久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

16.1 二次根式 教學設計 教案

時間:2019-05-13 00:11:09下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關的《16.1 二次根式 教學設計 教案》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《16.1 二次根式 教學設計 教案》。

第一篇:16.1 二次根式 教學設計 教案

教學準備

1.教學目標

1、知識與技能:

(1)理解二次根式的概念,(2)利用公式的意義解答具體題目.提出問題,根據問題給出概念,應用概念解決實際問題.

2、過程與方法 :

通過自主合作學習,和教師合作精講,掌握學習目標。

3、感態度與價值觀 : 培養學生辯證唯物主義觀點。

2.教學重點/難點

二次根式中被開方數的取值范圍。

3.教學用具

多媒體,白板。

4.標簽

教學過程、引入新課

【師】同學們好(學生活動)請同學們獨立完成下列三個問題: 問題1:面積為3的正方形的邊長為 ___面積為S的正方形的邊長 .

問題2:一個長方形的圍欄,長是寬的2倍,面積為130則他的寬為 __________. 問題3:一個物體從高處自由落下,落到地面所用的時間t與開始落下時離地面的高度h滿足關系h=5t2用含h的式子表示t,那么t為 _________.

答案:

【板書】

第十六章 二次根式 2、新知介紹

【師】很明顯 都是一些正數的算術平方根.像這樣一些正數的算術平方根的式子,我們就把它稱二次根式.因此,一般地,我們把形如(a≥0)的式子叫做二次根式,“思考:(學生活動)議一議: 1)-1有算術平方根嗎?(沒有)2)0的算術平方根是多少?(0)3)當a<0,有意義嗎?(沒有)

例1.下列式子,哪些是二次根式,哪些不是二次根式:

”稱為二次根號.

分析:二次根式應滿足兩個條件:第一,有二次根號“”;第二,被開方數是正數或0.

解:二次根式有:

不是二次根式的有:

【板演/PPT】

【師】大家剛才都完成了任務,接下來我們一起學習二次根式性質: 我們學過,a≥0的式子叫二次根式,我們知道a≥0那么

呢?因是a的算術平方根所以≥0.下面我們根據二次根式的非負性解決實際問題。

例2:當x是多少時,在實數范圍內有意義?

分析:由二次根式的定義可知,被開方數一定要大于或等于0,所以3x-1≥0,才能有意義.

解:由3x-1≥0,得:x≥1/3 當x≥1/3時,在實數范圍內有意義.

3、鞏固訓練(生演板)

1、當a是怎樣的實數時,下列各式在實數范圍內有意義?

答案:(1)a≥1(2)(3)a≤0(4)a≤5 師點評:針對學生演板情況點評調。思考:

4、鞏固訓練(生做)

1、求下列各式有意義的x的取值范圍。

學生互評,教師實時點評

答案(1)x>1(2)x≥0且x≠1(3)x≥0

5、應用拓展 例4.

6、能力提升訓練

課堂小結

課后習題

1、完成配套課后練習題

2、預習提綱:二次根式性質 板書

第十六章二次根式 16.1 二次根式概念第一課時

第二篇:二次根式教學設計

二次根式教學設計

二次根式教學設計1

1教學目標

(1)利用歸納類比的方法得出二次根式的除法法則和商的算術平方根的性質;

(2)會進行簡單的二次根式的除法運算;

(3) 理解最簡二次根式的概念

2學情分析

本節內容主要是在做二次根式的除法運算時,分母含根號的處理方式上,學生可能會出現困難或容易失誤,在除法運算中,可以先計算后利用商的算術平方根的性質來進行,也可以先利用分式的性質,去掉分母中的根號,再結合乘法法則和積的算術平方根的性質來進行。二次根式的除法與分式的運算類似,如果分子、分母中含有相同的因式,可以直接約去,以簡化運算。教學中不能只是列舉題型,應以各級各類習題為載體,引導學生把握運算過程,估計運算結果,明確運算方向。

3重點難點

重點:二次根式的乘法法則與積的算術平方根的性質.

難點:二次根式的除法法則與商的算術平方根的性質之間的關系和應用。

4教學過程

4。1 第一學時

教學活動

活動1【導入】復習提問,探究規律

問題1 二次根式的乘法法則是什么內容?化簡二次根式的一般步驟怎樣?

師生活動 學生回答。

【設計意圖】讓學生回憶探究乘法法則的過程,類比該過程,學生可以探究除法法則.

2.觀察思考,理解法則

問題2 教材第8頁“探究”欄目,計算結果如何?有何規律?

師生活動 學生回答,給出正確答案后,教師引導學生思考,并總結二次根式除法法則:。

問題3 對比乘法法則里字母的取值范圍,除法法則里字母的取值范圍有何變化?

師生活動 學生思考,回答。學生能說明根據分數的意義知道,分母不為零就可以了。

【設計意圖】學生通過自主探究,采用類比的方法,得出二次根式的除法法則后,要明確字母的取值范圍,以免在處理更為復雜的二次根式的運算時出現錯誤。

問題4 對例題的運算你有什么看法?是如何進行的?

師生活動 學生利用法則直接運算,一般根號下不含分母和開得盡方的因數。

【設計意圖】讓學生初步利用二次根式的性質、乘除法法則進行簡單的運算。

問題5 對比積的算術平方根的性質,商的算術平方根有沒有類似性質?

師生活動 學生類比地發現,商的算術平方根等于算術平方根的商,即 。利用該性質可以進行二次根式的化簡。

活動2【講授】觀察思考,理解法則

問題2 教材第8頁“探究”欄目,計算結果如何?有何規律?

師生活動 學生回答,給出正確答案后,教師引導學生思考,并總結二次根式除法法則:。

問題3 對比乘法法則里字母的取值范圍,除法法則里字母的取值范圍有何變化?

師生活動 學生思考,回答。學生能說明根據分數的意義知道,分母不為零就可以了。

【設計意圖】學生通過自主探究,采用類比的方法,得出二次根式的除法法則后,要明確字母的取值范圍,以免在處理更為復雜的二次根式的運算時出現錯誤。

問題4 對例題的運算你有什么看法?是如何進行的?

師生活動 學生利用法則直接運算,一般根號下不含分母和開得盡方的因數。

【設計意圖】讓學生初步利用二次根式的性質、乘除法法則進行簡單的運算。

問題5 對比積的算術平方根的性質,商的算術平方根有沒有類似性質?

師生活動 學生類比地發現,商的算術平方根等于算術平方根的商,即 。利用該性質可以進行二次根式的化簡。

活動3【活動】例題示范,學會應用

例1 計算: (1) ; (2) ; (3) 。

師生活動 提問:你有幾種方法去掉分母中的根號?去分母的依據分別是什么?

再提問:第(2)用什么方法計算更簡捷?第(3)題根號下含字母在移出根號時應注意什么?

【設計意圖】通過具體問題,讓學生在實際運算中培養運算能力,訓練運算技能,

問題5 你能從例題的解答過程中,總結一下二次根式的運算結果有什么特征嗎?

師生活動 學生總結,師生共同補充、完善。要總結出:

(1)這些根式的被開方數都不含分母;

(2)被開方數中不含能開得盡方的因數或因式;

(3)分母中不含根號;

【設計意圖】引導學生及時總結,提出最簡二次根式的概念,要強調,在二次根式的運算中,一般要把最后結果化為最簡二次根式。

問題6 課件展示一組二次根式的計算、化簡題。

【設計意圖】讓學生用總結出的結論進行二次根式的運算。

活動4【練習】鞏固概念,學以致用

例2 教材第9頁例7。

師生活動 提問 本題是以長方形面積為背景的數學問題,二次根式的除法運算在此發揮什么作用?

再提問 章引言中的問題現在能解決了嗎?

【設計意圖】鞏固性練習,同時培養學生應用二次根式的乘除運算法則解決實際問題的能力。

活動5【測試】目標檢測設計

1.在 、、中,最簡二次根式為 。

【設計意圖】考查對最簡二次根式的概念的理解。

2.化簡下列各式為最簡二次根式: ; 。

【設計意圖】復習二次根式的運算法則和運算性質。鼓勵學生用不同方法進行計算。對于分母含二次根式的處理,要結合整式的乘法公式進行計算。

3.化簡:(1) ; (2) 。

【設計意圖】綜合運用二次根式的概念、性質和運算法則進行二次根式的運算。

活動6【作業】布置作業

教科書第10頁練習第1,2,3題;

教科書習題16。2第10,11題。

二次根式教學設計2

教學準備

1.教學目標

(1)學生能用二次根式表示實際問題中的數量和數量關系,體會研究二次根式的必要性.

(2)學生能根據算術平方根的意義了解二次根式的概念,知道被開方數必須是非負數的理由,知道二次根式本身是一個非負數,會求二次根式中被開方數字母的取值范圍. 2.教學重點/難點

理解二次根式的雙重非負性.

3.教學用具

4.標簽

教學過程

1.創設情境,提出問題

問題1你能用帶有根號的的式子填空嗎?

(1)面積為3 的正方形的邊長為_______,面積為S 的正方形的邊長為_______.

(2)一個長方形圍欄,長是寬的2 倍,面積為130m?,則它的寬為______m.

(3)一個物體從高處自由落下,落到地面所用的時間 t(單位:s)與開始落下的高度h(單位:m)滿足關系 h =5t?,如果用含有h 的式子表示 t ,則t= _____.

師生活動:學生獨立完成上述問題,用算術平方根表示結果,教師進行適當引導和評價.

【設計意圖】讓學生在填空過程中初步感知二次根式與實際生活的緊密聯系,體會研究二次根式的必要性.

問題2 上面得到的式子

分別表示什么意義?它們有什么共同特征?

師生活動:教師引導學生說出各式的意義,概括它們的共同特征:都表示一個非負數(包括字母或式子表示的非負數)的算術平方根.

【設計意圖】為概括二次根式的概念作鋪墊.

2.抽象概括,形成概念

問題3 你能用一個式子表示一個非負數的算術平方根嗎?

師生活動:學生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如

【設計意圖】讓學生體會由特殊到一般的過程,培養學生的概括能力.

追問:在二次根式的概念中,為什么要強調“a≥0”?

師生活動:教師引導學生討論,知道二次根式被開方數必須是非負數的理由.

【設計意圖】進一步加深學生對二次根式被開方數必須是非負數的理解. 3.辨析概念,應用鞏固

問題4你能比較與0的大小嗎?

4.綜合運用,鞏固提高

練習1 完成教科書第3頁的練習.

練習2 當x 是什么實數時,下列各式有意義

課堂小結

教師和學生一起回顧本節課所學主要內容,并請學生回答以下問題.

(1)本節課你學到了哪一類新的式子?

(2)二次根式有意義的條件是什么?二次根式的值的范圍是什么?

(3)二次根式與算術平方根有什么關系?

