久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

高中數學圓與圓的位置關系教案

時間:2019-05-15 08:04:42下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關的《高中數學圓與圓的位置關系教案》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《高中數學圓與圓的位置關系教案》。

第一篇:高中數學圓與圓的位置關系教案

4.2.2圓與圓的位置關系

教學要求:能根據給定圓的方程,判斷圓與圓的位置關系; 教學重點:能根據給定圓的方程,判斷圓與圓的位置關系 教學難點:用坐標法判斷兩圓的位置關系 教學過程:

一、復習準備

1. 兩圓的位置關系有哪幾? 2.設兩圓的圓心距為d.當d?R?r時,兩圓

,當d?R?r時,兩圓

當|R?r|?d?R?r 時,兩圓,當d?|R?r|時,兩圓

當d?R?r|時,兩圓

3.如何根據圓的方程,判斷兩圓之間的位置關系?(探討)

二、講授新課:

1.兩圓的位置關系利用半徑與圓心距之間的關系來判斷

例1.已知圓C1:x2?y2?2x?8y?8?0,圓C2:x2?y2?4x?4y?2?0,試判斷圓C1與圓C2的關系?

C2方法

(一)(配方→圓心與半徑→探究圓心距與兩半徑的關系)方法

(二)解方程組

探究:相交兩圓公共弦所在直線的方程。

2. 兩圓的位置關系利用圓的方程來判斷

方法:通常是通過解方程或不等式和方法加以解決(以例1為例說明)

AOBC1圖1例2.圓C1的方程是:x2?y2?2mx?4y?m2?5?0圓C2的方程是: x2?y2?2x?2my?m2?3?0, m為何值時,兩圓(1)相切.(2)相交(3)相離(4)內含

思路:聯立方程組→討論方程的解的情況(消元法、判別式法)→交點個數→位置關系)

練習:已知兩圓x?y?6x?0與x?y?4y?m,問m取何值時,兩圓相切。

例3.已知兩圓C1:x2?y2?4x?2y?0和圓C2:x?y2?2y?4?0的交點為A、B,(1)求AB的長;(2)求過A、B兩點且圓心在直線l:2x?4y?1?0上的圓的方程.22222

3.小結:判斷兩圓的位置關系的方法:(1)由兩圓的方程組成的方程組有幾組實數解確定.(2)依據連心線的長與兩半徑長的和r1?r2或兩半徑的差的絕對值的大小關系.三、鞏固練習:

22221.求經過點M(2,-2),且與圓x?y?6x?0與x?y?4交點的圓的方程

2.已知圓C與圓x2?y2?2x?0相外切,并且與直線x?3y?0相切于點Q(3,-3),求圓C的方程.22x?3??y2?4x?y?1?3.求兩圓和的外公切線方程

2四、作業:P133習題4.2A組9

第二篇:直線與圓的位置關系教案

《直線與圓的位置關系》教案

教學目標:

根據學過的直線與圓的位置關系的知識,組織學生對編出的有關題目進行討論.討論中引導學生體會

(1)如何從解決過的問題中生發出新問題.(2)新問題的解決方案與原有舊方法之間的聯系與區別.通過編解題的過程,使學生基本了解、把握有關直線與圓的位置關系的知識可解決的基本問題,并初步體驗數學問題變化、發展的過程,探索其解法.重點及難點:

從學生所編出的具體問題出發,適時適度地引導學生關注問題發展及解決的一般策略.教學過程

一、引入:

1、判斷直線與圓的位置關系的基本方法:

(1)圓心到直線的距離

(2)判別式法

2、回顧予留問題:

要求學生由學過知識編出有關直線與圓位置關系的新題目,并考慮下面問題:

(1)為何這樣編題.(2)能否解決自編題目.(3)分析解題方法及步驟與已學過的基本方法、步驟的聯系與區別.二、探討過程:

教師引導學生要注重的幾個基本問題:

1、位置關系判定方法與求曲線方程問題的結合.2、位置關系判定方法與函數或不等式的結合.3、將圓變為相關曲線.備選題

1、求過點P(-3,-2)且與圓x2+y2+2x-4y+1=0相切的直線方程.備選題

2、已知P(x, y)為圓(x+2)2+y2=1上任意一點,求(1)(2)2x+3y=b的取值范圍.備選題

3、實數k取何值時,直線L:y=kx+2k-1與曲線: y=兩個公共點;沒有公共點.三、小結:

