第一篇:全國初中數(shù)學(xué)競賽輔導(dǎo)(八年級)教學(xué)案全集第30講 生活中的數(shù)學(xué)(二)——地板磚上的數(shù)學(xué)
全國初中數(shù)學(xué)競賽輔導(dǎo)(八年級)教學(xué)案全集
第三十講 生活中的數(shù)學(xué)(二)——地板磚上的數(shù)學(xué)
隨著人們生活水平的提高,很多家庭都裝修房子,其中鋪地板磚就是一項重要的美化工作.當(dāng)你看到地板磚展鋪成美麗的圖案時,你是否想到展鋪這美麗圖案的數(shù)學(xué)原理呢?如果你注意到的話,可能會對下面的簡單分析發(fā)生興趣.
地板磚展鋪的圖形,一般都是用幾種全等的平面圖形展鋪開來的,有時用由直線構(gòu)成的多邊形組成的圖案,有時用由曲線組成的圖案,千變?nèi)f化.但是作為基礎(chǔ)還是用平面多邊形展鋪平面.有時雖然有曲線,卻常常是由多邊形和圓作適當(dāng)變化而得到的.例如,一個由正方形展鋪的平面圖案(圖1-77(a)),如果對正方形用圓弧做一些變化(圖1-77(b)),那么把以上兩個圖形結(jié)合起來設(shè)計,就可由比較單調(diào)的正方形圖案,變化曲線形成花紋圖案了(圖1-77(c)).
由于多邊形是構(gòu)成地板磚展鋪復(fù)雜圖形的基礎(chǔ),因此,下面我們對利用多邊形展鋪平面圖形做些簡要分析.
例1 怎樣以三角形為基礎(chǔ)展鋪平面圖案.
分析與解 三角形是多邊形中最簡單的圖形,如果用三角形為基本圖形來展鋪平面圖案,那么就要考慮三角形的特點.由于三角形的三個內(nèi)角和為180°,所以要把三角形的三個角集中到一起,就組成了一個平角.如果要在平面上一個點的周圍集中三角形的角,那么必須使這些角的和為兩個平角.因此,若把圖1-78中的三角形的三個內(nèi)角集中在一起,并進(jìn)行軸對稱變換或中心對稱變換,就可以得到集中于一點的六個角,它們的和為360°,剛好覆蓋上這一點周圍的平面.變換的方法見圖1-79.
在中心對稱的情況下,三角形不翻折,在軸對稱的情況下,三角形要翻折.如果把三角形正、反兩面涂上顏色,那么通過對稱變換,正、反兩面就會明顯地反映出來了.
由上面的分析可知,用三角形為基本圖形展鋪平面圖案,共有以下四種情況,如圖1-80.
例2 怎樣以四邊形為基礎(chǔ)展鋪平面圖案?
分析與解 由于四邊形內(nèi)角和為360°,所以,任何四邊形都可以作為基本圖形來展鋪平面圖案.圖1-81中的(a),(b),(C),(d)分別是以矩形、菱形、梯形、一般四邊形為基本圖形的平面展鋪圖案.
例3 怎樣以正多邊形為基本圖形展鋪平面圖案?
分析與解 用正多邊形為基本圖形展鋪平面圖案,集中于一點的周圍的正多邊形的各個角的和應(yīng)是360°.例如,正五邊形一個內(nèi)角為
正十邊形一個內(nèi)角為
如果把兩個正五邊形的內(nèi)角與一個正十邊形的內(nèi)角加起來,則其和為2×108°+144°=360°.但是它們并不能用來展鋪平面.
如果用同種的正n邊形來展鋪平面圖案,在一個頂點周圍集中了m個正n邊形的角.由于這些角的和應(yīng)為360°,所以以下等式成立
因為m,n都是正整數(shù),并且m>2,n>2.所以m-2,n-2也都必定是正整數(shù).所以當(dāng)n-2=1,m-2=4時,則n=3,m=6;當(dāng)n-2=2,m-2=2時,則n=4,m=4;當(dāng)n-2=4,m-2=1時,則n=6,m=3.這就證明了只用一種正多邊形展鋪平面圖案,只存在三種情況:
(1)由6個正三角形拼展,我們用符號(3,3,3,3,3,3)來表示(見圖1-82).
(2)由4個正方形拼展,我們用符號(4,4,4,4)來表示
(見圖1-83).
(3)由3個正六邊形來拼展,我們用符號(6,6,6)來表示
(見圖1-84).
如果用兩種正多邊形來拼展平面圖案,那么就有以下五種情況:(3,3,3,4,4),(3,3,3,3,6),(3,3,6,6),(3,12,12)以及(4,8,8).這五種情況中,(3,3,3,4,4)又可有兩種不同的拼展方法,參看下面六種拼展圖形(圖1-85).
用三種正多邊形展拼平面圖形就比較難設(shè)計了.下面舉出兩例供同學(xué)們思考(圖1-86).