課后習題

二次根式教學設計3

教學目標

1、使學生理解最簡二次根式的概念;

2、掌握把二次根式化為最簡二次根式的方法。

教學重點和難點

重點:化二次根式為最簡二次根式的方法。

難點:最簡二次根式概念的理解。

一、導入新課

計算:

我們再看下面的問題:

簡,得到

從上面例子可以看出,如果把二次根式先進行化簡,會對解決問題帶來方便。

二、新課

答:

1、被開方數的因數是整數或整式;

2、被開方數中不含能開得盡方的因數或因式。

滿足上面兩個條件的二次根式叫做最簡二次根式。

例1 試判斷下列各式中哪些是最簡二次根式,哪些不是?為什么?

(1)不是最簡二次根式。因為a3=a2·a,而a2可以開方,即被開方數中有開得盡方的因式。整數。

(3)是最簡二次根式。因為被開方數的因式x2+y2開不盡方,而且是整式。

(4)是最簡二次根式。因為被開方數的因式a-b開不盡方,而且是整式。

(5)是最簡二次根式。因為被開方數的因式5x開不盡方,而且是整式。

(6)不是最簡二次根式。因為被開方數中的因數8=22·2,含有開得盡的因數22。

指出:從(1),(2),(6)題可以看到如下兩個結論。

1、在二次根式的被開方數中,只要含有分數或小數,就不是最簡二次根式;

2、在二次根式的被開方數中的每一個因式(或因數),如果冪的指數等于或大于2,也不是最簡二次根式。

例2 把下列各式化為最簡二次根式:

分析:把被開方數分解因式或因數,再利用積的算術平方根的性質

例3 把下列各式化成最簡二次根式:

分析:題(1)的被開方數是帶分數,應把它變成假分數,然后將分母有理化,把原式化成最簡二次根式。

題(2)及題(3)的被開方數是分式,先應用商的算術平方根的性質把原式表示為兩個根式的商的形式,再把分母有理化,把原式化成最簡二次根式。

通過例2、例3,請同學們總結出把二次根式化成最簡二次根式的方法。

答:如果被開方數是分式或分數(包括小數)先利用商的算術平方根的性質,把它寫成分式的形式,然后利用分母有理化化簡。

如果被開方數是整式或整數,先把它分解因式或分解因數,然后把開得盡方的因式或因數開出來,從而將式子化簡。

三、課堂練習

1、在下列各式中,是最簡二次根式的式子為 [ ]的二次根式的式子有_____個。 [ ]

A、2 B、3

C、1 D、0

3、把下列各式化成最簡二次根式:

答案:

1、B

2、B

四、小結

1、最簡二次根式必須滿足兩個條件:

(1)被開方數的因數是整數,因式是整式;

(2)被開方數中不含能開得盡方的因數或因式。

2、把一個式子化為最簡二次根式的方法是:

(1)如果被開方數是整式或整數,先把它分解成因式(或因數)的積的形式,把開得盡方的因式(或因數)移到根號外;

(2)如果被開方數含有分母,應去掉分母的根號。

五、作業

1、把下列各式化成最簡二次根式:

2、把下列各式化成最簡二次根式:

二次根式教學設計4

1、通過二次根式混合運算的學習,進一步了解二次根式運算法則,知道二次根式混合運算順序,會進行二次根式的混合運算。

2、在進行二次根式混合運算的過程中,體會類比思想,逐步養成認真仔細的學習品質,進一步提高運算能力。

教學重點:二次根式混合運算算理的理解。

教學難點:類比整式運算準確快速的進行二次根式的混合運算。

教學過程:

一、情境誘導

《二次根式混合運算習題課》教學設計-楊桂花

二、練習指導

(學生完成練習提綱,可以討論,老師做必要的板書準備,然后巡回指導,了解情況、)

練習提綱:《二次根式混合運算習題課》教學設計-楊桂花

三、展示歸納

1、學生匯報解題過程,生說師寫;

2、發動其他學生評價補充完善;

3、師畫龍點睛強調:

(1)二次根式混合運算的運算順序跟有理數運算順序一樣,先乘方,再乘除,最后加減。

(2)二次根式混合運算與整式的運算有很多相似之處,因此可類比整式的運算進行二次根式的混合運算。

四、變式練習

(先讓學生獨立完成,老師做必要的板書準備后巡回指導,了解情況; 然后讓有一定問題的學生匯報展示,發動學生評價完善,老師強調關鍵地方,總結思想方法。)

《二次根式混合運算習題課》教學設計-楊桂花

五、小結

本節課你有哪些收獲?還有什么要提醒同學們注意的。(學生總結,百花齊放,老師不做限定,沒說到的,老師補充。)

六、布置作業

《二次根式混合運算習題課》教學設計-楊桂花

二次根式教學設計5

一、教學目標

知識與技能:

1、理解二次根式的概念。

2、理解二次根式的基本性質。

過程與方法:

能運用二次根式的概念解決有關問題、

情感態度與價值觀:

經歷觀察、比較、總結和應用等數學活動,感受數學活動充滿了探索性和創造性,體驗發現的快樂,并提高應用的意識。

二、學情分析

學生已經學習了“整式”、“平方根”、“算術平方根”等知識,已經具備了學習二次根式的知識基礎和心理基礎,但學生剛認識二次根式,學習將有一定難度。學生知識障礙點是二次根式的概念及運算,如果學生在此不能很好地理解和正確的認知,將對今后學習產生很大影響,所以要求學生積極探究、思考,及時加以鞏固,克服學習困難,真正“學會”。

三、重點難點

1、教學重點為了解二次根式的概念,知道被開方數必須是非負數的理由,知道二次根式本身是一個非負數,會求二次根式中被開方數字母的取值范圍.

2、教學難點為:理解二次根式的雙重非負性、

四、教學過程

活動1【導入】活動一

問題1你能用帶有根號的的式子填空嗎?

(1)面積為3的正方形的邊長為_______,面積為S的正方形的邊長為_______.

(2)一個長方形圍欄,長是寬的2倍,面積為130m?,則它的寬為______m.

(3)一個物體從高處自由落下,落到地面所用的時間t(單位:s)與開始落下的高度h(單位:m)滿足關系h =5t?,如果用含有h的式子表示t,則t= _____.

師生活動:學生獨立完成上述問題,用算術平方根表示結果,教師進行適當引導和評價。

問題2上面得到的式子√3,√s,√h5分別表示什么意義?它們有什么共同特征?

活動2【活動】講授

問題3你能用一個式子表示一個非負數的算術平方根嗎?

師生活動:學生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如√a(a≥0)的式子叫做二次根式,“√ ”稱為二次根號.

追問:在二次根式的概念中,為什么要強調“a≥0”?

師生活動:教師引導學生討論,知道二次根式被開方數必須是非負數的理由.

活動3【講授】辨析概念

例1當x是怎樣的實數時,√x2在實數范圍內有意義?

師生活動:引導學生從概念出發進行思考,鞏固學生對二次根式的被開方數為非負數的理解.

例2當x是怎樣的實數時,√x2在實數范圍內有意義?√x3呢?

師生活動:先讓學生獨立思考,再追問.

問題4你能比較√a與0的大小嗎?

師生活動:通過分a>0和a= 0這兩種情況的討論,比較√a與0的大小,引導學生得出√a ≥0的結論,強化學生對二次根式本身為非負數的理解,

活動4【練習】練習

練習當x是什么實數時,下列各式有意義、

(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、

練習1完成教科書第3頁的練習、

練習2當x是什么實數時,下列各式有意義、

(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、

練習1完成教科書第3頁的練習、

練習2當x是什么實數時,下列各式有意義、

(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、

練習1完成教科書第3頁的練習、

練習2當x是什么實數時,下列各式有意義、

(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、

活動5【活動】小結

小結:

1、二次根式的意義:√a(a≥0)

2、二次根式的性質:

性質1 √a2 = a(a≥0)

活動6【測試】目標檢測

1、下列各式中,一定是二次根式的是

A、√a B√3 、C√x2+1 、D、3√5

2、當x取什么時,二次根式√3x無意義.

3、當x取何值時,二次根式√x+3有最小值,其最小值是.

4、對于√3a1a3,小紅根據被開方數是非負數,得出a的取值范圍是a ≥ 13.小慧認為還應考慮分母不為0的情況.你認為小慧的想法正確嗎?試求出a的取值范圍.

活動7【作業】布置作業

教科書習題16、1第1,3,5,7,10題.

二次根式教學設計6

一、教學目標:

(一)知識與技能:

1.了解二次根式的概念,會確定二次根式成立的條件。

2.會用二次根式性質進行有關計算。

3.

了解逆用公式在實數范圍內因式分解。

(二)過程與方法:體驗性質的推導過程,感受由特殊到一般的方法。

(三)情感態度:激發對數學的興趣。

二、教學重點:

二次根式成立的條件,雙重非負性;

用性質進行計算。

三、教學難點

性質的逆用。

四、教學準備:課件

五、教學過程

(一)復習提問

1.什么叫二次根式?

2.下列各式是二次根式,求式子中的字母所滿足的條件:

(3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值為任意實數.

(二)二次根式的簡單性質

上節課我們已經學習了二次根式的定義,并了解了第一個簡單性質

我們知道,正數a有兩個平方根,分別記作零的平方根是零。引導學生總結出,其中,就是一個非負數a的算術平方根。將符號“”看作開平方求算術平方根的運算,看作將一個數進行平方的運算,而開平方運算和平方運算是互為逆運算,因而有:

這里需要注意的是公式成立的條件是a≥0,提問學生,a可以代表一個代數式嗎?

請分析:引導學生答如時才成立。時才成立,即a取任意實數時都成立。我們知道如果我們把,同學們想一想是否就可以把任何一個非負數寫成一個數的平方形式了.

例1

計算:

分析:這個例題中的四個小題,主要是運用公式。其中(2)、(3)、(4)題又運用了整式乘除中學習的積的冪的運算性質.結合第(2)小題中的,說明,這與帶分數。因此,以后遇到,應寫成,而不宜寫成。

例2

把下列非負數寫成一個數的平方的形式:

(1)5;

(2)11;

(3)1.6;

(4)0.35.

例3

把下列各式寫成平方差的形式,再分解因式:

(1)4x2-1;(2)a4-9;

(3)3a2-10;(4)a4-6a2+9.

解:(1)4x2-1

=(2x)2-12

=(2x+1)(2x-1).

(2)a4-9

=(a2)2-32

=(a2+3)(a2-3)

(3)3a2-10

(4)a4-6a2+32

=(a2)2-6a2+32

=(a2-3)2

(三)小結

1.繼續鞏固二次根式的定義,及二次根式中被開方數的取值范圍問題.

2.關于公式的應用。

(1)經常用于乘法的運算中.

(2)可以把任何一個非負數寫成一個數的平方的形式,解決在實數范圍內因式分解等方面的問題.

(四)練習和作業

練習:

1.填空

注意第(4)題需有2m≥0,m≥0,又需有-3m≥0,即m≤0,故m=0.

2.實數a、b在數軸上對應點的位置如下圖所示:

分析:通過本題滲透數形結合的思想,進一步鞏固二次根式的定義、性質,引導學生分析:由于a<0,b>0,且|a|>|b|.

