第一篇:初二數學全等三角形證明[本站推薦]
初二數學全等三角形證明
班別_______姓名_______學號_______2007-5-1
51.如圖,AB=CD,AD、BC相交于點O,(1)要使△ABO≌△DCO,應添加的條件為.(添加一個條件即可)
(2)添加條件后,證明△
ABO≌△DCO
2.已知:如圖,AB//DE,且AB=DE.(l)請你只添加一個條件,使△ABC≌△DEF,你添加的條件是.(2)添加條件后,證明△ABC≌△DEF.3、如圖,點E在AB上,AC=AD,請你添加一個條件,使圖中存在全等三角形,并給予證明。
所添條件為,你得到的一對全等三角形是???
證明:ABOCD(第12題)
4、如圖,在△ABC中,D為BC邊的中點,過D點分別作DE∥AB交AC于點E,DF∥AC交AB于點F.(1)證明:△BDF≌△DCE ;AFE
BC D
(第4 題圖)
5.如圖9,已知∠1 = ∠2,AB = AC.求證:BD = CDBDA
圖 9
6.如圖,已知∠1=∠2,∠C=∠D,求證:AC=BD.
A
B7、如圖,在ABCD中,BE?AC于點E,DF?AC于點F.
求證:AE?CF;AD
BC8、如圖,已知點M、N分別是平行四邊形ABCD的邊AB、、DC的中點,求證: ∠DAN=∠BCM.9.如圖,AC和BD相交于點E,AB∥CD,BE=DE。求證:AB=CD
A
B E
第9題圖
10、已知:如圖10,在△ABC中,AB=AC,點D,E在邊BC上,且BD=CE.
求證:AD=AE.
_B
_C
_ M
_N
_A
_D
D
C
圖10
C12、如圖(4),在△ABD和△ACE中,有下列四個等式:○
1AB=AC○2AD=AE○31=∠2○4BD=CE.請你以其中三個等式作為題設,余下的作為結論,寫出一個真命題(要求寫出已知,求證及證明過程)
第二篇:全等三角形證明
全等三角形的證明
1.?翻折
如圖(1),?BOC≌?EOD,?BOC可以看成是由?EOD沿直線AO翻折180?得到的;
?旋轉
如圖(2),?COD≌?BOA,?COD可以看成是由?BOA繞著點O旋轉180?得到的;
?平移
如圖(3),?DEF≌?ACB,?DEF可以看成是由?ACB沿CB方向平行移動而得到的。
2.判定三角形全等的方法:
(1)邊角邊公理、角邊角公理、邊邊邊公理、斜邊直角邊(直角三角形中)公理
(2)推論:角角邊定理
3.注意問題:
(1)在判定兩個三角形全等時,至少有一邊對應相等;
(2)不能證明兩個三角形全等的是,a: 三個角對應相等,即AAA;b :有兩邊和其中一角對應相等,即SSA。
一、全等三角形知識的應用
(1)證明線段(或角)相等
例1:如圖,已知AD=AE,AB=AC.求證:BF=FC
(2)證明線段平行
例2:已知:如圖,DE⊥AC,BF⊥AC,垂足分別為E、F,DE=BF,AE=CF.求證:AB∥CD
(3)證明線段的倍半關系,可利用加倍法或折半法將問題轉化為證明兩條線段相等
例3:如圖,在△ ABC中,AB=AC,延長AB到D,使BD=AB,取AB的中點E,連接CD和CE.求證:CD=2CE
例4 如圖,△ABC中,∠C=2∠B,∠1=∠2。求證:AB=AC+CD.
.
例5:已知:如圖,A、D、B三點在同一條直線上,CD⊥AB,ΔADC、ΔBDO為等腰Rt三角形,AO、BC的大小關系和位置關系分別如何?證明你的結論。
例6.如圖,已知C為線段AB上的一點,?ACM和?CBN都是等邊三角形,AN和CM相交于F點,BM和CN交于E點。求證:?CEF是等邊三角形。
N
M
FE
C
A B
第三篇:全等三角形證明
全等三角形證明
1、已知CD∥AB,DF∥EB,DF=EB,問AF=CE嗎?說明理由。
CA2、已知∠E=∠F,∠1=∠2,AB=CD,問AE=DF嗎?說明理由。
F3、已知,點C是AB的中點,CD∥BE,且CD=BE,問∠D=∠E嗎?說明理由。
4、已知AB=CD,BE=DF,AE=CF,問AB∥CD嗎?