有興趣的同學(xué)請自己構(gòu)想出一兩個例子.
練習(xí)二十三
1.試用三角形和梯形這兩種多邊形拼展平面圖案.
2.試用形如圖1-87的圖形拼展平面圖案.
3.試用邊長為1的正三角形、邊長為1的正方形和兩腰為
1、夾角為120°的等腰三角形拼展平面圖案.
4.試用圓弧和多邊形(多邊形可以用圓弧割補(bǔ))設(shè)計一種平面圖案.
5.試用一個正方形,仿照圖1-76(a),(b),(c)的變化方式,設(shè)計一種平面圖案.
第二篇:全國初中數(shù)學(xué)競賽輔導(dǎo)(八年級)教學(xué)案全集第32講 自測題
全國初中數(shù)學(xué)競賽輔導(dǎo)(八年級)教學(xué)案全集
第三十二講 自測題
自測題一
1.分解因式:x4-x3+6x2-x+15.
2.已知a,b,c為三角形的三邊長,且滿足
a2+b2+c2+338=10a+24b+26c,試確定這個三角形的形狀.
3.已知a,b,c,d均為自然數(shù),且
a5=b4,c3=d2,c-a=19,求d-b的值.
4. a,b,c是整數(shù),a≠0,且方程ax2+bx+c=0的兩個根為a和b,求a+b+c的值.
5.設(shè)E,F(xiàn)分別為AC,AB的中點,D為BC上的任一點,P在BF上,DP∥CF,Q在CE上,DQ∥BE,PQ交BE于R,交
6.四邊形ABCD中,如果一組對角(∠A,∠C)相等時,另一組對角(∠B,∠D)的平分線存在什么關(guān)系?
7.如圖2-194所示.△ABC中,D,E分別是邊BC,AB上的點,且∠1=∠2=∠3.如果△ABC,△
8.如圖2-195所示.△ABC中,∠B=90°,M為AB上一點,使得AM=BC,N為BC上一點,使得CN=BM,連AN,CM交于P點.求∠APM的度數(shù).
9.某服裝市場,每件襯衫零售價為70元,為了促銷,采用以下幾種優(yōu)惠方式:購買2件130元;購滿5件者,每件以零售價的九折出售;購買7件者送1件.某人要買6件,問有幾種購物方案(必要時,可與另一購買2件者搭幫,但要兼顧雙方的利益)?哪種方案花錢最少?
自測題二
1.分解因式:(x2+3x+5)2+2x3+3x2+1Ox.
2.對于集合
p={x丨x是1到100的整數(shù)}
中的元素a,b,如果a除以b的余數(shù)用符號表示.例如17除以4,商是4,余數(shù)是1,就表示成<17,4>=1,3除以7,商是0,余數(shù)是3,即表示成<3,7>=3.試回答下列問題:
(1)本集合{x丨<78,x>=6,x∈p}中元素的個數(shù);
(2)用列舉法表示集合
{x丨
3.已知:x+y+z=1,x2+y2+z2=2,x3+y3+z3=3,試求:(1)xyz的值;(2)x4+y4+z4的值.
4.已知方程x2-3x+a+4=0有兩個整數(shù)根.
(1)求證:這兩個整數(shù)根一個是奇數(shù),一個是偶數(shù);
(2)求證:a是負(fù)偶數(shù);
(3)當(dāng)方程的兩整數(shù)根同號時,求a的值及這兩個根.
5.證明:形如8n+7的數(shù)不可能是三個整數(shù)的平方和.
7.如圖2-196所示.AD是等腰三角形ABC底邊上的中線,BE是角平分線,EF⊥BC,EG⊥BE且交BC于G.求證:
8.如圖2-197所示.AD是銳角△ABC的高,O是AD上任意一點,連BO,OC并分別延長交AC,AB于E,F(xiàn),連結(jié)DE,DF.求證:∠EDO=∠FDO.
9.甲校需要課外圖書200本,乙校需要課外圖書240本,某書店門市部A可供應(yīng)150本,門市部B可供應(yīng)290本.如果平均每本書的運(yùn)費如下表,考慮到學(xué)校的利益,如何安排調(diào)運(yùn),才能使學(xué)校支出的運(yùn)費最少?
自測題三
2.對于任意實數(shù)k,方程
(k2+1)x2-2(a+k)2x+k2+4k+b=0
總有一個根是1,試求實數(shù)a,b的值及另一個根的范圍.
4.如圖2-198.ABCD為圓內(nèi)接四邊形,從它的一個頂點A引平行于CD的弦AP交圓于P,并且分別交BC,BD于Q,R.求證:
5.如圖2-199所示.在△ABC中∠C=90°,∠A的平分線AE交BA上的高CH于D點,過D引AB的平行線交BC于F.求證:BF=EC.