3.計算

二、作業

教材P.172習題11.1;A組2、3;B組2.

補充作業:

下列各式中的字母滿足什么條件時,才能使該式成為二次根式?

分析:要使這些式成為二次根式,只要被開方式是非負數即可,啟發學生分析如下:

(1)由-|a-2b|≥0,得a-2b≤0,

但根據絕對值的性質,有|a-2b|≥0,

|a-2b|=0,即a-2b=0,得a=2b.

(2)由(-m2-1)(m-n)≥0,-(m2+1)(m-n)≥0

(m2+1)(m-n)≤0,又m2+1>0,

m-n≤0,即m≤n.

二次根式教學設計7

教學目的

1.使學生掌握最簡二次根式的定義,并會應用此定義判斷一個根式是否為最簡二次根式;

2.會運用積和商的算術平方根的性質,把一個二次根式化為最簡二次根式。

教學重點

最簡二次根式的'定義。

教學難點

一個二次根式化成最簡二次根式的方法。

教學過程

一、復習引入

1.把下列各根式化簡,并說出化簡的根據:

2.引導學生觀察考慮:

化簡前后的根式,被開方數有什么不同?

化簡前的被開方數有分數,分式;化簡后的被開方數都是整數或整式,且被開方數中開得盡方的因數或因式,被移到根號外。

3.啟發學生回答:

二次根式,請同學們考慮一下被開方數符合什么條件的二次根式叫做最簡二次根式?

二、講解新課

1.總結學生回答的內容后,給出最簡二次根式定義:

滿足下列兩個條件的二次根式叫做最簡二次根式:

(1)被開方數的因數是整數,因式是整式;

(2)被開方數中不含能開得盡的因數或因式。

最簡二次根式定義中第(1)條說明被開方數不含有分母;分母是1的例外。第(2)條說明被開方數中每個因式的指數小于2;特別注意被開方數應化為因式連乘積的形式。

2.練習:

下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

3.例題:

例1 把下列各式化成最簡二次根式:

例2 把下列各式化成最簡二次根式:

4.總結

把二次根式化成最簡二次根式的根據是什么?應用了什么方法?

當被開方數為整數或整式時,把被開方數進行因數或因式分解,根據積的算術平方根的性質,把開得盡方的因數或因式用它的算術平方根代替移到根號外面去。

當被開方數是分數或分式時,根據分式的基本性質和商的算術平方根的性質化去分母。

此方法是先根據分式的基本性質把被開方數的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

三、鞏固練習

1.把下列各式化成最簡二次根式:

2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

二次根式教學設計8

教學建議

知識結構:

重點難點分析:

是商的二次根式的性質及利用性質進行二次根式的化簡與運算,利用分母有理化化簡。商的算術平方根的性質是本節的主線,學生掌握性質在二次根使得化簡和運算的運用是關鍵,從化簡與運算由引出初中重要的內容之一分母有理化,分母有理化的理解決定了最簡二次根式化簡的掌握。

教學難點是與商的算術平方根的關系及應用。與乘法既有聯系又有區別,強調根式除法結果的一般形式,避免分母上含有根號。由于分母有理化難度和復雜性大,要讓學生首先理解分母有理化的意義及計算結果形式。

教法建議:

1。 本節內容是在有積的二次根式性質的基礎后學習,因此可以采取學生自主探索學習的模式,通過前一節的復習,讓學生通過具體實例再結合積的性質,對比、歸納得到商的二次根式的性質。教師在此過程當中給與適當的指導,提出問題讓學生有一定的探索方向。

2。 本節內容可以分為三課時,第一課時討論商的算術平方根的性質,并運用這一性質化簡較簡單的二次根式(被開方數的分母可以開得盡方的二次根式);第二課時討論法則,并運用這一法則進行簡單的運算以及二次根式的乘除混合運算,這一課時運算結果不包括根號出現內出現分式或分數的情況;第三課時討論分母有理化的概念及方法,并進行二次根式的乘除法運算,把運算結果分母有理化。這樣安排使內容由淺入深,各部分相互聯系,因此及彼,層層展開。

3。 引導學生思考“想一想”中的內容,培養學生思維的深刻性,教師組織學生思考、討論過程當中,鼓勵學生大膽猜想,積極探索,運用類比、歸納和從特殊到一般的思考方法激發學生創造性的思維。

教學設計示例

一、教學目標

1.掌握商的算術平方根的性質,能利用性質進行二次根式的化簡與運算;

2.會進行簡單的運算;

3.使學生掌握分母有理化概念,并能利用分母有理化解決二次根式的化簡及近似計算問題;

4。 培養學生利用公式進行化簡與計算的能力;

5。 通過二次根式公式的引入過程,滲透從特殊到一般的歸納方法,提高學生的歸納總結能力;

6。 通過分母有理化的教學,滲透數學的簡潔性。

二、教學重點和難點

1.重點:會利用商的算術平方根的性質進行二次根式的化簡,會進行簡單的運算,還要使學生掌握采用分母有理化的方法進行.

2.難點:與商的算術平方根的關系及應用.

三、教學方法

從特殊到一般總結歸納的方法以及類比的方法,在學習了二次根式乘法的基礎上本小節

內容可引導學生自學,進行總結對比.

四、教學手段

利用投影儀.

五、教學過程

(一) 引入新課

學生回憶及得算數平方根和性質: (a≥0,b≥0)是用什么樣的方法引出的?(上述積的算術平方根的性質是由具體例子引出的.)

學生觀察下面的例子,并計算:

由學生總結上面兩個式的關系得:

類似地,每個同學再舉一個例子,然后由這些特殊的例子,得出:

(二)新課

商的算術平方根.

一般地,有 (a≥0,b>0)

商的算術平方根等于被除式的算術平方根除以除式的算術平方根.

讓學生討論這個式子成立的條件是什么?a≥0,b>0,對于為什么b>0,要使學生通過討論明確,因為b=0時分母為0,沒有意義.

引導學生從運算順序看,等號左邊是將非負數a除以正數b求商,再開方求商的算術平方根,等號右邊是先分別求被除數、除數的算術平方根,然后再求兩個算術平方根的商,根據商的算術平方根的性質可以進行簡單的二次根式的化簡與運算.

例1 化簡:

(1) ; (2) ; (3) ;

解∶(1)

(2)

(3)

說明:如果被開方數是帶分數,在運算時,一般先化成假分數;本節根號下的字母均為正數。

例2 化簡:

(1) ; (2) ;

解:(1)

(2)

讓學生觀察例題中分母的特點,然后提出, 的問題怎樣解決?

再總結:這一小節開始講的二次根式的化簡,只限于所得結果的式子中分母可以完全開的盡方的情況, 的問題,我們將在今后的學習中解決。

學生討論本節課所學內容,并進行小結.

(三)小結

1.商的算術平方根的性質.(注意公式成立的條件)

2.會利用商的算術平方根的性質進行簡單的二次根式的化簡.

(四)練習

1.化簡:

(1) ; (2) ; (3) 。

2.化簡:

(1) ; (2) ; (3)

六、作業

教材P.183習題11.3;A組1.

七、板書設計

二次根式教學設計9

1.能用二次根式表示實際問題中的數量及數量關系,體會研究二次根式的必要性;(難點)

2.能根據算術平方根的意義了解二次根式的概念及性質,會求二次根式中被開方數中字母的取值范圍.(重點)

一、情境導入

問題1:你能用帶有根號的式子填空嗎?

(1)面積為3的正方形的邊長為________,面積為S的正方形的邊長為________.

(2)一個長方形圍欄,長是寬的2倍,面積為130m2,則它的寬為________m.

(3)一個物體從高處自由落下,落到地面所用的時間t(單位:s)與落下的高度h(單位:m)滿足關系h=5t2,如果用含有h的式子表示t,則t=______.

問題2:上面得到的式子,,,分別表示什么意義?它們有什么共同特征?

二、合作探究

探究點一:二次根式的定義

下列各式中,哪些是二次根式,哪些不是二次根式?

(1);(2);(3);

(4);(5);(6)(x≤3);

(7)(x≥0);(8);(9);

(10)(ab≥0).

解析:要判斷一個根式是不是二次根式,一是看根指數是不是2,二是看被開方數是不是非負數.

解:因為,,=,(x≤3),,(ab≥0)中的根指數都是2,且被開方數為非負數,所以都是二次根式.的根指數不是2,,(x≥0),的被開方數小于0,所以不是二次根式.

方法總結:判斷一個式子是不是二次根式,要看所給的式子是否具備以下條件:(1)帶二次根號“”;(2)被開方數是非負數.

探究點二:二次根式有意義的條件

【類型一】 根據二次根式有意義求字母的取值范圍

求使下列式子有意義的x的取值范圍.

(1);(2);(3).

解析:根據二次根式的性質和分式的意義,被開方數大于或等于0且分母不等于0,列不等式(組)求解.

解:(1)由題意得4-3x>0,解得x<.當x<時,有意義;

(2)由題意得解得x≤3且x≠2.當x≤3且x≠2時,有意義;

(3)由題意得解得x≥-5且x≠0.當x≥-5且x≠0時,有意義.

方法總結:含二次根式的式子有意義的條件:

(1)如果一個式子中含有多個二次根式,那么它們有意義的條件是各個二次根式中的被開方數都必須是非負數;(2)如果所給式子中含有分母,則除了保證二次根式中的被開方數為非負數外,還必須保證分母不為零.

【類型二】 利用二次根式的非負性求解

(1)已知a、b滿足+|b-|=0,解關于x的方程(a+2)x+b2=a-1;

(2)已知x、y都是實數,且y=++4,求yx的平方根.

解析:(1)根據二次根式的非負性和絕對值的非負性求解即可;(2)根據二次根式的非負性即可求得x的值,進而求得y的值,進而可求出yx的平方根.

解:(1)根據題意得解得則(a+2)x+b2=a-1,即-2x+3=-5,解得x=4;

(2)根據題意得解得x=3.則y=4,故yx=43=64,±=±8,∴yx的平方根為±8.

方法總結:二次根式和絕對值都具有非負性,幾個非負數的和為0,這幾個非負數都為0.

探究點三:和二次根式有關的規律探究性問題

先觀察下列等式,再回答下列問題.

①=1+-=1;

②=1+-=1;

③=1+-=1.

(1)請你根據上面三個等式提供的信息,寫出的結果;

(2)請你按照上面各等式反映的規律,試寫出用

含n的式子表示的等式(n為正整數).

解析:(1)從三個等式中可以發現,等號右邊第一個加數都是1,第二個加數是個分數,設分母為n,第三個分數的分母就是n+1,結果是一個帶分數,整數部分是1,分數部分的分子也是1,分母是前項分數的分母的積;(2)根據(1)找的規律寫出表示這個規律的式子.

解:(1)=1+-=1;

(2)=1+-=1(n為正整數).