1、問題變化、發展的一些常見方法,如:

(1)變常數為常數,改系數.(2)變曲線整體為部分.有一個公共點;=m的最大、最小值.(3)變定曲線為動曲線.2、理解與體會解決問題的一般策略,重視“新”與“舊”的聯系與區別,并注意哪些可化歸為“舊”的方法去解決.自編題目:

下面是四中學生在課堂上自己編的題目,這些題目由學生自己親自編的或是自學中從課外書上找來的題目,這些題目都與本節課內容有關.①已知圓方程為(x-a)2+(y-b)2=r2,P(x0, y0)是圓外一點,求過P點的圓的兩切線的夾角如何計算?

②P(x0, y0)是圓x2+(y-1)2=1上一點,求x0+y0+c≥0中c的范圍.③圓過A點(4,1),且與y=x相切,求切線方程.④直線x+2y-3=0與x2+y2+x-2ay+a=0相交于A、B兩點,且OA⊥OB,求圓方程?

⑤P是x2+y2=25上一點,A(5,5),B(2,4),求|AP|2+|BP|2最小值.⑥圓方程x2+y2=4,直線過點(-3,-1),且與圓相交分得弦長為3∶1,求直線方程.⑦圓方程x2+y2=9,x-y+m=0,弦長為

2,求m.⑧圓O(x-a)2+(y-b)2=r2,P(x0, y0)圓一點,求過P點弦長最短的直線方程?

⑨求y=的最值.圓錐曲線的定義及其應用

[教學內容]

圓錐曲線的定義及其應用。

[教學目標]

通過本課的教學,讓學生較深刻地了解三種圓錐的定義是對圓錐曲線本質的刻畫,它決定了曲線的形狀和幾何性質,因此在圓錐曲線的應用中,定義本身就是最重要的性質。

1.利用圓錐曲線的定義,確定點與圓錐曲線位置關系的表達式,體現用二元不等式表示平面區域的研究方法。

2.根據圓錐曲線定義建立焦半徑的表達式求解有關問題,培養尋求聯系定義的能力。

3.探討使用圓錐曲線定義,用幾何法作出過圓錐曲線上一點的切線,激發學生探索的興趣。

4.掌握用定義判斷圓錐曲線類型及求解與圓錐曲線相關的動點軌跡,提高學生分析、識別曲線,解決問題的綜合能力。

[教學重點]

尋找所解問題與圓錐曲線定義的聯系。

[教學過程]

一、回顧圓錐曲線定義,確定點、直線(切線)與曲線的位置關系。

1.由定義確定的圓錐曲線標準方程。

2.點與圓錐曲線的位置關系。

3.過圓錐曲線上一點作切線的幾何畫法。

二、圓錐曲線定義在焦半徑、焦點弦等問題中的應用。

例1.設橢圓+=1(a>b>0),F1、F2是其左、右焦點,P(x0, y0)是橢圓上任意一點。

(1)寫出|PF1|、|PF2|的表達式,求|PF1|、|PF1|·|PF2|的最大最小值及對應的P點位置。

(2)過F1作不與x軸重合的直線L,判斷橢圓上是否存在兩個不同的點關于L對稱。

(3)P1(x1,y1)、P2(x2,y2)、P3(x3, y3)是橢圓上三點,且x1, x2, x3成等差,求證|PF1|、|PF2|、|PF3|成等差。

(4)若∠F1PF2=2?,求證:ΔPF1F2的面積S=btg?

(5)當a=2, b=最小值。

時,定點A(1,1),求|PF1|+|PA|的最大最小值及|PA|+2|PF2|的2例2.已知雙曲線-=1,F1、F2是其左、右焦點。

(1)設P(x0, y0)是雙曲線上一點,求|PF1|、|PF2|的表達式。

(2)設P(x0, y0)在雙曲線右支上,求證以|PF1|為直徑的圓必與實軸為直徑的圓內切。

(3)當b=1時,橢圓求ΔQF1F2的面積。

+y=1 恰與雙曲線有共同的焦點,Q是兩曲線的一個公共點,2例3.已知AB是過拋物線y=2px(p>0)焦點的弦,A(x1, y1), B(x2, y2)、F為焦點,求證:

(1)以|AB|為直徑的圓必與拋物線的準線相切。

(2)|AB|=x1+x2+p

(3)若弦CD長4p, 則CD弦中點到y軸的最小距離為

2(4)+為定值。

(5)當p=2時,|AF|+|BF|=|AF|·|BF|

三、利用定義判斷曲線類型,確定動點軌跡。

例4.判斷方程=1表示的曲線類型。

例5.以點F(1,0)和直線x=-1為對應的焦點和準線的橢圓,它的一個短軸端點為B,點P是BF的中點,求動點P的軌跡方程。

備用題:雙曲線實軸平行x軸,離心率e=,它的左分支經過圓x+y+4x-10y+20=0的2

2圓心M,雙曲線左焦點在此圓上,求雙曲線右頂點的軌跡方程。

第三篇:點與圓的位置關系教案

第23章《圓》

第5課時 點與圓的位置關系

初三()班 學號 姓名年月日

學習目標:

1、理解點與圓的位置關系由點到圓心的距離決定;

2、理解不在同一條直線上的三個點確定一個圓;

3、會畫三角形的外接圓,熟識相關概念

學習過程

一、點與圓的位置三種位置關系

生活現象:閱讀課本P53頁,這一現象體現了平面內點與圓的位置關系. ...如圖1所示,設⊙O的半徑為r,A點在圓內,OAr B點在圓上,OBr C點在圓外,OCr

圖1 反之,在同一平面上,已知的半徑為r⊙O,和A,B,C三點: .....若OA>r,則A點在圓; 若OB<r,則B點在圓; 若OC=r,則C點在圓。

二、多少個點可以確定一個圓

問題:在圓上的點有多個,那么究竟多少個點就可以確定一個圓呢? 試一試 畫圖準備:

1、圓的確定圓的大小,圓確定圓的位置; 也就是說,若如果圓的和確定了,那么,這個圓就確定了。

2、如圖2,點O是線段AB的垂直平分線

上的任意一點,則有OAOB

圖2 / 4

ABo畫圖:

1、畫過一個點的圓。

右圖,已知一個點A,畫過A點的圓.

小結:經過一定點的圓可以畫個。

2、畫過兩個點的圓。

右圖,已知兩個點A、B,畫過同時經過A、B兩點的圓. 提示:畫這個圓的關鍵是找到圓心,畫出來的圓要同時經過A、B兩點,那么圓心到這兩點距離,可見,圓心在線段AB的上。

小結:經過兩定點的圓可以畫個,但這些圓的圓心在線段的上

3、畫過三個點(不在同一直線)的圓。

提示:如果A、B、C三點不在一條直線上,那么經過A、B兩點所畫的圓的圓心在線段AB的垂直平分線上,而經過B、C兩點所畫的圓的圓心在 線段BC的垂直平分線上,此時,這 兩條垂直平分線一定相交,設交點為O,則OA=OB=OC,于是以O為圓心,OA為半徑畫圓,便可畫出經過A、B、C 三點的圓.

小結:不在同一條直線上的三個點確定個圓. .....

三、概括

我們已經知道,經過三角形三個頂點可以畫一個圓,并且只能畫一個.經過三角形三個頂點的圓叫做三角形的外接圓(circumcircle).三角形外接圓的圓心叫做這個三角形的外心(circumcenter).這個三角形叫做這個圓的內接三角形.三角形的外心就是三角形三條邊的垂直平分線的交點. / 4

BAAABCA如圖:如果⊙O經過△ABC的三個頂點,則⊙O叫做△ABC的,圓心O叫

O做△ABC的,反過來,△ABC叫做 ⊙O的。

△ABC的外心就是AC、BC、AB邊的交點。

四、分組練習(A組)

CB1、已知⊙O的半徑為4,A為線段PO的中點,當OP=10時,點A與⊙O的位置關系為()

A.在圓上

B.在圓外

C.在圓內

D.不確定

2、任意畫一個三角形,然后再畫這個三角形的外接圓.3、判斷題:

① 三角形的外心到三邊的距離相等………………()② 三角形的外心到三個頂點的距離相等。…………()

4、三角形的外心在這個三角形的()

A.內部

B.外部

C.在其中一邊上

D.以上三種都可能

5、能過畫圖的方法來解釋上題。

在下列三個圓中,分別畫出內接三角形(銳角,直角,鈍角三種三角形)

/ 4

6、直角三角形的兩條直角邊分別為5和12,則其外接圓半徑的長為

7、若點O是△ABC的外心,∠A=70°,則∠BOC=

(B組)