6.如圖2-200所示.△ABC中,AB>AC,作∠FBC=∠ECB=
7.已知三角形的一邊是另一邊的兩倍,求證:它的最小邊在它的周8.求最大的自然數(shù)x,使得對每一個自然數(shù)y,x能整除7y+12y-1.
9.某公園的門票規(guī)定為每人5元,團(tuán)體票40元一張,每張團(tuán)體票最多可入園10人.
(1)現(xiàn)有三個單位,游園人數(shù)分別為6,8,9.這三個單位分別怎樣買門票使總門票費最省?
(2)若三個單位的游園人數(shù)分別是16,18和19,又分別怎樣買門票使總門票費最?。?/p>
(3)若游園人數(shù)為x人,你能找出一般買門票最省錢的規(guī)律嗎?
自測題四
1.求多項式2x2-4xy+5y2-12y+13的最小值.
2.設(shè)
試求:f(1)+f(3)+f(5)+…+f(1999).
3.如圖2-201所示.在平行四邊形ABCD的對角線BD上任取一點O,過O作邊BC,AB的平行線交AB,BC于F,E,又在 EO上取一點P.CP與OF交于Q.求證:BP∥DQ.
4.若a,b,c為有理數(shù),且等式成立,則a=b=c=0 .
5.如圖2-202所示.△ABC是邊長為1的正三角形,△BDC是頂角∠BDC=120°的等腰三角形,以D為頂點作一個60°角,角的兩邊分別交AB,AC于M,N,連接MN,求△AMN的周長.
6.證明:由數(shù)字0,1,2,3,4,5所組成的不重復(fù)六位數(shù)不可能被11整除.
7.設(shè)x1,x2,…,x9均為正整數(shù),且
x1<x2<…<x9,x1+x2+…+x9=220.
當(dāng)x1+x2+…+x5的值最大時,求x9-x1的值.
8.某公司有甲乙兩個工作部門,假日去不同景點旅游,總共有m人參加,甲部門平均每人花費120元,乙部門每人花費110元,該公司去旅游的總共花去2250元,問甲乙兩部門各去了多少人?
9.(1)已知如圖2-203,四邊形ABCD內(nèi)接于圓,過AD上一點E引直線EF∥AC交BA延長線于F.求證:
FA·BC=AE·CD.
(2)當(dāng)E點移動到D點時,命題(1)將會怎樣?
(3)當(dāng)E點在AD的延長線上時又會怎樣?
自測題五
2.關(guān)于x的二次方程6x2-(2m-1)x-(m+1)=0有一根
3.設(shè)x+y=1,x2+y2=2,求x7+y7的值.
4.在三角形ABC內(nèi),∠B=2∠C.求證:b2=c2+ac.
5.若4x-y能被3整除,則4x2+7xy-2y2能被9整除.
6.a(chǎn),b,c是三個自然數(shù),且滿足
abc=a+b+c,求證:a,b,c只能是1,2,3中的一個.
7.如圖2-204所示.AD是△ABC的BC邊上的中線,E是BD的中點,BA=BD.求證:AC=2AE.
8.設(shè)AD是△ABC的中線,(1)求證:AB2+AC2=2(AD2+BD2);
(2)當(dāng)A點在BC上時,將怎樣?
按沿河距離計算,B離A的距離AC=40千米,如果水路運(yùn)費是公路運(yùn)費的一半,應(yīng)該怎樣確定在河岸上的D點,從B點筑一條公路到D,才能使A到B的運(yùn)費最省?
第三篇:全國初中數(shù)學(xué)競賽輔導(dǎo)(八年級)教學(xué)案全集第31講 復(fù)習(xí)題
全國初中數(shù)學(xué)競賽輔導(dǎo)(八年級)教學(xué)案全集
第三十一講復(fù)習(xí)題
1.分解因式:3x2+5xy-2y2+x+9y-4.
2.分解因式:(x2+xy+y2)(x2+xy+2y2)-12y4.
5.已知
求ab+cd的值.
為任意正數(shù),證明1<s<2.7.設(shè)a,b是互不相等的正數(shù),比較M,N的大小.
8.求分式 的值.
9.已知:
求證:px+qy+rz=(p+q+r)(x+y+z).
11.已知實數(shù)x,y滿足等式
求x,y的值.
12.若14(a2+b2+c2)=(a+2b+3c)2,求a∶b∶c.
13.解方程:x2+2x-3丨x+1丨+3=0.
14.已知三個二次方程x2-3x+a=0,2x2+ax-4=0,ax2+bx-3=0有公共解,試求整數(shù)a和整數(shù)b的值.
15.如圖2-178所示.在△ABC中,過點B作∠A的平分線的垂線,足為D.DE∥AC交AB于E點.求證:E是AB的中點.
16.求證:直角三角形勾股平方的倒數(shù)和等于弦上的高的平方的倒數(shù).