A B
C
第四篇:初二數學全等三角形的證明課件
銳進教育(初高中輔導專家)
【重點、考點】
定義:
1.全等形: 能夠完全重合的兩個圖形叫做全等形。
2.全等三角形:
(1)定義:能夠完全重合的兩個三角形叫做全等三角形。
(2)表示方法:⊿ABC≌⊿DEF
(3)全等三角形的性質:全等三角形的對應邊相等,全等三角形的對應角相等
3.全等三角形的判定:三邊相等(SSS)、兩邊和它們的夾角相等(SAS)、兩角和它們的夾邊(ASA)、兩角和其中一角的對邊對應相等(AAS)、斜邊和直角邊相等的兩直角三角形(HL)
練習
1.如圖1,已知△ABE≌△ACD,AB=AC,寫出這對全等三角形的對應邊和對應角。
2.如圖1,AB=AC,BE=CD,要使△ABE≌△ACD,依據“SSS”,則還需添加條件:。
圖
13.如右圖,已知BD=CE,∠1=∠2,那么AB=AC,你知道這是為什么嗎?
AE
A
C
4.(2012年中考)如右圖,點D在AB上,點E在AC上,AB=AC,∠B=∠C.求證:BE=CD
5.如右圖,AB=CD,AE⊥BC,DF⊥BC,垂足分別為E,F,CE=BF.求證:AE=DF.
D
E
B
C
利用全等三角形解決實際問題
1.如圖1,某同學把一塊三角形的玻璃打碎成三片,現在他要到玻璃店去配一塊完全一樣形狀的玻璃.那么最省事的辦法是帶()A.①B.②C.③D.①和②
②
③
A
圖1圖
22.工人師傅經常利用角尺平分一個任意角,如圖2,∠AOB是一個任意角,在OA、OB邊上分別取OD=OE,移動角尺使角尺兩邊相同的刻度分別與D、E重合,這時過角尺頂點P的射線OP就是∠AOB的平分線,你能說明其中的道理嗎
3.圖17為人民公園的荷花池,現要測量此荷花池兩旁A、B兩棵樹間的距離(不能直接測量),請你根據所學三角形全等的知識,設計一種測量方案求出AB的長(要求畫出草圖,寫出測量方案和理由).
圖17
開放題
如圖,給出五個等量關系:①AD=BC、②AC=BD、③CE=DE、④∠D=∠C、⑤∠DAB=∠CBA。請你以其中兩個為條件,另三個中的一個為結論,寫出一個正確命題(寫出三種情況),并選一種情況加以證明。
三角形輔助線做法
1)遇到等腰三角形可作底邊上的高,利用“三線合一”的性質解題,思維模式是全等變換中的“對折”. 2)遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構造全等三角形,利用的思維模式是全等變換中的“旋轉”. 3)遇到角平分線,可以自角平分線上的某一點向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對折”,所考知識點常常是角平分線的性質定理或逆定理.
4)過圖形上某一點作特定的平分線,構造全等三角形,利用的思維模式是全等變換中的“平移”或“翻轉折疊”
5)截長法與補短法,具體做法是在某條線段上截取一條線段與特定線段相等,或是將某條線段延長,是之與特定線段相等,再利用三角形全等的有關性質加以說明.這種作法,適合于證明線段的和、差、倍、分等類的題目.
6)特殊方法:在求有關三角形的定值一類的問題時,常把某點到原三角形各頂點的線段連接起來,利用三角形面積的知識解答.
練習
1、如圖1,在△ABC中,BD=DC,∠1=∠2,求證:AD⊥BC.
A
E
F
B
CD
圖1圖
22、如圖2,△ABC中,E、F分別在AB、AC上,DE⊥DF,D是中點,試比較BE+CF與EF的大小.3、如圖,在△ABC中,AD平分∠BAC,∠C=2∠B.求證:AB=AC+CD.
EB
D
A
C4、如圖24,在△ABC中,AD平分∠BAC,CE⊥AD于E.求證:∠ACE=∠B+∠ECD.
F
B
A
E
D
C5、如圖26,在△ABC中,AB=AC,BD平分∠ABC,DE⊥BD于D,交BC于點E.求證:CD=
BE.
2旋轉、動點
1、(2012年中考)如圖3,在等邊△ABC中,AB=6,D是BC上一點.且BC=3BD,△ABD繞點A旋轉后的得到△ACE.則CE的長為_______.