8、一個點到圓的最小距離為4cm,最大距離為9cm,則該圓的半徑是()A.2.5cm或6.5cm B.2.5cm C. 6.5cm D.5cm或13cm

9、隨意畫出四點,其中任何三點都不在同一條直線上,是否一定可以畫一個圓經過這四點?請試畫圖說明./ 4

第四篇:直線與圓的位置關系教案

教學目標:

1.使學生理解直線和圓的相交、相切、相離的概念。

2.掌握直線與圓的位置關系的性質與判定并能夠靈活運用來解決實際問題。

3.培養學生把實際問題轉化為數學問題的能力及分類和化歸的能力。

重點難點:

1.重點:直線與圓的三種位置關系的概念。

2.難點:運用直線與圓的位置關系的性質及判定解決相關的問題。

教學過程:

一.復習引入

1.提問:復習點和圓的三種位置關系。

(目的:讓學生將點和圓的位置關系與直線和圓的位置關系進行類比,以便更好的掌握直線和圓的位置關系)

2.由日出升起過程中的三個特殊位置引入直線與圓的位置關系問題。

(目的:讓學生感知直線和圓的位置關系,并培養學生把實際問題抽象成數學模型的能力)

二.定義、性質和判定

1.結合關于日出的三幅圖形,通過學生討論,給出直線與圓的三種位置關系的定義。

(1)線和圓有兩個公共點時,叫做直線和圓相交。這時直線叫做圓的割線。

(2)直線和圓有唯一的公點時,叫做直線和圓相切。這時直線叫做圓的切線。唯一的公共點叫做切點。

(3)直線和圓沒有公共點時,叫做直線和圓相離。

2.直線和圓三種位置關系的性質和判定:

如果⊙O半徑為r,圓心O到直線l的距離為d,那么:

(1)線l與⊙O相交 d<r

(2)直線l與⊙O相切d=r

(3)直線l與⊙O相離d>r

三.例題分析:

例(1)在Rt△ABC中,AC=3cm,BC=4cm,以C為圓心,r為半徑。

①當r= 時,圓與AB相切。

②當r=2cm時,圓與AB有怎樣的位置關系,為什么?

③當r=3cm時,圓與AB又是怎樣的位置關系,為什么?

④思考:當r滿足什么條件時圓與斜邊AB有一個交點?

四.小結(學生完成)

五、隨堂練習:

(1)直線和圓有種位置關系,是用直線和圓的個數來定義的;這也是判斷直線和圓的位置關系的重要方法。

(2)已知⊙O的直徑為13cm,直線L與圓心O的距離為d。

①當d=5cm時,直線L與圓的位置關系是;

②當d=13cm時,直線L與圓的位置關系是;

③當d=6。5cm時,直線L與圓的位置關系是;

(目的:直線和圓的位置關系的判定的應用)

(3)⊙O的半徑r=3cm,點O到直線L的距離為d,若直線L 與⊙O至少有一個公共點,則d應滿足的條件是()

(A)d=3(B)d≤3(C)d<3 d="">

3(目的:直線和圓的位置關系的性質的應用)

(4)⊙O半徑=3cm。點P在直線L上,若OP=5 cm,則直線L與⊙O的位置關系是()

(A)相離(B)相切(C)相交(D)相切或相交

(目的:點和圓,直線和圓的位置關系的結合,提高學生的綜合、開放性思維)

想一想:

在平面直角坐標系中有一點A(—3,—4),以點A為圓心,r長為半徑時,思考:隨著r的變化,⊙A與坐標軸交點的變化情況。(有五種情況)

六、作業:P100—

2、3

第五篇:圓和圓的位置關系教案

初探圓和圓的位置關系

教學目標:

1.掌握圓與圓的五種位置關系的定義、性質及判定方法;兩圓連心線的性質;

2.通過兩圓的位置關系,培養學生的分類能力和數形結合能力;

3.通過演示兩圓的位置關系,培養學生用運動變化的觀點來分析和發現問題的能力.

教學重點:

兩圓的五種位置與兩圓的半徑、圓心距的數量之間的關系.

教學難點:

兩圓位置關系及判定.

(一)復習、引出問題

1.復習:直線和圓有幾種位置關系?各是怎樣定義的?