17.如圖2-179所示.在△ABC中,延長BC至D,使CD=BC.若BC中點為E,AD=2AE,求證:AB=BC.
18.如圖2-180所示.ABCD是平行四邊形,BCGH及CDFE都是正方形.求證:AC⊥EG.
19.證明:梯形對角線中點的連線平行于底,并且等于兩底差的一半.
20.如圖2-181所示.梯形ABCD中,∠ADC=90°,∠AEC=3∠BAE,AB∥CD,E是 BC的中點.求證:
CD=CE.
21.如圖2-182所示.梯形ABCD中,AD∥BC(AD<BC),AC和BD交于M,EF過M且平行于AD,EC和FB交于N,GH過N且平行于AD.求證:
22.如圖2-183所示.在矩形ABCD中,M是AD的中點,N是BC的中點,P是CD延長線上的一點,PM交AC于Q.求證:∠QNM=∠MNP.
23.在(凸)四邊形ABCD中,求證:
AC·BD≤AB·CD+AD·BC.
24.如圖2-184所示.AD是等腰△ABC底邊BC上的高,BM與BN是∠B的三等分角線,分別交AD于M,N點,連CN并延長交AB于E.求證:
25.已知n是正整數(shù),且n2-71能被7n+55整除,求n的值.
26.求具有下列性質(zhì)的最小正整數(shù)n:
(1)它以數(shù)字6結(jié)尾;
(2)如果把數(shù)字6移到第一位之前,所得的數(shù)是原數(shù)的4倍.
27.求出整數(shù)n,它的2倍被3除余1,3倍被5除余2,5倍被7除余3.
28.把 1,2,3,?,81這 81個數(shù)任意排列為:a1,a2,a3,?,a81.計算
丨a1-a2+a3丨,丨a4-a5+a6丨,?,丨a79-a80+a81丨;
再將這27個數(shù)任意排列為b1,b2,?,b27,計算
丨b1-b2+b3丨,丨b4-b5+b6丨,?,丨b25-b26+b27丨.
如此繼續(xù)下去,最后得到一個數(shù)x,問x是奇數(shù)還是偶數(shù)?
29.在△ABC中,∠A,∠B,∠C的對邊分別記為a,b,c,30.設(shè)凸四邊形ABCD的對角線AC,BD相交于O,且AC⊥BD,已知OA>OC,OB>OD,求證:
BC+AD>AB+CD.
31.如圖2-185.在梯形ABCD中,AD∥BC,E,F(xiàn)分別在AB和DC上,EF∥BC,EF平分梯形ABCD的面積,若AD=a,BC=b,求EF的長.
32.四邊形ABCD的面積為1,M為AD的中點,N為BC的中點,的面積.
33.已知一元二次方程
x2-x+1-m=0 的兩實根x1,x2滿足丨x1丨+丨x2丨≤5,求實數(shù)m的取值范圍.
34.求所有的正實數(shù)a,使得方程x2-ax+4a=0僅有整數(shù)根.
35.求證:當(dāng)p,q為奇數(shù)時,方程
x2+px+q=0
無整數(shù)根.
36.如圖2-186.已知圓中四弦AB,BD,DC,CA分別等于a,b,c,d(且cd>ab).過C引直線CE∥AD交AB的延長線于E,求BE之長.
37.設(shè)A={2,x,y},B={2,x,y2},其中x,y是整數(shù),并且A∩B={2,4},A∪B={2,x,2x,16x},求x,y的值.
38.在梯形ABCD中,與兩條平行底邊平行的直線和兩腰AB,CD交于P,Q(圖2-187).如果AP∶PB=m∶n,那么PQ的值如何用m,n,AD,BC表示?
39.在平行四邊形ABCD中,設(shè)∠A,∠B,∠C,∠D的平分線兩兩相交的交點分別為P,Q,R,S,那么四邊形PQRS是什么圖形?如果原來的四邊形ABCD是矩形,那么四邊形PQRS又是什么圖形?
40.在直角三角形ABC中,以邊AB,BC,AC為對應(yīng)邊分別作三個相似三角形,那么這三個相似三角形面積之間有什么關(guān)系?
41.如果三角形的三邊用m2+n2,m2-n2,2mn來表示,那么這個三角形的形狀如何?如果m2+n2=4mn,又將怎樣?
42.在圓柱形容器中裝水,當(dāng)水的高度為6厘米時,重4.4千克,水高為10厘米時,重6.8千克,試用圖像表示水高為0~10厘米時,水高與重量之間的關(guān)系,并預(yù)測當(dāng)水高為8厘米時,水重為多少千克?
43.有7張電影票,10個人抽簽,為此先做好10個簽,其中7個簽上寫“有票”,3個簽上寫“無票”,然后10個人排好隊按順序抽簽.問第一人與第二人抽到的可能性是否相同?