方法總結:解答規律探究性問題,都要通過仔細觀察找出字母和數之間的關系,通過閱讀找出題目隱含條件并用關系式表示出來.

三、板書設計

1.二次根式的定義

一般地,我們把形如(a≥0)的式子叫做二次根式.

2.二次根式有意義的條件

被開方數(式)為非負數;有意義?a≥0.

通過將新知識與舊知識進行聯系與對比,隨后由學生熟悉的實際問題出發,用已有的知識進行探究,由此引入二次根式.在教學過程中讓學生感受到研究二次根式是實際的需要,體會到數學與實際生活間的緊密聯系,以此充分激發學生學習的興趣.

二次根式教學設計

《二次根式》教學反思

二次根式教學設計10

一、教學目標

1.掌握二次根式的混合運算.

2.掌握混合運算的應用.

3.通過二次根式的混合運算,培養學生的運算能力.

4.通過混合運算知識拓展,培養學生的探索精神

二、教學設計

小結、歸納、提高

三、重點、難點解決辦法

1.教學重點:二次根式的混合運算.

2.教學難點:混合運算的應用.

四、課時安排

1課時

五、教具學具準備

投影儀、膠片、多媒體

六、師生互動活動設計

復習小結,歸納整理,應用提高,以學生活動為主

七、教學過程

【例題】

例1 化簡:

(1) ; (2) .

解:(1)

(2)

說明:在計算過程中要注意各個式子的特點,能否約分或消項(第2小題)達到化簡的目的,又要善于在規則允許的情況下可變換相鄰項的位置,如 ,結果為-1,繼續運算易出現符號上的差錯,而把 先變為 ,這樣 則為1,繼續運算可避免錯誤.

例2 解下列方程(組):

(1)

(2)

(3)

解:(1)

(2)①× ,得

②× ,得

③-④,得

把 代入①,得

解得 .

是原方程組的解.

(3)由②,得

①× ,得

③-④,得

把 代入①,得

∴ 是原方程組的解.

例3 已知 , ,求 的值.

解: .

, ,

∴ .

例4 已知 , ,求 的值.

解: , .

(二)隨堂練習

1.教材中P206中8.

2.解不等式: .

解:

3.已知 , ,求 的值.

解:3. ,或 .

4.已知 , ,求: 的值.

解 4.

5.已知 ,求 的值.

解 5. .

6.不求方根的值比較 與 的大小.

解 6.∵

(三)總結、擴展

根據已知條件,求一個代數的值,要注意條件或代數式的化簡,有時條件和要求的代數式都需要化簡,當把條件化簡后,代數式的化簡要朝著條件化簡的結果去化簡.

(四)布置作業

教材中P207B組1、3和補充作業.

補充作業:

1.已知 ,求 的值.

2.已知 , ,求 的值.

(五)板書設計

標 題

1.例題……

3.例題……

2.練習題

4.練習題

八、背景知識與課外閱讀

二次根式的混和運算方法和順序

1.方法 (1)應用二次根式乘法、除法和加減法運算法則.

(2)在實數范圍內運算律仍適用.

(3)二次根式的乘法,與多項式的乘法相類似,遇運用多項式乘法公式時,也可以運用乘法公式.

2.順序 先乘方、后乘除,最后加減,有括號的先算括號內的數.

第三篇:二次根式教案

I.二次根式的定義和概念:

1、定義:一般地,形如√ā(a≥0)的代數式叫做二次根式.當a>0時,√a表示a的算數平方根,√0=0

2、概念:式子√ā(a≥0)叫二次根式.√ā(a≥0)是一個非負數.II.二次根式√ā的簡單性質和幾何意義 1)a≥0;√ā≥0 [ 雙重非負性 ] 2)(√ā)^2=a(a≥0)[任何一個非負數都可以寫成一個數的平方的形式] 3)√(a^2+b^2)表示平面間兩點之間的距離,即勾股定理推論.III.二次根式的性質和最簡二次根式 1)二次根式√ā的化簡 a(a≥0)√ā=|a|={-a(a<0)2)積的平方根與商的平方根 √ab=√a·√b(a≥0,b≥0)√a/b=√a /√b(a≥0,b>0)3)最簡二次根式 條件:

(1)被開方數的因數是整數或字母,因式是整式;

(2)被開方數中不含有可化為平方數或平方式的因數或因式.如:不含有可化為平方數或平方式的因數或因式的有√

2、√

3、√a(a≥0)、√x+y等;

含有可化為平方數或平方式的因數或因式的有√

4、√

9、√a^

2、√(x+y)^

2、√x^2+2xy+y^2等 IV.二次根式的乘法和除法 1 運算法則

√a·√b=√ab(a≥0,b≥0)√a/b=√a /√b(a≥0,b>0)

二數二次根之積,等于二數之積的二次根.2 共軛因式

如果兩個含有根式的代數式的積不再含有根式,那么這兩個代數式叫做共軛因式,也稱互為有理化根式.V.二次根式的加法和減法 1 同類二次根式

一般地,把幾個二次根式化為最簡二次根式后,如果它們的被開方數相同,就把這幾個二次根式叫做同類二次根式.2 合并同類二次根式

把幾個同類二次根式合并為一個二次根式就叫做合并同類二次根式.3二次根式加減時,可以先將二次根式化為最簡二次根式,再將被開方數相同的進行合并

Ⅵ.二次根式的混合運算 1確定運算順序 2靈活運用運算定律 3正確使用乘法公式 4大多數分母有理化要及時 5在有些簡便運算中也許可以約分,不要盲目有理化 VII.分母有理化 分母有理化有兩種方法 I.分母是單項式

如:√a/√b=√a×√b/√b×√b=√ab/b II.分母是多項式 要利用平方差公式

如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b 如圖

II.分母是多項式 要利用平方差公式

如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b

第四篇:二次根式教案

二次根式教案匯編七篇

二次根式教案 篇1

【1】二次根式的加減教案

教材分析:

本節內容出自九年級數學上冊第二十一章第三節的第一課時,本節在研究最簡二次根式和二次根式的乘除的基礎上,來學習二次根式的加減運算法則和進一步完善二次根式的化簡。本小節重點是二次根式的加減運算,教材從一個實際問題引出二次根式的加減運算,使學生感到研究二次根式的加減運算是解決實際問題的需要。通過探索二次根式加減運算,并用其解決一些實際問題,來提高我們用數學解決實際問題的意識和能力。另外,通過本小節學習為后面學生熟練進行二次根式的加減運算以及加、減、乘、除混合運算打下了鋪墊。

學生分析:

本節課的內容是知識的延續和創新,學生積極主動的投入討論、交流、建構中,自主探索、動手操作、協作交流,全班學生具有較扎實的知識和創新能力,通過自學、小組討論大部分學生能夠達到教學目標,少部分學生有困難,基礎差、自學能力差,因此要提供賞識性評價教學策略,給予個別關照、心理暗示以及適當的精神激勵,克服自卑心理,讓他們逐步樹立自尊心與自信心,從而完成自己的'學習任務。

設計理念:

新課程有效課堂教學明確倡導,學生是學習的主人,在學生自學文本的基礎上動手實踐、自主探究、合作交流,來倡導新的學習觀,讓他們完成二次根式加減知識研究。教師從過去知識的傳授者轉變為學生的自主性、探究性、合作性學習活動的設計者和組織者,與學生零距離接觸共同探究。在教學過程中教師設置開放的、面向實際的、富有挑戰性的問題情境,使學生在嘗試、探索、思考、交流與合作中培養分析、歸納、總結的能力,把“要我學”變成“我要學”,通過開放式命題,嘗試從不同角度尋求解決問題的方法,養成良好的學習習慣,掌握學習策略,并根據活動中示范和指導培養學生大膽闡述并討論觀點,說明所獲討論的有效性,并對推論進行評價。從而營造一個接納的、支持的、寬容的良好氛圍進行學習。

教學目標知識與技能目標:

會化簡二次根式,了解同類二次根式的概念,會進行簡單的二次根式的加減法;通過加減運算解決生活的實際問題。

過程與方法目標:

通過類比整式加減法運算體驗二次根式加減法運算的過程;學生經歷由實際問題引入數學問題的過程,發展學生的抽象概括能力。

情感態度與價值觀:

通過對二次根式加減法的探究,激發學生的探索熱情,讓學生充分參與到數學學習的過程中來,使他們體驗到成功的樂趣.

重點、難點:重點:

合并被開放數相同的同類二次根式,會進行簡單的二次根式的加減法。

難點:

二次根式加減法的實際應用。

關鍵問題 :

了解同類二次根式的概念,合并同類二次根式,會進行二次根式的加減法。

教學方法:.

1. 引導發現法:在教師的啟發引導下,鼓勵學生積極參與,與實際問題相結合,采用“問題—探索—發現”的研究模式,讓學生自主探索,合作學習,歸納結論,掌握規律。

2. 類比法:由實際問題導入二次根式加減運算;類比合并同類項合并同類二次根式。

3.嘗試訓練法:通過學生嘗試,教師針對個別問題進行點撥指導,實現全優的教育效果。

【2】二次根式的加減教案

教學目標:

1.知識目標:二次根式的加減法運算

2.能力目標:能熟練進行二次根式的加減運算,能通過二次根式的加減法運算解決實際問題。

3.情感態度:培養學生善于思考,一絲不茍的科學精神。

重難點分析:

重點:能熟練進行二次根式的加減運算。

難點:正確合并被開方數相同的二次根式,二次根式加減法的實際應用。

教學關鍵:通過復習舊知識,運用類比思想方法,達到溫故知新的目的;運用創設問題激發學生求知欲;通過學生全面參與學習(分層次要求),達到每個學生在學習數學上有不同的發展。

運用教具:小黑板等。

教學過程:

問題與情景

師生活動

設計目的

活動一:

情景引入,導學展示

1.把下列二次根式化為最簡二次根式: , ; , , 。上述兩組二次根式,有什么特點?

2.現有一塊長7.5dm、寬5dm的木板,能否采用如教科書圖21.3-所示的方式,在這塊木板上截出兩個面積分別是8dm 和18dm 的正方形木板?

這道題是舊知識的回顧,老師可以找同學直接回答。對于問題,老師要關注:學生是否能熟練得到正確答案。 教師傾聽學生的交流,指導學生探究。

問:什么樣的二次根式能進行加減運算,運算到那一步為止。

由此也可以看到二次根式的加減只有通過找出被開方數相同的二次根式的途徑,才能進行加減。

加強新舊知識的聯系。通過觀察,初步認識同類二次根式。

引出二次根式加減法則。

3. A、B層同學自主學習15頁例1、例2、例3,C層同學至少完成例1、例2的學習。

例1.計算:

(1) ;

(2) - ;

例2. 計算:

1)

2)

例3.要焊接一個如教科書圖21.3—2所示的鋼架,大約需要多少米鋼材(精確到0.1米)?

活動二:分層練習,合作互助

1.下列計算是否正確?為什么?