E
B
圖3圖
42、.在△ABC中,?ACB?90?,AC?BC,直線MN經過點C,且AD?MN于D,BE?MN于E.(1)當直線MN繞點C旋轉到圖1的位置時,求證: ①?ADC≌?CEB;②DE?AD?BE
;(2)當直線MN繞點C旋轉到圖2的位置時,(1)中的結論還成立嗎?若成立,請給出證明;若不成立,說明理由.3、D為等腰Rt?ABC斜邊AB的中點,DM⊥DN,DM,DN分別交BC,CA(1)當?MDN繞點D轉動時,求證DE=DF。
(2)若AB=2,求四邊形DECF的面積。
A
三、角的平分線
1.角的平分線的性質:角的平分線上的點到角的兩邊的距離相等。
2.角的平分線的判定: 角的內部到角的兩邊的距離相等的點在角的平分線上
練習
1、如圖,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B為垂足,AB交OM于點N. 求證:∠OAB=∠OBA2、如圖14-73所示,在△ABC中,∠C=90°,∠BAC=60°,AB的垂直平分線交AB于D,交BC于E,若CE=3cm,求BE的長.四、尺規作圖
考點:
1、求路程最短
2、求到各邊距離相等的點
1、已知:如圖,線段a.2、已知,如圖1, 求作∠2=∠
12、如圖,已知∠1,求作∠2=∠
2圖1圖23、已知:如圖2,∠AOB,求作:射線OP, 使∠AOP=∠BOP(即OP平分∠AOB)
4、已知:如圖3,線段AB,求作PQ垂直平分AB.5、如圖4,已知直線AB及直線AB外一點C,過點C作CD∥AB(寫出作法,畫出圖形).
圖3圖
第五篇:全等三角形練習題(證明)
全等三角形練習題(8)
一、認認真真選,沉著應戰!
1.下列命題中正確的是()
A.全等三角形的高相等B.全等三角形的中線相等
C.全等三角形的角平分線相等D.全等三角形對應角的平分線相等 2. 下列各條件中,不能做出惟一三角形的是()
A.已知兩邊和夾角B.已知兩角和夾邊
C.已知兩邊和其中一邊的對角D.已知三邊
4.下列各組條件中,能判定△ABC≌△DEF的是()
A.AB=DE,BC=EF,∠A=∠D
B.∠A=∠D,∠C=∠F,AC=EF
C.AB=DE,BC=EF,△ABC的周長= △DEF的周長
D.∠A=∠D,∠B=∠E,∠C=∠F
5.如圖,在△ABC中,∠A:∠B:∠C=3:5:10,又△MNC≌△ABC,則∠BCM:∠BCN等于()
A.1:2B.1:3C.2:3D.1:
46.如圖,∠AOB和一條定長線段A,在∠AOB內找一點P,使P到OA、OB的距離都等于A,做法如下:(1)作OB的垂線NH,使NH=A,H為垂足.(2)過N作NM∥OB.(3)作∠AOB的平分線OP,與NM交于P.(4)點P即為所求.
其中(3)的依據是()
A.平行線之間的距離處處相等
B.到角的兩邊距離相等的點在角的平分線上
C.角的平分線上的點到角的兩邊的距離相等
D.到線段的兩個端點距離相等的點在線段的垂直平分線上
7. 如圖,△ABC的三邊AB、BC、CA長分別是20、30、40,其三條 角平分線將△ABC分為三個三角形,則S△ABO︰S△BCO︰S△CAO等于()
A.1︰1︰1B.1︰2︰3C.2︰3︰4D.3︰4︰
58.如圖,從下列四個條件:①BC=B′C,②AC=A′C,③∠A′CB=∠B′CB,④AB=A′B′中,任取三個為條件,ANCA
C F 余下的一個為結論,則最多可以構成正確的結論的個數是()
A.1個B.2個C.3個D.4個
9.要測量河兩岸相對的兩點A,B的距離,先在AB的垂線BF上 取兩點C,D,使CD=BC,再定出BF的垂線DE,使A,C,E在同 一條直線上,如圖,可以得到?EDC??ABC,所以ED=AB,因
E
此測得ED的長就是AB的長,判定?EDC??ABC的理由是()A.SASB.ASAC.SSSD.HL
10.如圖所示,△ABE和△ADC是△ABC分別沿著AB,AC邊 翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,則∠α的度數為()
A.80°B.100°C.60°D.45°.
二、仔仔細細填,記錄自信!
11.如圖,在△ABC中,AD=DE,AB=BE,∠A=80°,則∠CED=_____.
12.已知△DEF≌△ABC,AB=AC,且△ABC的周長為23cm,BC=4 cm,則△DEF的邊中必有一條邊等于______.
13. 在△ABC中,∠C=90°,BC=4CM,∠BAC的平分線交BC于D,且BD︰DC=5︰3,則D到AB的距離為_____________.
14. 如圖,△ABC是不等邊三角形,DE=BC,以D,E為兩個頂點作位置不同的三角形,使所作的三角形與△ABC全等,這樣的三角形最多可以畫出_____個.
BE
BCDE
?分別是銳角三角形ABC和銳角三角形A?B?C?中BC,B?C?邊上的高,且15. 如圖,AD,A?D?B,?AB?AAD?
