第一篇:淺談證明三角形全等的一些技巧
淺談證明三角形全等的一些技巧
婁菊紅
【摘要】:正全等三角形是初中平面幾何知識的一個重要組成部分,也是中考必考的內容之
一.證明兩個三角形全等,一般有邊角邊(SAS)、角邊角(ASA)、角角邊(AAS)、邊邊邊(SSS)四種方法.判定兩個直角三角形全等,除了以上方法外,還有斜邊直角邊(HL).對于一個有關三角形全等的題目,如何去想它的解法,常常使初學者困惑.本文給同學們介紹一些解題技巧,基本上可概括為:兩個關鍵、三類圖形、三種方法.兩個關鍵:要證明兩個三角形全等,首先是找準對應關系,這里有兩個關鍵點:1.公共邊一定是對應邊,公共角(或對頂角)一定是對應角:2.相等的邊所對的角為對應角,相等的角所對的邊為對應邊.三類圖形:全等三角形的形態(tài)通常有以下三種:1.平移型.下圖中的兩個三角形是平移型全等.【關鍵詞】: 三角形全等 等腰直角三角形 已知條件 證明 三種方法 全等三角形 中點 解析 斜邊 邊角
第二篇:全等三角形證明
全等三角形的證明
1.?翻折
如圖(1),?BOC≌?EOD,?BOC可以看成是由?EOD沿直線AO翻折180?得到的;
?旋轉
如圖(2),?COD≌?BOA,?COD可以看成是由?BOA繞著點O旋轉180?得到的;
?平移
如圖(3),?DEF≌?ACB,?DEF可以看成是由?ACB沿CB方向平行移動而得到的。
2.判定三角形全等的方法:
(1)邊角邊公理、角邊角公理、邊邊邊公理、斜邊直角邊(直角三角形中)公理
(2)推論:角角邊定理
3.注意問題:
(1)在判定兩個三角形全等時,至少有一邊對應相等;
(2)不能證明兩個三角形全等的是,a: 三個角對應相等,即AAA;b :有兩邊和其中一角對應相等,即SSA。
一、全等三角形知識的應用
(1)證明線段(或角)相等
例1:如圖,已知AD=AE,AB=AC.求證:BF=FC
(2)證明線段平行
例2:已知:如圖,DE⊥AC,BF⊥AC,垂足分別為E、F,DE=BF,AE=CF.求證:AB∥CD
(3)證明線段的倍半關系,可利用加倍法或折半法將問題轉化為證明兩條線段相等
例3:如圖,在△ ABC中,AB=AC,延長AB到D,使BD=AB,取AB的中點E,連接CD和CE.求證:CD=2CE
例4 如圖,△ABC中,∠C=2∠B,∠1=∠2。求證:AB=AC+CD.
.
例5:已知:如圖,A、D、B三點在同一條直線上,CD⊥AB,ΔADC、ΔBDO為等腰Rt三角形,AO、BC的大小關系和位置關系分別如何?證明你的結論。
例6.如圖,已知C為線段AB上的一點,?ACM和?CBN都是等邊三角形,AN和CM相交于F點,BM和CN交于E點。求證:?CEF是等邊三角形。
N
M
FE
C
A B
第三篇:全等三角形證明
全等三角形證明
1、已知CD∥AB,DF∥EB,DF=EB,問AF=CE嗎?說明理由。
CA2、已知∠E=∠F,∠1=∠2,AB=CD,問AE=DF嗎?說明理由。
F3、已知,點C是AB的中點,CD∥BE,且CD=BE,問∠D=∠E嗎?說明理由。
4、已知AB=CD,BE=DF,AE=CF,問AB∥CD嗎?
A B
C
第四篇:初一全等三角形證明
全等三角形1.三角形全等的判定一(SSS)
1.如圖,AB=AD,CB=CD.△ABC與△ADC全等嗎?為什么?
2.如圖,C是AB的中點,AD=CE,CD=BE.
求證△ACD≌△CBE.
3.如圖,點B,E,C,F(xiàn)在一條直線上,AB=DE,AC=DF,BE=CF. 求證∠A=∠D.