(1)

(2) ;

(3) 。

2.計算:

(1) ;

(2)

(3)

(4)

3.(見課本16頁)

補充:

活動三:分層檢測,反饋小結

教材17頁習題:

A層、B層:2、3.

C層1、2.

小結:

這節課你學到了什么知識?你有什么收獲?

作業:課堂練習冊第5、6頁。

自學的'同時抽查部分同學在黑板上板書計算過程。抽2名C層同學在黑板上完成例1板書過程,學生在計算時若出現錯誤,抽2名B層同學訂正。抽2名B層同學在黑板上完成例2板書過程,若出現錯誤,再抽2名A層同學訂正。抽1名A層同學在黑板上完成例3板書過程,并做適當的分析講解。

此題是聯系實際的題目,需要學生先列式,再計算。并將結果精確到0.1 m, 學生考慮問題要全面,不能漏掉任何一段鋼材。

老師提示:

1)解決問題的方案是否得當;2)考慮的問題是否全面。3)計算是否準確。

A層同學完成16頁練習1、2、3;B層同學完成練習1、2,可選做第3題;C層同學盡量完成練習1、2。多數同學完成后,讓學生在小組內互相檢查,有問題時共同分析矯正或請教老師。也可以抽查部分同學。例如:抽3名C層同學口答練習1;抽4名B層或C層同學在黑板上板書練習第2題;抽1名A層或B層同學在黑板上板書練習第3題后再分析講解。

點撥:1)對 的化簡是否正確;2)當根式中出現小數、分數、字母時,是否能正確處理;

3)運算法則的運用是否正確

先測試,再小組內互批,查找問題。學生反思本節課學到的知識,談自己的感受。

小結時教師要關注:

1)學生是否抓住本課的重點;

2)對于常見錯誤的認識。

把學習目標由高到低分為A、B、C三個層次,教學中做到分層要求。

學生學習經歷由淺到深的過程,可以提高學生能力,同時有利于激發學生的探索知識的欲望。

二次根式的加減運算融入實際問題中去,提高了學生的學習興趣和對數學知識的應用意識和能力。

小組成員互相檢查學生對于新的知識掌握的情況,鞏固學生剛掌握的知識能力。達到共同把關、合作互助的目的。

培養學生的計算的準確性,以培養學生科學的精神。

對課堂的問題及時反饋,使學生熟練掌握新知識。

每個學生對于知識的理解程度不同,學生回答時教師要多鼓勵學生。

二次根式教案 篇2

教學目的:

1、在二次根式的混合運算中,使學生掌握應用有理化分母的方法化簡和計算二次根式;

2、會求二次根式的代數的值;

3、進一步提高學生的綜合運算能力。

教學重點:在二次根式的混合運算中,靈活選擇有理化分母的方法化簡二次根式

教學難點:正確進行二次根式的混合運算和求含有二次根式的代數式的值

教學過程:

一、二次根式的混合運算

例1 計算:

分析:(1)題是二次根式的加減運算,可先把前三個二次根式化最簡二次根式,把第四式的分母有理化,然后再進行二次根式的加減運算。

(2)題是含乘方、加、減和除法的混合運算,應按運算的順序進行計算,先算括號內的式子,最后進行除法運算。注意的'計算。

練習1:P206 / 8--① P207 / 1①②

例2 計算

問:計算思路是什么?

答:先把第一人的括號內的式子通分,把第二個括號內的式子的分母有理化,再進行計算。

二、求代數式的值。 注意兩點:

(1)如果已知條件為含二次根式的式子,先把它化簡;

(2)如果代數式是含二次根式的式子,應先把代數式化簡,再求值。

例3 已知,求的值。

分析:多項式可轉化為用與表示的式子,因此可根據已知條件中的及的值。求得與的值。在計算中,先把及的式了有理化分母。可使計算簡便。

例4 已知,求的值。

觀察代數式的特點,請說出求這個代數式的值的思路。

答:所求的代數式中,相減的兩個式子的分母都含有二次根式,為化去它們的分母中的根號,可以分別先把各自的分母有理化或進行]通分,把這個代數式化簡后,再求值。

三、小結

1、對于二次根式的混合混合運算。應根據二次根式的加、減、乘除和乘方運算的順序進行,即先進行乘方運算,再進行乘、除運算,最后進行加、減運算。如果有括號,先進行括號內的式子的運算,運算結果要化為最簡二次根式。

2、在代數式求值問題中,如果已知條件所求式子中有含二次根式(或分式)的式子,應先把它們化簡,然后再求值。

3、在進行二次根式的混合運算時,要根據題目特點,靈活選擇解題方法,目的在于使計算更簡捷。

四、作業

P206 / 7 P206 / 8---②③

二次根式教案 篇3

第十六章 二次根式

代數式用運算符號把數和表示數的字母連接起來的式子叫代數式①式子中不能出現“=,≠,≥,≤,<,>”;②單個的數字或單個的字母也是代數式

5.5(解析:這類題保證被開方數是最小的完全平方數即可得出結論.20=22×5,所以正整數的最小值為5.)

6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:關鍵是逆用2=a(a≥0)將3變成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)

7.解:(1) . (2)寬:3 ;長:5 .

8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.

9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.

10.解析:在利用=|a|=化簡二次根式時,當根號內的因式移到根號外面時,一定要注意原來根號里面的符號,這也是化簡時最容易出錯的地方.

解:乙的解答是錯誤的.因為當a=時,=5,a-<0,所以 ≠a-,而應是 =-a.

本節課通過“觀察——歸納——運用”的模式,讓學生對知識的形成與掌握變得簡單起來,將一個一個知識點落實到位,適當增加了拓展性的練習,層層遞進,使不同的學生得到了不同的發展和提高.

在探究二次根式的性質時,通過“提問——追問——討論”的形式展開,保證了活動有一定的針對性,但是學生發揮主體作用不夠.

在探究完成二次根式的性質1后,總結學習方法,再放手讓學生自主探究二次根式的性質2.既可以提高學習效率,又可以培養學生自學能力.

練習(教材第4頁)

1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.

2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.

習題16.1(教材第5頁)

1.解:(1)欲使有意義,則必有a+2≥0,∴a≥-2,∴當a≥-2時,有意義. (2)欲使有意義,則必有3-a≥0,∴a≤3,∴當a≤3時,有意義. (3)欲使有意義,則必有5a≥0,∴a≥0,∴當a≥0時,有意義. (4)欲使有意義,則必有2a+1≥0,∴a≥-,∴當a≥-時,有意義.

2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.

3.解:(1)設圓的半徑為R,由圓的`面積公式得S=πR2,所以R2=,所以R=± .因為圓的半徑不能是負數,所以R=-不符合題意,舍去,故R= ,即面積為S的圓的半徑為 . (2)設較短的邊長為2x,則它的鄰邊長為3x.由長方形的面積公式得2x3x=S,所以x=±,因為x=-不符合題意,舍去,所以x=,所以2x=2=,3x=3=,即這個長方形的相鄰兩邊的長分別為和.

4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.

5.解:由題意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合題意,舍去,∴r=,即r的值是.

6.解:設AB=x,則AB邊上的高為4x,由題意,得x4x=12,則x2=6,∴x=±.∵x=-不符合題意,舍去,∴x=.故AB的長為.

7.解:(1)∵x2+1>0恒成立,∴無論x取任何實數,都有意義. (2)∵(x-1)2≥0恒成立,∴無論x取任何實數,都有意義. (3)∵即x>0,∴當x>0時, 在實數范圍內有意義. (4)∵即x>-1,∴當x>-1時,在實數范圍內有意義.

8.解:設h=t2, 則由題意,得20=×22,解得=5,∴h=5t2,∴t= (負值已舍去).當h=10時,t= =,當h=25時,t= =.故當h=10和h=25時,小球落地所用的時間分別為 s和 s.

9.解:(1)由題意知18-n≥0且為整數,則n≤18,n為自然數且為整數,∴符合條件的n的所有可能的值為2,9,14,17,18. (2)∵24n≥0且是整數,n為正整數,∴符合條件的n的最小值是6.

10.解:V=πr2×10,r= (負值已舍去),當V=5π時, r= =,當V=10π時,r= =1,當V=20π時,r= =.

如圖所示,根據實數a,b在數軸上的位置,化簡:+.

〔解析〕 根據數軸可得出a+b與a-b的正負情況,從而可將二次根式化簡.

解:由數軸可得:a+b<0,a-b>0,

∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.

[解題策略] 結合數軸得出字母的取值范圍,再化簡二次根式,此題體現了數形結合的思想.

已知a,b,c為三角形的三條邊,則+= .

〔解析〕 根據三角形三邊的關系,先判斷a+b-c與b-a-c的符號,再去根號、絕對值符號并化簡.因為a,b,c為三角形的三條邊,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.

[解題策略] 此類化簡問題要特別注意符號問題.

化簡:.

〔解析〕 題中并沒有明確字母x的取值范圍,需要分x≥3和x<3兩種情況考慮.

解:當x≥3時,=|x-3|=x-3;

當x<3時,=|x-3|=-(x-3)=3-x.

[解題策略] 化簡時,先將它化成|a|,再根據絕對值的意義分情況進行討論.

5

O

M

二次根式教案 篇4

【 學習目標 】

1、知識與技能:了解二次根式的概念,能求根號內字母范圍,理解二次根式的雙重非負性,并能應用它解決相關問題。

2、過程與方法:進一步體會分類討論的數學思想。

3、情感、態度與價值觀:通過小組合作學習,體驗在合作探索中學習數學的樂趣。

【 學習重難點 】

1、重點:準確理解二次根式的概念,并能進行簡單的計算。

2、難點:準確理解二次根式的雙重非負性。

【 學習內容 】課本第2— 3頁

【 學習流程 】

一、課前準備(預習學案見附件1)

學生在家中認真閱讀理解課本中相關內容的知識,并根據自己的理解完成預習學案。

二、課堂教學

(一)合作學習階段。

教師出示課堂教學目標及引導材料,各學習小組結合本節課學習目標,根據課堂引導材料中得內容,以小組合作的形式,組內交流、總結,并記錄合作學習中碰到的問題。組內各成員根據課堂引導材料的要求在小組合作的前提下認真完成課堂引導材料。教師在巡視中觀察各小組合作學習的情況,并進行及時的引導、點撥,對普遍存在的問題做好記錄。

(二)集體講授階段。(15分鐘左右)

1. 各小組推選代表依次對課堂引導材料中的問題進行解答,不足的本組成員可以補充。

2. 教師對合作學習中存在的普遍的不能解決的.問題進行集體講解。

3. 各小組提出本組學習中存在的困惑,并請其他小組幫助解答,解答不了的由教師進行解答。

(三)當堂檢測階段

為了及時了解本節課學生的學習效果,及對本節課進行及時的鞏固,對學生進行當堂檢測,測試完試卷上交。

(注:合作學習階段與集體講授階段可以根據授課內容進行適當調整次序或交叉進行)

三、課后作業(課后作業見附件2)

教師發放根據本節課所學內容制定的針對性作業,以幫助學生進一步鞏固提高課堂所學。

四、板書設計

課題:二次根式(1)

二次根式概念 例題 例題

二次根式性質

反思:

二次根式教案 篇5

一、復習引入

學生活動:請同學們完成下列各題:

1.計算

(1)(2x+y)·zx(2)(2x2y+3xy2)÷xy

二、探索新知

如果把上面的x、y、z改寫成二次根式呢?以上的運算規律是否仍成立呢?仍成立.

