明:引導(dǎo)學(xué)生觀察例2題中二次根式的特點(diǎn),即被開(kāi)方數(shù)是整式或整數(shù),再啟發(fā)學(xué)生總結(jié)這類題化簡(jiǎn)的方法,先將被開(kāi)方數(shù)或被開(kāi)方式分解因數(shù)或分解因式,然后把開(kāi)得盡方的因數(shù)或因式開(kāi)出來(lái),從而將式子化簡(jiǎn)。

例3 把下列各式化簡(jiǎn)成最簡(jiǎn)二次根式:

說(shuō)明:

1。引導(dǎo)學(xué)生觀察例題3中二次根式的特點(diǎn),即被開(kāi)方數(shù)是分?jǐn)?shù)或分式,再啟發(fā)學(xué)生總結(jié)這類題化簡(jiǎn)的方法,先利用商的算術(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化化簡(jiǎn)。

2。要提問(wèn)學(xué)生

問(wèn)題,通過(guò)這個(gè)小題使學(xué)生明確如何使用化簡(jiǎn)中的條件。

通過(guò)例2、例3總結(jié)把一個(gè)二次根式化成最簡(jiǎn)二次根式的兩種情況,并引導(dǎo)學(xué)生小結(jié)應(yīng)該注意的問(wèn)題。

注意:

①化簡(jiǎn)時(shí),一般需要把被開(kāi)方數(shù)分解因數(shù)或分解因式。

②當(dāng)一個(gè)式子的分母中含有二次根式時(shí),一般應(yīng)該把它化簡(jiǎn)成分母中不含二次根式的式子,也就是把它的分母進(jìn)行有理化。

(三)小結(jié)

1。滿足什么條件的根式是最簡(jiǎn)二次根式。

2。把一個(gè)二次根式化成最簡(jiǎn)二次根式的主要方法。

(四)練習(xí)

1。指出下列各式中的最簡(jiǎn)二次根式:

2。把下列各式化成最簡(jiǎn)二次根式:

六、作業(yè)

教材P。187習(xí)題11。4;A組1;B組1。

七、板書(shū)設(shè)計(jì)

下載最簡(jiǎn)二次根式教案word格式文檔
下載最簡(jiǎn)二次根式教案.doc
將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
點(diǎn)此處下載文檔

文檔為doc格式


聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

相關(guān)范文推薦

    最簡(jiǎn)二次根式 教學(xué)設(shè)計(jì)示例4初中二年級(jí)教案

    1.使學(xué)生理解最簡(jiǎn)二次根式的概念; 2.掌握把二次根式化為最簡(jiǎn)二次根式的方法. 教學(xué)重點(diǎn)和難點(diǎn) 重點(diǎn):化二次根式為最簡(jiǎn)二次根式的方法. 難點(diǎn):最簡(jiǎn)二次根式概念的理解. 教學(xué)過(guò)程設(shè)......

    “二次根式的除法”教案

    “二次根式的除法”教案 教學(xué)目的: 知識(shí)與技能:使學(xué)生掌握二次根式的除法;使學(xué)生會(huì)用商的算術(shù)平方根的性質(zhì)及二次根式的除法化簡(jiǎn)二次根式;使學(xué)生掌握分母有理化知識(shí),并能利用它進(jìn)......

    二次根式單元測(cè)試

    二次根式單元測(cè)試1.在、、、、中是二次根式的個(gè)數(shù)有______個(gè).2.當(dāng)=時(shí),二次根式取最小值,其最小值為。3.化簡(jiǎn)的結(jié)果是_____________4.計(jì)算:=5.實(shí)數(shù)在數(shù)軸上的位置如圖所示:化簡(jiǎn):.6.已......

    二次根式教案設(shè)計(jì)

    二次根式教案設(shè)計(jì) 一:教學(xué)內(nèi)容分析 本節(jié)課是人教版九年級(jí)上冊(cè)第21章二次根式第一節(jié)二次根式第一課時(shí)的內(nèi)容,它是前面學(xué)習(xí)的數(shù)的開(kāi)方的后繼學(xué)習(xí),也是學(xué)習(xí)二次根式的運(yùn)算的基礎(chǔ),他......

    二次根式復(fù)習(xí)題

    二次根式復(fù)習(xí)題二次根式四種運(yùn)算加、減、乘、除三個(gè)概念兩個(gè)公式兩個(gè)性質(zhì)二次根式最簡(jiǎn)二次根式同類二次根式一.性質(zhì)1.當(dāng)x滿足條件時(shí),式子在實(shí)數(shù)范圍內(nèi)有意義。當(dāng)x_________時(shí),......

    16.1 二次根式 教學(xué)設(shè)計(jì) 教案

    教學(xué)準(zhǔn)備 1. 教學(xué)目標(biāo) 1、知識(shí)與技能: (1)理解二次根式的概念, (2)利用公式的意義解答具體題目.提出問(wèn)題,根據(jù)問(wèn)題給出概念,應(yīng)用概念解決實(shí)際問(wèn)題. 2、過(guò)程與方法 : 通過(guò)自主合作學(xué)習(xí)......

    二次根式的除法-教學(xué)教案

    知識(shí)結(jié)構(gòu): 重點(diǎn)難點(diǎn)分析: 是商的二次根式的性質(zhì)及利用性質(zhì)進(jìn)行二次根式的化簡(jiǎn)與運(yùn)算,利用分母有理化化簡(jiǎn).商的算術(shù)平方根的性質(zhì)是本節(jié)的主線,學(xué)生掌握性質(zhì)在二次根使得化簡(jiǎn)和......

    二次根式的加減教案(5篇模版)

    16.3 二次根式的加減教學(xué)目標(biāo)知識(shí)與技能: 1. 了解同類二次根式的概念,會(huì)判斷同類二次根式; 2. 能正確合并同類二次根式,進(jìn)行二次根式的加減運(yùn)算。 過(guò)程與方法:經(jīng)歷類比二次根式的......

主站蜘蛛池模板: 国产精品成人永久在线四虎| 久久99精品久久久久久野外| 欧美日韩精品一区二区在线观看| 果冻传媒一区二区天美传媒| 欧美freesex黑人又粗又大| 免费人妻无码不卡中文字幕18禁| 亚洲级αv无码毛片久久精品| 3d动漫精品一区二区三区| 97人伦色伦成人免费视频| 婷婷伊人久久大香线蕉av| 日本大香伊蕉一区二区| 美女裸体十八禁免费网站| 国产极品美女高潮无套| 午夜免费无码福利视频| 国产日韩一区在线精品| 国产熟女一区二区三区四区五区| 99久久久无码国产aaa精品| 久久久久亚洲av无码专区网站| 国产在线无码制服丝袜无码| 免费国产污网站在线观看15| 国产女人高潮视频在线观看| 波多野结衣一区二区免费视频| 亚洲色欲综合一区二区三区小说| 中年国产丰满熟女乱子正在播放| 老熟女激烈的高潮| 日日摸天天摸爽爽狠狠97| 中文成人无字幕乱码精品区| 欧美性猛交ⅹxxx乱大交妖精| 中文字幕无线码一区2020青青| 一夲道无码人妻精品一区二区| 四虎国产精品永久在线国在线| 亚洲精品乱码一区二区三区| 国语自产精品视频在 视频| 男女做爰猛烈叫床视频动态图| 久久免费看少妇高潮v片特黄| 海角社区在线视频播放观看| 四虎影视在线观看2413| 欧美尺寸又黑又粗又长| 国内综合精品午夜久久资源| 天美传媒精品| 播五月开心婷婷欧美综合|