44.在直徑為50毫米(mm)的鐵板中,銃出四個互相外切,并且同樣大小的墊圈(圖2-188),那么墊圈的最大直徑是多少?
45.唐代詩人王之渙的著名詩篇:
白日依山盡,黃河入海流. 欲窮千里目,更上一層樓.
按詩人的想象,要看到千里之外的景物,需要站在多高的建筑物上呢?試化成數(shù)學(xué)問題加以解釋.
46.在一個池塘中,一棵水草AC垂直水面,AB為水草在水面上的部分,如圖2-189,問如何利用這根水草測出水深?
47.在一條運(yùn)河的兩側(cè)有兩個村子A,B,河的兩岸基本上是平行線.現(xiàn)在要在河上架一座橋與河岸垂直,以便使兩岸居民互相往來,那么這座橋架在什么地方,才能使從A到B的路程最近呢(圖2-190)?
48.要在一條河邊修一座水塔,以便從那里給A,B兩個城市供水(設(shè)A,B在河岸EF的同側(cè)),那么水塔應(yīng)建在河岸EF的什么地方,才能使水塔到A,B兩市供水管道總長度最短(圖2-191)?
49.三個同學(xué)在街頭散步,發(fā)現(xiàn)一輛汽車違反了交通規(guī)則.但他們沒有完全記住這輛汽車的車號(車號由4位數(shù)字組成),可是第一個同學(xué)記住車號的前兩位數(shù)是相同的,第二個同學(xué)記得后兩位數(shù)也相同,第三個同學(xué)記得這個四位數(shù)恰好是一個數(shù)的平方數(shù).根據(jù)這些線索,能找出這輛汽車的車號嗎?
50.圖2-192是一個彈簧秤的示意圖,其中:圖(a)表示彈簧稱東西前的狀況,此時刻度0齊上線,彈簧伸長的初始長度為b.圖(b)表示彈簧秤上掛有重物時,彈簧伸長的狀況.如果彈簧秤上掛上不同重量的砝碼,那么彈簧秤的長度也相應(yīng)地伸長.現(xiàn)獲得如下一組數(shù)據(jù):
(1)以x,y的對應(yīng)值(x,y)為點的坐標(biāo),畫出散點圖;
(2)求出關(guān)于x的函數(shù)y的表達(dá)式,(3)求當(dāng)x=500克時,y的長度.
第四篇:全國初中數(shù)學(xué)競賽輔導(dǎo)(八年級)教學(xué)案全集第08講平行四邊形
全國初中數(shù)學(xué)競賽輔導(dǎo)(八年級)教學(xué)案全集
第八講平行四邊形
平行四邊形是一種極重要的幾何圖形.這不僅是因為它是研究更特殊的平行四邊形——矩形、菱形、正方形的基礎(chǔ),還因為由它的定義知它可以分解為一些全等的三角形,并且包含著有關(guān)平行線的許多性質(zhì),因此,它在幾何圖形的研究上有著廣泛的應(yīng)用.
由平行四邊形的定義決定了它有以下幾個基本性質(zhì):
(1)平行四邊形對角相等;
(2)平行四邊形對邊相等;
(3)平行四邊形對角線互相平分.
除了定義以外,平行四邊形還有以下幾種判定方法:
(1)兩組對角分別相等的四邊形是平行四邊形;
(2)兩組對邊分別相等的四邊形是平行四邊形;
(3)對角線互相平分的四邊形是平行四邊形;
(4)一組對邊平行且相等的四邊形是平行四邊形.
例1 如圖2-32所示.在EF與MN互相平分.
ABCD中,AE⊥BC,CF⊥AD,DN=BM.求證:
分析 只要證明ENFM是平行四邊形即可,由已知,提供的等量要素很多,可從全等三角形下手.
證 因為ABCD是平行四邊形,所以
AD
BC,AB
CD,∠B=∠D.
又AE⊥BC,CF⊥AD,所以AECF是矩形,從而
AE=CF.
所以
Rt△ABE≌Rt△CDF(HL,或AAS),BE=DF.又由已知BM=DN,所以
△BEM≌△DFN(SAS),ME=NF. ①
又因為AF=CE,AM=CN,∠MAF=∠NCE,所以
△MAF≌△NCE(SAS),所以 MF=NF. ②
由①,②,四邊形ENFM是平行四邊形,從而對角線EF與MN互相平分.
例2 如圖2-33所示.Rt△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC,EF∥BC且交AC于F.求證:AE=CF.
分析 AE與CF分處于不同的位置,必須通過添加輔助線使兩者發(fā)生聯(lián)系.若作GH⊥BC于H,由于BG是∠ABC的平分線,故AG=GH,易知△ABG≌△HBG.又連接EH,可證△ABE≌△HBE,從而AE=HE.這樣,將AE“轉(zhuǎn)移”到EH位置.設(shè)法證明EHCF為平行四邊形,問題即可獲解.