整式運算中的`x、y、z是一種字母,它的意義十分廣泛,可以代表所有一切,當然也可以代表二次根式,所以,整式中的運算規律也適用于二次根式.

例1.計算:

(1)(+)×(2)(4-3)÷2分析:剛才已經分析,二次根式仍然滿足整式的運算規律,所以直接可用整式的運算規律.

解:(1)(+)×=×+×=+=3+2解:(4-3)÷2=4÷2-3÷2=2-例2.計算

(1)(+6)(3-)(2)(+)(-)

分析:剛才已經分析,二次根式的多項式乘以多項式運算在乘法公式運算中仍然成立.

解:(1)(+6)(3-)

=3-2+18-6=13-3(2)(+)(-)=()2-()2

=10-7=3

三、鞏固練習

課本P20練習1、2.

四、應用拓展

例3.已知=2-,其中a、b是實數,且a+b≠0,

化簡+,并求值.

分析:由于(+)(-)=1,因此對代數式的化簡,可先將分母有理化,再通過解含有字母系數的一元一次方程得到x的值,代入化簡得結果即可?

二次根式教案 篇6

教學目的

1.使學生掌握最簡二次根式的定義,并會應用此定義判斷一個根式是否為最簡二次根式;

2.會運用積和商的算術平方根的性質,把一個二次根式化為最簡二次根式。

教學重點

最簡二次根式的定義。

教學難點

一個二次根式化成最簡二次根式的方法。

教學過程

一、復習引入

1.把下列各根式化簡,并說出化簡的根據:

2.引導學生觀察考慮:

化簡前后的根式,被開方數有什么不同?

化簡前的被開方數有分數,分式;化簡后的被開方數都是整數或整式,且被開方數中開得盡方的因數或因式,被移到根號外。

3.啟發學生回答:

二次根式,請同學們考慮一下被開方數符合什么條件的二次根式叫做最簡二次根式?

二、講解新課

1.總結學生回答的內容后,給出最簡二次根式定義:

滿足下列兩個條件的二次根式叫做最簡二次根式:

(1)被開方數的因數是整數,因式是整式;

(2)被開方數中不含能開得盡的'因數或因式。

最簡二次根式定義中第(1)條說明被開方數不含有分母;分母是1的例外。第(2)條說明被開方數中每個因式的指數小于2;特別注意被開方數應化為因式連乘積的形式。

2.練習:

下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

3.例題:

例1 把下列各式化成最簡二次根式:

例2 把下列各式化成最簡二次根式:

4.總結

把二次根式化成最簡二次根式的根據是什么?應用了什么方法?

當被開方數為整數或整式時,把被開方數進行因數或因式分解,根據積的算術平方根的性質,把開得盡方的因數或因式用它的算術平方根代替移到根號外面去。

當被開方數是分數或分式時,根據分式的基本性質和商的算術平方根的性質化去分母。

此方法是先根據分式的基本性質把被開方數的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

三、鞏固練習

1.把下列各式化成最簡二次根式:

2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

二次根式教案 篇7

一、教學目標

1。使學生知道什么是最簡二次根式,遇到實際式子能夠判斷是不是最簡二次根式。

2。使學生掌握化簡一個二次根式成最簡二次根式的方法。

3。使學生了解把二次根式化簡成最簡二次根式在實際問題中的應用。

二、教學重點和難點

1。重點:能夠把所給的二次根式,化成最簡二次根式。

2。難點:正確運用化一個二次根式成為最簡二次根式的方法。

三、教學方法

通過實際運算的例子,引出最簡二次根式的概念,再通過解題實踐,總結歸納化簡二次根式的方法。

四、教學手段

利用投影儀。

五、教學過程

(一)引入新課

提出問題:如果一個正方形的面積是0。5m2,那么它的邊長是多少?能不能求出它的.近似值?

了。這樣會給解決實際問題帶來方便。

(二)新課

由以上例子可以看出,遇到一個二次根式將它化簡,為解決問題創

這兩個二次根式化簡前后有什么不同,這里要引導學生從兩個方面考慮,一方面是被開方數的因數化簡后是否是整數了,另一方面被開方數中還有沒有開得盡方的因數。

總結滿足什么樣的條件是最簡二次根式。即:滿足下列兩個條件的二次根式,叫做最簡二次根式:

1。被開方數的因數是整數,因式是整式。

2。被開方數中不含能開得盡方的因數或因式。

例1 指出下列根式中的最簡二次根式,并說明為什么。

分析:

說明:這里可以向學生說明,前面兩小節化簡二次根式,就是要求化成最簡二次根式。前面二次根式的運算結果也都是最簡二次根式。

例2 把下列各式化成最簡二次根式:

說明:引導學生觀察例2題中二次根式的特點,即被開方數是整式或整數,再啟發學生總結這類題化簡的方法,先將被開方數或被開方式分解因數或分解因式,然后把開得盡方的因數或因式開出來,從而將式子化簡。

例3 把下列各式化簡成最簡二次根式:

說明:

1。引導學生觀察例題3中二次根式的特點,即被開方數是分數或分式,再啟發學生總結這類題化簡的方法,先利用商的算術平方根的性質把它寫成分式的形式,然后利用分母有理化化簡。

2。要提問學生

問題,通過這個小題使學生明確如何使用化簡中的條件。

通過例2、例3總結把一個二次根式化成最簡二次根式的兩種情況,并引導學生小結應該注意的問題。

注意:

①化簡時,一般需要把被開方數分解因數或分解因式。

②當一個式子的分母中含有二次根式時,一般應該把它化簡成分母中不含二次根式的式子,也就是把它的分母進行有理化。

(三)小結

1。滿足什么條件的根式是最簡二次根式。

2。把一個二次根式化成最簡二次根式的主要方法。

(四)練習

1。指出下列各式中的最簡二次根式:

2。把下列各式化成最簡二次根式:

六、作業

教材P。187習題11。4;A組1;B組1。

七、板書設計

第五篇:二次根式教學設計(8篇)

篇1:二次根式教學設計

【知識與技能】

1.理解二次根式的概念,并利用 (a≥0)的意義解答具體題目.

2.理解 (a≥0)是非負數和( )2=a.

3.理解 =a(a≥0)并利用它進行計算和化簡.

【過程與方法】

1.提出問題,根據問題給出概念,應用概念解決實際問題.

2.通過復習二次根式的概念,用邏輯推理的方法推出 (a≥0)是一個非負數,用具體數據結合算術平方根的意義導出( )2=a(a≥0),最后運用結論嚴謹解題.

3.通過具體數據的解答,探究并利用這個結論解決具體問題.

【情感態度】

通過具體的數據體會從特殊到一般、分類的數學思想,理解二次根式的概念及二次根式的有關性質.

【教學重點】

1.形如 (a≥0)的式子叫做二次根式.

2. (a≥0)是一個非負數;( )2=a(a≥0)及其運用.

【教學難點】

利用“ (a≥0)”解決具體問題.

關鍵:用分類思想的方法導出a(a≥0)是一個非負數;用探究的方法導出

一、情境導入,初步認識

回顧:

當a是正數時, 表示a的算術平方根,即正數a的正的平方根.

當a是零時, 等于0,它表示零的平方根,也叫做零的.算術平方根.

當a是負數時, 沒有意義.

【教學說明】通過對算術平方根的回顧引入二次根式的概念.

二、思考探究,獲取新知

概括: (a≥0)表示非負數a的算術平方根,也就是說, (a≥0)是一個非負數,它的平方等于a.即有:

(1) ≥0;(2)( )2=a(a≥0).

形如 (a≥0)的式子叫做二次根式.

注意:在 中,a的取值必須滿足a≥0,即二次根式的被開方數必須是非負數.

思考: 等于什么?

我們不妨取a的一些值,如2,-2,3,-3等,分別計算對應的 的值,看看有什么規律.

概括:當a≥0時, =a;當a<0時, =-a.

三、運用新知,深化理解

1.x取什么實數時,下列各式有意義?

2.計算下列各式的值:

【教學說明】可由學生搶答完成,再由老師總結歸納.

四、師生互動,課堂小結

1.師生共同回顧二次根式的概念及有關性質:(1)( )2=a(a≥0);(2)當a≥0時, =a;當a<0時, =-a.

2.通過這節課的學習,你掌握了哪些新知識,還有哪些疑問?請與同伴交流.

【教學說明】教師引導學生回顧知識點,讓學生大膽發言,進行知識提煉和知識歸納.

1.布置作業:從教材相應練習和“習題21.1”中選取.

2.完成練習冊中本課時練習的“課時作業”部分.

本節課從復習算術平方根入手引入二次根式的概念,再通過特殊數據的計算,理解二次根式的有關性質,經歷觀察、歸納、分類討論等思維過程,從中獲得數學知識與技能,體驗教學活動的方法.

篇2:二次根式教學設計

一、教學目標

知識與技能:

1、理解二次根式的概念。

2、理解二次根式的基本性質。

過程與方法:

能運用二次根式的概念解決有關問題、

情感態度與價值觀:

經歷觀察、比較、總結和應用等數學活動,感受數學活動充滿了探索性和創造性,體驗發現的快樂,并提高應用的意識。

二、學情分析

學生已經學習了“整式”、“平方根”、“算術平方根”等知識,已經具備了學習二次根式的知識基礎和心理基礎,但學生剛認識二次根式,學習將有一定難度。學生知識障礙點是二次根式的概念及運算,如果學生在此不能很好地理解和正確的認知,將對今后學習產生很大影響,所以要求學生積極探究、思考,及時加以鞏固,克服學習困難,真正“學會”。

三、重點難點

1、教學重點為了解二次根式的概念,知道被開方數必須是非負數的理由,知道二次根式本身是一個非負數,會求二次根式中被開方數字母的取值范圍.

2、教學難點為:理解二次根式的雙重非負性、

四、教學過程

活動1【導入】活動一

問題1你能用帶有根號的的式子填空嗎?

(1)面積為3的正方形的邊長為_______,面積為S的正方形的邊長為_______.

(2)一個長方形圍欄,長是寬的2倍,面積為130m?,則它的寬為______m.

(3)一個物體從高處自由落下,落到地面所用的時間t(單位:s)與開始落下的高度h(單位:m)滿足關系h =5t?,如果用含有h的式子表示t,則t= _____.

師生活動:學生獨立完成上述問題,用算術平方根表示結果,教師進行適當引導和評價。

問題2上面得到的式子√3,√s,√h5分別表示什么意義?它們有什么共同特征?

活動2【活動】講授

問題3你能用一個式子表示一個非負數的算術平方根嗎?