?D?若使△ABC≌△A?B?C?,請你補充條件___________.(填寫一個你認為適A.
當的條件即可)
C
'
'
B D D
17. 如果兩個三角形的兩條邊和其中一條邊上的高對應相等,那么這兩個三角形的第三邊所對的角的關
'
C
'
系是__________.
19. 如右圖,已知在?ABC中,?A?90?,AB?AC,CD平
分?ACB,DE?BC于E,若BC?15cm,則△DEB 的周長為cm.
E
C
20.在數學活動課上,小明提出這樣一個問題:∠B=∠C=900,E是
BC的中點,DE平分∠ADC,∠CED=350,如圖,則∠EAB是多少 度?大家一起熱烈地討論交流,小英第一個得出正確答案,是______.
三、平心靜氣做,展示智慧!
21.如圖,公園有一條“Z”字形道路ABCD,其中
AB∥CD,在E,M,F處各有一個小石凳,且BE?CF,M為BC的中點,請問三個小石凳是否在一條直線上?說出你推斷的理由.
22.如圖,給出五個等量關系:①AD?BC ②AC?BD ③CE?DE ④?D??C⑤?DAB??CBA.請你以其中兩個為條件,另三個中的一個為結論,推出一個正確 的結論(只需寫出一種情況),并加以證明.
已知:
求證:
證明:
23.如圖,在∠AOB的兩邊OA,OB上分別取OM=ON,OD=OE,DN和EM相交于點C. 求證:點C在∠AOB的平分線上.
A
B
B
如圖,已知△ABC和△DEC都是等邊三角形,∠ACB=∠DCE=60°,B、C、E在同一直線上,連結BD和AE.求證:BD=AE.2.已知:如圖點C是AB的中點,CD∥BE,且CD=BE.求證:∠D=∠E.3.已知:E、F是AB上的兩點,AE=BF,又AC∥DB,且AC=DB.求證:CF=DE。
4.如圖,D、E、F、B在一條直線上,AB=CD,∠B=∠D,BF=DE。求證:⑴AE=CF;⑵AE∥CF;⑶∠AFE=∠CEF。
1、已知:如圖,∠1=∠2,∠B=∠D。求證:△AFC≌△DEB4、已知:AD為△ABC中BC邊上的中線,CE∥AB交AD的延長線于E。
求證:(1)AB=CE; 5、已知:AB=AC,BD=CD
求證:(1)∠B=∠C
(2)DE=DF
6.已知:AD為△ABC中BC邊上的中線,CE∥AB交AD的延長線于E。7.已知:如圖,AB=CD,DA⊥CA,AC⊥BC。
求證:△ADC≌△CBA
求證:(1)AB=CE;
參考答案
一、1—5:DCDCD6—10:BCBBA
二、11.100° 12.4cm或9.5cm 13.1.5cm 14.4 15.略
16.1?AD?5 17. 互補或相等 18. 180 19.15 20.350
三、21.在一條直線上.連結EM并延長交CD于F' 證CF?CF'. 22.情況一:已知:AD?BC,AC?BD
求證:CE?DE(或?D??C或?DAB??CBA)
證明:在△ABD和△BAC中 ∵AD?BC,AC?BD
AB?BA
∴△ABD≌△BAC
∴?CAB??DBA∴AE?BE
∴AC?AE?BD?BE
即CE?ED
情況二:已知:?D??C,?DAB??CBA
求證:AD?BC(或AC?BD或CE?DE)證明:在△ABD和△BAC中?D??C,?DAB??CBA∵AB?A B
∴△ABD≌△BAC
∴AD?B C
23.提示:OM=ON,OE=OD,∠MOE=∠NOD,∴△MOE≌△NOD,∴∠OME=∠OND,又DM=EN,∠DCM=∠ECN,∴△MDC≌△NEC,∴MC=NC,易得△OMC≌△ONC(SSS)∴∠MOC=∠NOC,∴點C在∠AOB的平分線上.
四、24.(1)解:△ABC與△AEG面積相等
過點C作CM⊥AB于M,過點G作GN⊥EA交EA延長線于N,則
?AMC??ANG?90?
?四邊形ABDE和四邊形ACFG都是正方形
??BAE??CAG?90,AB?AE,AC?AG??BAC??EAG?180
??
??EAG??GAN?180??BAC??GAN?△ACM≌△AGN
?
D
?CM?GN?S△ABC?
AB?CM,S△AEG?
12AE?GN
?S△ABC?S△AEG
(2)解:由(1)知外圈的所有三角形的面積之和等于內圈的所有三角形的面積之和
?這條小路的面積為(a?2b)平方米.