證 作GH⊥BC于H,連接EH.因為BG是∠ABH的平分線,GA⊥BA,所以GA=GH,從而
△ABG≌△HBG(AAS),所以 AB=HB. ①
在△ABE及△HBE中,∠ABE=∠CBE,BE=BE,所以 △ABE≌△HBE(SAS),所以 AE=EH,∠BEA=∠BEH.
下面證明四邊形EHCF是平行四邊形.
因為AD∥GH,所以
∠AEG=∠BGH(內(nèi)錯角相等). ②
又∠AEG=∠GEH(因為∠BEA=∠BEH,等角的補(bǔ)角相等),∠AGB=∠BGH(全等三角形對應(yīng)角相等),所以
∠AGB=∠GEH.
從而
EH∥AC(內(nèi)錯角相等,兩直線平行).
由已知EF∥HC,所以EHCF是平行四邊形,所以
FC=EH=AE.
說明 本題添加輔助線GH⊥BC的想法是由BG為∠ABC的平分線的信息萌生的(角平分線上的點到角的兩邊距離相等),從而構(gòu)造出全等三角形ABG與△HBG.繼而發(fā)現(xiàn)△ABE≌△HBE,完成了AE的位置到HE位置的過渡.這樣,證明EHCF是平行四邊形就是順理成章的了.
人們在學(xué)習(xí)中,經(jīng)過刻苦鉆研,形成有用的經(jīng)驗,這對我們探索新的問題是十分有益的.
例3 如圖2-34所示.∠EMC=3∠BEM.
ABCD中,DE⊥AB于E,BM=MC=DC.求證:
分析 由于∠EMC是△BEM的外角,因此∠EMC=∠B+∠BEM.從而,應(yīng)該有∠B=2∠BEM,這個論斷在△BEM內(nèi)很難發(fā)現(xiàn),因此,應(yīng)設(shè)法通過添加輔助線的辦法,將這兩個角轉(zhuǎn)移到新的位置加以解決.利用平行四邊形及M為BC中點的條件,延長EM與DC延長線交于F,這樣∠B=∠MCF及∠BEM=∠F,因此,只要證明∠MCF=2∠F即可.不難發(fā)現(xiàn),△EDF為直角三角形(∠EDF=90°)及M為斜邊中點,我們的證明可從這里展開.
證 延長EM交DC的延長線于F,連接DM.由于CM=BM,∠F=∠BEM,∠MCF=∠B,所以
△MCF≌△MBE(AAS),所以M是EF的中點.由于AB∥CD及DE⊥AB,所以,DE⊥FD,三角形DEF是直角三角形,DM為斜邊的中線,由直角三角形斜邊中線的性質(zhì)知
∠F=∠MDC,又由已知MC=CD,所以
∠MDC=∠CMD,則
∠MCF=∠MDC+∠CMD=2∠F.
從而
∠EMC=∠F+∠MCF=3∠F=3∠BEM.
例4 如圖2-35所示.矩形ABCD中,CE⊥BD于E,AF平分∠BAD交EC延長線于F.求證:CA=CF.
分析 只要證明△CAF是等腰三角形,即∠CAF=∠CFA即可.由于∠CAF=45°-∠CAD,所以,在添加輔助線時,應(yīng)設(shè)法產(chǎn)生一個與∠CAD相等的角a,使得∠CFA=45°-a.為此,延長DC交AF于H,并設(shè)AF與BC交于G,我們不難證明∠FCH=∠CAD.
證 延長DC交AF于H,顯然∠FCH=∠DCE.又在Rt△BCD中,由于CE⊥BD,故∠DCE=∠DBC.因為矩形對角線相等,所以△DCB≌△CDA,從而∠DBC=∠CAD,因此,∠FCH=∠CAD. ①
又AG平分∠BAD=90°,所以△ABG是等腰直角三角形,從而易證△HCG也是等腰直角三角形,所以∠CHG=45°.由于∠CHG是△CHF的外角,所以
∠CHG=∠CFH+∠FCH=45°,所以 ∠CFH=45°-∠FCH. ②
由①,②
∠CFH=45°-∠CAD=∠CAF,于是在三角形CAF中,有
CA=CF.
例5 設(shè)正方形ABCD的邊CD的中點為E,F(xiàn)是CE的中點(圖2-36).求證:
分析 作∠BAF的平分線,將角分為∠1與∠2相等的兩部分,設(shè)法證明∠DAE=∠1或∠2.
證 如圖作∠BAF的平分線AH交DC的延長線于H,則∠1=∠2=∠3,所以
FA=FH.
設(shè)正方形邊長為a,在Rt△ADF中,從而
所以 Rt△ABG≌Rt△HCG(AAS),從而
Rt△ABG≌Rt△ADE(SAS),例6 如圖2-37所示.正方形ABCD中,在AD的延長線上取點E,F(xiàn),使DE=AD,DF=BD,連接BF分別交CD,CE于H,G.求證:△GHD是等腰三角形.