師生活動:學生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如√a(a≥0)的式子叫做二次根式,“√ ”稱為二次根號.

追問:在二次根式的概念中,為什么要強調“a≥0”?

師生活動:教師引導學生討論,知道二次根式被開方數必須是非負數的理由.

活動3【講授】辨析概念

例1當x是怎樣的實數時,√x2在實數范圍內有意義?

師生活動:引導學生從概念出發進行思考,鞏固學生對二次根式的被開方數為非負數的理解.

例2當x是怎樣的實數時,√x2在實數范圍內有意義?√x3呢?

師生活動:先讓學生獨立思考,再追問.

問題4你能比較√a與0的大小嗎?

師生活動:通過分a>0和a= 0這兩種情況的討論,比較√a與0的大小,引導學生得出√a ≥0的結論,強化學生對二次根式本身為非負數的理解,

活動4【練習】練習

練習當x是什么實數時,下列各式有意義、

(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、

練習1完成教科書第3頁的練習、

練習2當x是什么實數時,下列各式有意義、

(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、

練習1完成教科書第3頁的練習、

練習2當x是什么實數時,下列各式有意義、

(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、

練習1完成教科書第3頁的練習、

練習2當x是什么實數時,下列各式有意義、

(1)√x2;(2)√34x(3)√x2√2x;(4)√xx1 、

活動5【活動】小結

小結:

1、二次根式的意義:√a(a≥0)

2、二次根式的性質:

性質1 √a2 = a(a≥0)

活動6【測試】目標檢測

1、下列各式中,一定是二次根式的是()

A、√a B√3 、C√x2+1 、D、3√5

2、當x取什么時,二次根式√3x無意義.

3、當x取何值時,二次根式√x+3有最小值,其最小值是.

4、對于√3a1a3,小紅根據被開方數是非負數,得出a的取值范圍是a ≥ 13.小慧認為還應考慮分母不為0的情況.你認為小慧的想法正確嗎?試求出a的取值范圍.

活動7【作業】布置作業

教科書習題16、1第1,3,5,7,10題.

篇3:二次根式教學設計

教學準備

1.教學目標

(1)學生能用二次根式表示實際問題中的數量和數量關系,體會研究二次根式的必要性.

(2)學生能根據算術平方根的意義了解二次根式的概念,知道被開方數必須是非負數的理由,知道二次根式本身是一個非負數,會求二次根式中被開方數字母的取值范圍. 2.教學重點/難點

理解二次根式的雙重非負性.

3.教學用具

4.標簽

教學過程

1.創設情境,提出問題

問題1你能用帶有根號的的式子填空嗎?

(1)面積為3 的正方形的邊長為_______,面積為S 的正方形的邊長為_______.

(2)一個長方形圍欄,長是寬的2 倍,面積為130m?,則它的寬為______m.

(3)一個物體從高處自由落下,落到地面所用的時間 t(單位:s)與開始落下的高度h(單位:m)滿足關系 h =5t?,如果用含有h 的式子表示 t ,則t= _____.

師生活動:學生獨立完成上述問題,用算術平方根表示結果,教師進行適當引導和評價.

【設計意圖】讓學生在填空過程中初步感知二次根式與實際生活的緊密聯系,體會研究二次根式的必要性.

問題2 上面得到的式子

分別表示什么意義?它們有什么共同特征?

師生活動:教師引導學生說出各式的意義,概括它們的共同特征:都表示一個非負數(包括字母或式子表示的非負數)的算術平方根.

【設計意圖】為概括二次根式的概念作鋪墊.

2.抽象概括,形成概念

問題3 你能用一個式子表示一個非負數的算術平方根嗎?

師生活動:學生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如

【設計意圖】讓學生體會由特殊到一般的過程,培養學生的概括能力.

追問:在二次根式的概念中,為什么要強調“a≥0”?

師生活動:教師引導學生討論,知道二次根式被開方數必須是非負數的理由.

【設計意圖】進一步加深學生對二次根式被開方數必須是非負數的理解. 3.辨析概念,應用鞏固

問題4你能比較與0的大小嗎?

4.綜合運用,鞏固提高

練習1 完成教科書第3頁的練習.

練習2 當x 是什么實數時,下列各式有意義

課堂小結

教師和學生一起回顧本節課所學主要內容,并請學生回答以下問題.

(1)本節課你學到了哪一類新的式子?

(2)二次根式有意義的條件是什么?二次根式的值的范圍是什么?

(3)二次根式與算術平方根有什么關系?

課后習題

篇4:二次根式教學設計

一、教學目標:

(一)知識與技能:

1.了解二次根式的概念,會確定二次根式成立的條件。

2.會用二次根式性質進行有關計算。

3.

了解逆用公式在實數范圍內因式分解。

(二)過程與方法:體驗性質的推導過程,感受由特殊到一般的方法。

(三)情感態度:激發對數學的興趣。

二、教學重點:

二次根式成立的條件,雙重非負性;

用性質進行計算。

三、教學難點

性質的逆用。

四、教學準備:課件

五、教學過程

(一)復習提問

1.什么叫二次根式?

2.下列各式是二次根式,求式子中的字母所滿足的條件:

(3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值為任意實數.

(二)二次根式的簡單性質

上節課我們已經學習了二次根式的定義,并了解了第一個簡單性質

我們知道,正數a有兩個平方根,分別記作零的平方根是零。引導學生總結出,其中,就是一個非負數a的算術平方根。將符號“”看作開平方求算術平方根的運算,看作將一個數進行平方的運算,而開平方運算和平方運算是互為逆運算,因而有:

這里需要注意的是公式成立的條件是a≥0,提問學生,a可以代表一個代數式嗎?

請分析:引導學生答如時才成立。時才成立,即a取任意實數時都成立。我們知道如果我們把,同學們想一想是否就可以把任何一個非負數寫成一個數的平方形式了.

例1

計算:

分析:這個例題中的四個小題,主要是運用公式。其中(2)、(3)、(4)題又運用了整式乘除中學習的積的冪的運算性質.結合第(2)小題中的,說明,這與帶分數。因此,以后遇到,應寫成,而不宜寫成。

例2

把下列非負數寫成一個數的平方的形式:

(1)5;

(2)11;

(3)1.6;

(4)0.35.

例3

把下列各式寫成平方差的形式,再分解因式:

(1)4x2-1; (2)a4-9;

(3)3a2-10; (4)a4-6a2+9.

解:(1)4x2-1

=(2x)2-12

=(2x+1)(2x-1).

(2)a4-9

=(a2)2-32

=(a2+3)(a2-3)

(3)3a2-10

(4)a4-6a2+32

=(a2)2-6a2+32

=(a2-3)2

(三)小結

1.繼續鞏固二次根式的定義,及二次根式中被開方數的取值范圍問題.

2.關于公式的應用。

(1)經常用于乘法的運算中.

(2)可以把任何一個非負數寫成一個數的平方的形式,解決在實數范圍內因式分解等方面的問題.

(四)練習和作業

練習:

1.填空

注意第(4)題需有2m≥0,m≥0,又需有-3m≥0,即m≤0,故m=0.

2.實數a、b在數軸上對應點的位置如下圖所示:

分析:通過本題滲透數形結合的思想,進一步鞏固二次根式的定義、性質,引導學生分析:由于a<0,b>0,且|a|>|b|.

3.計算

二、作業

教材P.172習題11.1;A組2、3;B組2.

補充作業:

下列各式中的字母滿足什么條件時,才能使該式成為二次根式?

分析:要使這些式成為二次根式,只要被開方式是非負數即可,啟發學生分析如下:

(1)由-|a-2b|≥0,得a-2b≤0,

但根據絕對值的性質,有|a-2b|≥0,

|a-2b|=0,即a-2b=0,得a=2b.

(2)由(-m2-1)(m-n)≥0,-(m2+1)(m-n)≥0

(m2+1)(m-n)≤0,又m2+1>0,

m-n≤0,即m≤n.

篇5:二次根式教學設計

一、教學目標:

(一)知識與技能:

1.了解二次根式的概念,會確定二次根式成立的條件。

2.會用二次根式性質進行有關計算。

3.了解逆用公式在實數范圍內因式分解。

(二)過程與方法:體驗性質的推導過程,感受由特殊到一般的方法。

(三)情感態度:激發對數學的興趣。

二、教學重點:

二次根式成立的條件,雙重非負性;

用性質進行計算。

三、教學難點

性質的逆用。

四、教學準備:

課件

五、教學過程

(一)復習提問

1.什么叫二次根式?

2.下列各式是二次根式,求式子中的字母所滿足的條件:

(3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值為任意實數.

(二)二次根式的簡單性質

上節課我們已經學習了二次根式的定義,并了解了第一個簡單性質

我們知道,正數a有兩個平方根,分別記作零的平方根是零。引導學生總結出,其中,就是一個非負數a的算術平方根。將符號“”看作開平方求算術平方根的運算,看作將一個數進行平方的運算,而開平方運算和平方運算是互為逆運算,因而有:

這里需要注意的是公式成立的條件是a≥0,提問學生,a可以代表一個代數式嗎?

請分析:引導學生答如時才成立。時才成立,即a取任意實數時都成立。我們知道如果我們把,同學們想一想是否就可以把任何一個非負數寫成一個數的平方形式了.

(三)小結

1.繼續鞏固二次根式的定義,及二次根式中被開方數的取值范圍問題.

2.關于公式的應用。

(1)經常用于乘法的運算中.

(2)可以把任何一個非負數寫成一個數的平方的形式,解決在實數范圍內因式分解等方面的問題.

篇6:二次根式教學設計

一、情境導入

問題1:你能用帶有根號的式子填空嗎?

(1)面積為3的正方形的邊長為xx,面積為S的正方形的邊長為xx

(2)一個長方形圍欄,長是寬的2倍,面積為130m2,則它的寬為xxm。

(3)一個物體從高處自由落下,落到地面所用的時間t(單位:s)與落下的高度h(單位:m)滿足關系h=5t2,如果用含有h的式子表示t,則t=xx。

問題2:上面得到的式子,分別表示什么意義?它們有什么共同特征?

二、合作探究

探究點一:二次根式的定義

下列各式中,哪些是二次根式,哪些不是二次根式?