4.已知,如圖,AB=AD,DC=CB.求證:∠B=∠D。
B
5.如圖, AD=BC, AB=DC, DE=BF.BE=DF.求證:∠E=∠F
A
DCBF
2.三角形全等的判定二(SAS)
1.如圖,AC和BD相交于點O,OA=OC,OB=OD.求證DC∥AB.
2.如圖,△ABC≌△A?B?C?,AD,A?D?分別是△ABC,△A?B?C?的對應邊上的中線,AD與A?D?有什么關系?證明你的結論.
3.如圖,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,試猜想線段CE與DE的大小與位置關系,并證明你的結論.
E B
4.已知:如圖,AD∥BC,AD=CB,求證:△ADC≌△CBA.
CB
5.已知:如圖AD∥BC,AD=CB,AE=CF。求證:△AFD≌△CEB.
AC
6.已知,如圖,AB=AC,AD=AE,∠1=∠2。求證:△ABD≌△ACE. AE D
3~4.三角形全等的判定三、四(ASA、AAS)
1.如圖,點B,F(xiàn),C,E在一條直線上,F(xiàn)B=CE,AB∥ED,AC∥FD.求證AB=DE,AC=DF.
2.如圖,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2.5cm,DE=1.7cm. 求BE的長.
3.已知,D是△ABC的邊AB上的一點,DE交AC于點E,DE=FE,F(xiàn)C∥AB。求證:AE=CE。
E
DB
4.已知:如圖 , 四邊形ABCD中 , AB∥CD , AD∥BC.求證:△ABD≌△CDB
5.如圖, AD∥BC, AB∥DC, MN=PQ.求證:DE=BE.3 QDPA
6.如圖, 在ABC中, ∠A=90°, BD平分B, DE⊥BC于E, 且BE=EC,(1)求∠ABC與∠C的度數(shù);
(2)求證:BC=2AB.07.如圖,四邊形ABCD中, (2)求證:E是CD的中點; (3)求證:AD+BC=AB.8.如圖, 在△ABC中, AC⊥BC, CE⊥AB于E, AF平分∠CAB交CE于點F, 過F作FD∥ BC交AB于點D.求證:AC=AD.C 3eud教育網(wǎng)http://50多萬教學資源,完全免費,無須注冊,天天更新! 全等三角形的證明 1、已知:(如圖)AD∥BC,AD=CB,求證:△ADC≌△CBA。 B C2、已知:如圖AD∥BC,AD=CB,AE=CF。求證:△AFD≌△CEB。AC3、已知,如圖,AB=AC,AD=AE,∠1=∠2。求證:△ABD≌△ACE。 A C ED4、已知,如圖,點B、F、C、E在同一條直線上,F(xiàn)B=CE,AB∥ED,AC∥FD。求證:AB=DE,AC=DF。 E B F C5、已知,D是△ABC的邊AB上的一點,DE交AC于點E,DE=FE,F(xiàn)C∥AB。求證:AE=CE。 E D B C 6、已知,如圖,AB=AD,DC=CB,求證:∠B=∠D。 B 3eud教育網(wǎng) http://教學資源集散地。可能是最大的免費教育資源網(wǎng)! A 全等三角形的證明 2、已知:(如圖)AD∥BC,AD=CB,求證:△ADC≌△CBA。 B C2、已知:如圖AD∥BC,AD=CB,AE=CF。求證:△AFD≌△CEB。AC3、已知,如圖,AB=AC,AD=AE,∠1=∠2。求證:△ABD≌△ACE。 C 1 B ED4、已知,如圖,點B、F、C、E在同一條直線上,F(xiàn)B=CE,AB∥ED,AC∥FD。求證:AB=DE,AC=DF。 E B F C5、已知,D是△ABC的邊AB上的一點,DE交AC于點E,DE=FE,F(xiàn)C∥AB。求證:AE=CE。 E D B C 6、已知,如圖,AB=AD,DC=CB,求證:∠B=∠D。 B A第五篇:全等三角形的證明