分析 準(zhǔn)確地畫圖可啟示我們證明∠GDH=∠GHD.
證 因為DEBD=FD,所以
BC,所以四邊形BCED為平行四邊形,所以∠1=∠4.又
所以 BC=GC=CD.
因此,△DCG為等腰三角形,且頂角∠DCG=45°,所以
又
所以 ∠HDG=∠GHD,從而GH=GD,即△GHD是等腰三角形.
練習(xí)十二
1.如圖2-38所示.DE⊥AC,BF⊥AC,DE=BF,∠ADB=∠DBC.求證:四邊形ABCD是平行四邊形.
2.如圖2-39所示.在平行四邊形ABCD中,△ABE和△BCF都是等邊三角形.求證:△DEF是等邊三角形.
3.如圖2-40所示.CB于E.求證:BE=CF.
ABCD中,AF平分∠BAD交BC于F,DE⊥AF交
4.如圖2-41所示.矩形ABCD中,F(xiàn)在CB延長線上,AE=EF,CF=CA.求證:BE⊥DE.
5.如圖2-42所示.在正方形ABCD中,CE垂直于∠CAB的平分
第五篇:全國初中數(shù)學(xué)競賽輔導(dǎo)(八年級)教學(xué)案全集第14講 中位線及其應(yīng)用
全國初中數(shù)學(xué)競賽輔導(dǎo)(八年級)教學(xué)案全集
第十四講 中位線及其應(yīng)用
中位線是三角形與梯形中的一條重要線段,由于它的性質(zhì)與線段的中點及平行線緊密相連,因此,它在幾何圖形的計算及證明中有著廣泛的應(yīng)用.
例1 如圖2-53所示.△ABC中,AD⊥BC于D,E,F(xiàn),△ABC的面積.
分析 由條件知,EF,EG分別是三角形ABD和三角形ABC的中位線.利用中位線的性質(zhì)及條件中所給出的數(shù)量關(guān)系,不難求出△ABC的高AD及底邊BC的長.
解 由已知,E,F(xiàn)分別是AB,BD的中點,所以,EF是△ABD的一條中位線,所以
由條件AD+EF=12(厘米)得
EF=4(厘米),從而 AD=8(厘米),由于E,G分別是AB,AC的中點,所以EG是△ABC的一條中位線,所以
BC=2EG=2×6=12(厘米),顯然,AD是BC上的高,所以
例2 如圖 2-54 所示.△ABC中,∠B,∠C的平分線BE,CF相交于O,AG⊥BE于G,AH⊥CF于H.
(1)求證:GH∥BC;
(2)若AB=9厘米,AC=14厘米,BC=18厘米,求GH.
分析 若延長AG,設(shè)延長線交BC于M.由角平分線的對稱性可以證明△ABG≌△MBG,從而G是AM的中點;同樣,延長AH交BC于N,H是AN的中點,從而GH就是△AMN的中位線,所以GH∥BC,進(jìn)而,利用△ABC的三邊長可求出GH的長度.
(1)證 分別延長AG,AH交BC于M,N,在△ABM中,由已知,BG平分∠ABM,BG⊥AM,所以
△ABG≌△MBG(ASA).
從而,G是AM的中點.同理可證
△ACH≌△NCH(ASA),從而,H是AN的中點.所以GH是△AMN的中位線,從而,HG∥MN,即
HG∥BC.
(2)解 由(1)知,△ABG≌△MBG及△ACH≌△NCH,所以
AB=BM=9厘米,AC=CN=14厘米.
又BC=18厘米,所以
BN=BC-CN=18-14=4(厘米),MC=BC-BM=18-9=9(厘米).
從而
MN=18-4-9=5(厘米),說明(1)在本題證明過程中,我們事實上證明了等腰三角形頂角平分線三線合一(即等腰三角形頂角的平分線也是底邊的中線及垂線)性質(zhì)定理的逆定理:“若三角形一個角的平分線也是該角對邊的垂線,則這條平分線也是對邊的中線,這個三角形是等腰三角形”.
(2)“等腰三角形三線合一定理”的下述逆命題也是正確的:“若三角形一個角的平分線也是該角對邊的中線,則這個三角形是等腰三角形,這條平分線垂直于對邊”.同學(xué)們不妨自己證明.
(3)從本題的證明過程中,我們得到啟發(fā):若將條件“∠B,∠C的平分線”改為“∠B(或∠C)及∠C(或∠B)的外角平分線”(如圖2-55所示),或改為“∠B,∠C的外角平分線”(如圖2-56所示),其余條件不變,那么,結(jié)論GH∥BC仍然成立.同學(xué)們也不妨試證.
例3 如圖2-57所示.P是矩形ABCD內(nèi)的一點,四邊形BCPQ是平行四邊形,A′,B′,C′,D′分別是AP,PB,BQ,QA的中點.求證:A′C′=B′D′.