解析:要判斷一個根式是不是二次根式,一是看根指數是不是2,二是看被開方數是不是非負數。

解:因為xx=,(x≤3),(ab≥0)中的根指數都是2,且被開方數為非負數,所以都是二次根式的根指數不是2,(x≥0),的被開方數小于0,所以不是二次根式。

方法總結:判斷一個式子是不是二次根式,要看所給的式子是否具備以下條件:

(1)帶二次根號;

(2)被開方數是非負數。

探究點二:二次根式有意義的條件

類型一 根據二次根式有意義求字母的取值范圍

求使下列式子有意義的x的取值范圍。

解析:根據二次根式的性質和分式的意義,被開方數大于或等于0且分母不等于0,列不等式(組)求解。

解:(1)由題意得4-3x>0,解得x<.當x<時,有意義;

(2)由題意得解得x≤3且x≠2.當x≤3且x≠2時,有意義;

(3)由題意得解得x≥-5且x≠0.當x≥-5且x≠0時,有意義。

方法總結:含二次根式的式子有意義的條件:

(1)如果一個式子中含有多個二次根式,那么它們有意義的條件是各個二次根式中的被開方數都必須是非負數;(2)如果所給式子中含有分母,則除了保證二次根式中的被開方數為非負數外,還必須保證分母不為零。

類型二 利用二次根式的非負性求解

(1)已知a、b滿足+|b-|=0,解關于x的方程(a+2)x+b2=a-1;

(2)已知x、y都是實數,且y=++4,求yx的平方根。

解析:(1)根據二次根式的非負性和絕對值的非負性求解即可;(2)根據二次根式的非負性即可求得x的值,進而求得y的值,進而可求出yx的平方根。

解:(1)根據題意得解得則(a+2)x+b2=a-1,即-2x+3=-5,解得x=4;

(2)根據題意得解得x=3.則y=4,故yx=43=64,±=±8,∴yx的`平方根為±8。

方法總結:二次根式和絕對值都具有非負性,幾個非負數的和為0,這幾個非負數都為0。

探究點三:和二次根式有關的規律探究性問題

先觀察下列等式,再回答下列問題。

①=1+-=1;

②=1+-=1;

③=1+-=1.

(1)請你根據上面三個等式提供的信息,寫出的結果;

(2)請你按照上面各等式反映的規律,試寫出用

含n的式子表示的等式(n為正整數)。

解析:(1)從三個等式中可以發現,等號右邊第一個加數都是1,第二個加數是個分數,設分母為n,第三個分數的分母就是n+1,結果是一個帶分數,整數部分是1,分數部分的分子也是1,分母是前項分數的分母的積;(2)根據(1)找的規律寫出表示這個規律的式子。

解:(1)=1+-=1;

(2)=1+-=1(n為正整數).

方法總結:解答規律探究性問題,都要通過仔細觀察找出字母和數之間的關系,通過閱讀找出題目隱含條件并用關系式表示出來。

三、板書設計

1.二次根式的定義

一般地,我們把形如(a≥0)的式子叫做二次根式。

2.二次根式有意義的條件

被開方數(式)為非負數;有意義?a≥0。

通過將新知識與舊知識進行聯系與對比,隨后由學生熟悉的實際問題出發,用已有的知識進行探究,由此引入二次根式。在教學過程中讓學生感受到研究二次根式是實際的需要,體會到數學與實際生活間的緊密聯系,以此充分激發學生學習的興趣。

篇7:二次根式教學設計

一、教學目標

1.了解二次根式的意義;

2. 掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;

3. 掌握二次根式的性質 和 ,并能靈活應用;

4.通過二次根式的計算培養學生的邏輯思維能力;

5. 通過二次根式性質 和 的介紹滲透對稱性、規律性的數學美。

二、教學重點和難點

重點:(1)二次根的意義;(2)二次根式中字母的取值范圍。

難點:確定二次根式中字母的取值范圍。

三、教學方法

啟發式、講練結合。

四、教學過程

(一)復習提問

1.什么叫平方根、算術平方根?

2.說出下列各式的意義,并計算:

通過練習使學生進一步理解平方根、算術平方根的概念。

觀察上面幾個式子的特點,引導學生總結它們的被平方數都大于或等于零,其中 ,

表示的是算術平方根。

(二)引入新課

我們已遇到的這樣的式子是我們這節課研究的內容,引出:

新課:二次根式

定義: 式子 叫做二次根式。

對于 請同學們討論論應注意的問題,引導學生總結:

(1)式子 只有在條件a0時才叫二次根式, 是二次根式嗎?

若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分。

(2) 是二次根式,而 ,提問學生:2是二次根式嗎?顯然不是,因此二次

根式指的是某種式子的外在形態.請學生舉出幾個二次根式的例子,并說明為什么是二次根式。下面例題根據二次根式定義,由學生分析、回答。

篇8:二次根式教學設計

一、素質教育目標

(一)知識教學點

1.使學生了解最簡二次根式的概念和同類二次根式的概念.

2.能判斷二次根式中的同類二次根式.

3.會用同類二次根式進行二次根式的加減.

(二)能力訓練點

通過本節的學習,培養學生的思維能力并提高學生的運算能力.

(三)德育滲透點

從簡單的同類二次根式的合并,層層深入,從解題的過程中,讓學生體會轉化的思維,滲透辯證唯物主義思想.

(四)美育滲透點

通過二次根式的加減,滲透二次根式化簡合并后的形式簡單美.

二、學法引導

1.教師教法引導法、比較法、剖析法,在比較和剖析中,不斷糾正錯誤,從而樹立牢固的計算方法.

2.學生學法通過不斷的練習,從中體會、比較、二次根式加減法中,正確的方法使用,并注重小結出二次根式加減法的法則.

三、重點·難點·疑點及解決辦法

1.教學重點二次根式的加減法運算.

2.教學難點二次根式的化簡.

3.疑點及解決辦法二次根式的加減法的關鍵在于二次根式的化簡,在適當復習二次根的化簡后進行一步引入幾個整式加減法的,以引起學生的求知欲與興趣,從而最后引入同類二次根式的加減法,可進行階梯式教學,由淺到深、由簡單到復雜的教學方法,以利于學生的`理解、掌握和運用,通過具體例題的計算,可由教師引導,由學生總結出計算的步驟和注意的問題,還可以通過反例,讓學生去偽存真,這種比較法的教學可使學生對概念的理解、法則的運用更加準確和熟練,并能提高學生的學習興趣,以達到更好的學習效果.

四、課時安排

2課時

五、教具學具準備

投影片

六、師生互動活動設計

1.復習最簡二根式整式及的加減運算,引入二次根式的加減運算,盡量讓學生回答問題.

2.教師通過例題的示范讓學生了解什么是二次根式的加減法,并引入同類的二次根式的定義.

3.再通過較復雜的二次根式的加減法計算,引導學生小結歸納出二次根式的加減法的法則.

4.通過學生的反復訓練,發現問題及時糾正,并引導學生從解題過程中體會理解二次根式加減法的實質及解決的方法.

七、教學步驟

(一)明確目標

學習二次根式化簡的目的是為了能將一些最終能化為同類二次根式項相合并,從而達到化繁為簡的目的,本節課就是研究二次根式的加減法.

(二)整體感知

同類二次根式的概念應分二層含義去理解(1)化簡后(2)被開方數還相同.通過正確理解二次根式加減法的法則來準確地實施二次根式加減法的運算,應特別注意合并同類二次根式時僅將它們的系數相加減,根式一定要保持不變,并可對比整式的加減法則以增加對合并同類二次根式的理解,增強綜合運算的能力.

下載16.1 二次根式 教學設計 教案word格式文檔
下載16.1 二次根式 教學設計 教案.doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點此處下載文檔

文檔為doc格式


聲明:本文內容由互聯網用戶自發貢獻自行上傳,本網站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發現有涉嫌版權的內容,歡迎發送郵件至:645879355@qq.com 進行舉報,并提供相關證據,工作人員會在5個工作日內聯系你,一經查實,本站將立刻刪除涉嫌侵權內容。

相關范文推薦

    二次根式教學設計(通用)[大全五篇]

    二次根式教學設計(通用5篇)作為一位優秀的人民教師,就有可能用到教學設計,借助教學設計可以讓教學工作更加有效地進行。那要怎么寫好教學設計呢?以下是小編精心整理的二次根式教......

    二次根式教學設計(五篇模版)

    二次根式教學設計作為一名教師,可能需要進行教學設計編寫工作,教學設計是實現教學目標的計劃性和決策性活動。那么應當如何寫教學設計呢?以下是小編為大家收集的二次根式教學設......

    二次根式 教學設計5篇

    7 二次根式 第1課時 二次根式的概念和性質 教學目標 【知識與技能】 1.了解二次根式及最簡二次根式的概念. 2.會化簡二次根式. 3.理解并掌握二次根式的性質. 【過程與方法】......

    二次根式除法教學設計(大全)

    二次根式的除法 一、教學目標 1.掌握商的算術平方根的性質,能利用性質進行二次根式的化簡與運算; 2.會進行簡單的二次根式的除法運算; 3.使學生掌握分母有理化概念,并能利用分......

    二次根式教學設計(最終版)

    二次根式教學設計 一:教學內容分析 本節課是人教版九年級上冊第21章二次根式第一節二次根式第一課時的內容,它是前面學習的數的開方的后繼學習,也是學習二次根式的運算的基礎,......

    《二次根式的性質》教學設計

    《二次根式的性質》教學設計一、教學目標:(一)知識與技能:1.了解二次根式的概念,會確定二次根式成立的條件。2.會用二次根式性質進行有關計算。3.了解逆用公式在實數范圍內因式分......

    八年級下冊二次根式教學設計

    教學目標:掌握二次根式的概念;根據二次根式的概念掌握被開方數的取值范圍。教學重難點:重點:二次根式的概念以及二次根式有意義的條件;難點:根據要求求滿足條件的字母的取值范圍。......

    二次根式教學反思

    二次根式教學反思 二次根式教學反思1 初次進行“信息技術與課程整合”課程的實驗,首先感到的一個字就是“累”。也許是缺乏經驗的原因。盡管課前進行充分的準備,可是在實施的......

主站蜘蛛池模板: 两个人看的www中文在线观看| 亚洲国产精品成人综合色| 狼人青草久久网伊人| 狠狠热在线视频免费| 西西人体44www大胆无码| 国产福利一区二区三区在线观看| 717影院理论午夜伦八戒| 少妇爆乳无码av专区网站寝取| 国产精品va在线观看丝瓜影院| 东京热人妻无码一区二区av| 国产人妻久久精品二区三区老狼| 18禁真人抽搐一进一出在线| 久久国产偷任你爽任你| 日韩精品一卡二卡二卡四卡乱码| 亚洲精品无码专区久久| 在线人成免费视频69国产| 亚洲精品国精品久久99热| 97视频在线观看播放| 好男人在线社区www在线影院| 男女性爽大片在线观看| 精品少妇爆乳无码av无码专区| 精品少妇爆乳无码av无码专区| 中文字幕av中文字无码亚| 无码超乳爆乳中文字幕久久| 国产在线精品一区二区在线看| 亚洲中文无码线在线观看| 国产日产欧产美韩系列麻豆| 国产高欧美性情一线在线| 色五月丁香六月欧美综合| 亚洲色偷偷色噜噜狠狠99| 无码国产色欲xxxx视频| 久久99热狠狠色精品一区| 真实国产熟睡乱子伦视频| 成全视频在线观看在线播放| 国产在线 | 中文| 欧洲人与动牲交α欧美精品| 久激情内射婷内射蜜桃| 午夜理论片yy8860y影院| 2021国产精品国产精华| 无码人妻在线一区二区三区免费| 午夜131美女爱做视频|