分析 由于A′,B′,C′,D′分別是四邊形APBQ的四條邊AP,PB,BQ,QA的中點,有經(jīng)驗的同學(xué)知道A′B′C′D′是平行四邊形,A′C′
與B′D′則是它的對角線,從而四邊形A′B′C′D′應(yīng)該是矩形.利用ABCD是矩形的條件,不難證明這一點.
證 連接A′B′,B′C′,C′D′,D′A′,這四條線段依次是△APB,△BPQ,△AQB,△APQ的中位線.從而
A′B′∥AB,B′C′∥PQ,C′D′∥AB,D′A′∥PQ,所以,A′B′C′D′是平行四邊形.由于ABCD是矩形,PCBQ是平行四邊形,所以
AB⊥BC,BC∥PQ.
從而
AB⊥PQ,所以 A′B′⊥B′C′,所以四邊形A′B′C′D′是矩形,所以
A′C′=B′D′. ①
說明 在解題過程中,人們的經(jīng)驗常可起到引發(fā)聯(lián)想、開拓思路、擴(kuò)大已知的作用.如在本題的分析中利用“四邊形四邊中點連線是平行四邊形”這個經(jīng)驗,對尋求思路起了不小的作用.因此注意歸納總結(jié),積累經(jīng)驗,對提高分析問題和解決問題的能力是很有益處的.
例4 如圖2-58所示.在四邊形ABCD中,CD>AB,E,F(xiàn)分別是AC,BD的中點.求證:
分析 在多邊形的不等關(guān)系中,容易引發(fā)人們聯(lián)想三角形中的邊的不
形中構(gòu)造中位線,為此,取AD中點.
證 取AD中點G,連接EG,F(xiàn)G,在△ACD中,EG是它的中位線(已知E是AC的中點),所以
同理,由F,G分別是BD和AD的中點,從而,F(xiàn)G是△ABD的中位線,所以
在△EFG中,EF>EG-FG. ③
由①,②,③
例5 如圖2-59所示.梯形ABCD中,AB∥CD,E為BC的中點,AD=DC+AB.求證:DE⊥AE.
分析 本題等價于證明△AED是直角三角形,其中∠AED=90°.
在E點(即直角三角形的直角頂點)是梯形一腰中點的啟發(fā)下,添梯形的中位線作為輔助線,若能證明,該中位線是直角三角形AED的斜邊(即梯形另一腰)的一半,則問題獲解.
證 取梯形另一腰AD的中點F,連接EF,則EF是梯形ABCD的中位線,所以
因為AD=AB+CD,所以
從而
∠1=∠2,∠3=∠4,所以∠2+∠3=∠1+∠4=90°(△ADE的內(nèi)角和等于180°).從而
∠AED=∠2+∠3=90°,所以 DE⊥AE.
例6 如圖2-60所示.△ABC外一條直線l,D,E,F(xiàn)分別是三邊的中點,AA1,F(xiàn)F1,DD1,EE1都垂直l于A1,F(xiàn)1,D1,E1.求證:
AA1+EE1=FF1+DD1.
分析 顯然ADEF是平行四邊形,對角線的交點O平分這兩條對角線,OO1恰是兩個梯形的公共中位線.利用中位線定理可證.
證 連接EF,EA,ED.由中位線定理知,EF∥AD,DE∥AF,所以ADEF是平行四邊形,它的對角線AE,DF互相平分,設(shè)它們交于O,作OO1⊥l于O1,則OO1是梯形AA1E1E及FF1D1D的公共中位線,所以
即 AA1+EE1=FF1+DD1.
練習(xí)十四
1.已知△ABC中,D為AB的中點,E為AC上一點,AE=2CE,CD,BE交于O點,OE=2厘米.求BO的長.
2.已知△ABC中,BD,CE分別是∠ABC,∠ACB的平分線,AH⊥BD于H,AF⊥CE于F.若AB=14厘米,AC=8厘米,BC=18厘米,求FH的長.
3.已知在△ABC中,AB>AC,AD⊥BC于D,E,F(xiàn),G分別是AB,BC,AC的中點.求證:∠BFE=∠EGD.
4.如圖2-61所示.在四邊形ABCD中,AD=BC,E,F(xiàn)分別是CD,AB的中點,延長AD,BC,分別交FE的延長線于H,G.求證:∠AHF=∠BGF.
5.在△ABC中,AH⊥BC于H,D,E,F(xiàn)分別是BC,CA,AB的中點(如圖2-62所示).求證:∠DEF=∠HFE.
6.如圖2-63所示.D,E分別在AB,AC上,BD=CE,BE,CD的中點分別是M,N,直線MN分別交AB,AC于P,Q.求證:AP=AQ.
7.已知在四邊形ABCD中,AD>BC,E,F(xiàn)分別是AB,CD