(教師主導,學生回憶、回答)直線和圓有三種位置關系,即直線和圓相離、相切、相交.各種位置關系是通過直線與圓的公共點的個數來定義的

2.引出問題:平面內兩個圓,它們作相對運動,將會產生什么樣的位置關系呢?

(二)觀察、分類,得出概念

1、讓學生觀察、分析、比較,分別得出兩圓:外離、外切、相交、內切、內含(包括同心圓)這五種位置關系,準確給出描述性定義:

(1)外離:兩個圓沒有公共點,并且每個圓上的點都在另一個圓的外部時,叫做這兩個圓外離.(圖(1))

(2)外切:兩個圓有唯一的公共點,并且除了這個公共點以外,每個圓上的點都在另一個圓的外部時,叫做這兩個圓外切.這個唯一的公共點叫做切點.(圖(2))

(3)相交:兩個圓有兩個公共點,此時叫做這兩個圓相交.(圖(3))

(4)內切:兩個圓有唯一的公共點,并且除了這個公共點以外,一個圓上的點都在另一個圓的內部時,叫做這兩個圓內切.這個唯一的公共點叫做切點.(圖(4))

(5)內含:兩個圓沒有公共點,并且一個圓上的點都在另一個圓的內部時,叫做這兩個圓內含(圖(5)).兩圓同心是兩圓內含的一個特例.(圖(6))

2、歸納:

(1)兩圓外離與內含時,兩圓都無公共點.

(2)兩圓外切和內切統稱兩圓相切,即外切和內切的共性是公共點的個數唯一

(3)兩圓位置關系的五種情況也可歸納為三類:相離(外離和內含);相交;相切(外切和內切).

教師組織學生歸納,并進一步考慮:從兩圓的公共點的個數考慮,無公共點則相離;有一個公共點則相切;有兩個公共點則相交.除以上關系外,還有其它關系嗎?可能不可能有三個公共點?

結論:在同一平面內任意兩圓只存在以上五種位置關系.

(三)分析、研究

1、相切兩圓的性質.

讓學生觀察連心線與切點的關系,分析、研究,得到相切兩圓的連心線的性質:

如果兩個圓相切,那么切點一定在連心線上.

這個性質由圓的軸對稱性得到,有興趣的同學課下可以考慮如何對這一性質進行證明

2、兩圓位置關系的數量特征.

設兩圓半徑分別為R和r.圓心距為d,組織學生研究兩圓的五種位置關系,r和d之間有何數量關系.(圖形略)

兩圓外切 d=R+r;

兩圓相交 R-r<d<R+r.

兩圓內切兩圓外離兩圓內含

d=R-r(R>r);d>R+r; d<R-r(R>r);

說明:注重“數形結合”思想的教學.

(四)應用、練習

例1: 如圖,⊙O的半徑為5厘米,點P是⊙O外一點,OP=8厘米

求:(1)以P為圓心作⊙P與⊙O外切,小圓⊙P的半徑是多少?

(2)以P為圓心作⊙P與⊙O內切,大圓⊙P的半徑是多少?

解:(1)設⊙P與⊙O外切與點A,則

PA=PO-OA

∴PA=3cm.

(2)設⊙P與⊙O內切與點B,則

PB=PO+OB

∴PB=1 3cm.

例2:已知:如圖,△ABC中,∠C=90°,AC=12,BC=8,以AC為直徑作⊙O,以B為圓心,4為半徑作.

求證:⊙O與⊙B相外切.

證明:連結BO,∵AC為⊙O的直徑,AC=12,∴⊙O的半徑,且O是AC的中點

∴,∵∠C=90°且BC=8,∴,∵⊙O的半徑,⊙B的半徑,∴BO=,∴⊙O與⊙B相外切.

練習(P138)

(五)小結

知識:①兩圓的五種位置關系:外離、外切、相交、內切、內含;

②以及這五種位置關系下圓心距和兩圓半徑的數量關系;

③兩圓相切時切點在連心線上的性質.

能力:觀察、分析、分類、數形結合等能力.

思想方法:分類思想、數形結合思想.

(六)作業

教材P151中習題A組2,3,4題.

下載高中數學圓與圓的位置關系教案word格式文檔
下載高中數學圓與圓的位置關系教案.doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點此處下載文檔

文檔為doc格式


聲明:本文內容由互聯網用戶自發貢獻自行上傳,本網站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發現有涉嫌版權的內容,歡迎發送郵件至:645879355@qq.com 進行舉報,并提供相關證據,工作人員會在5個工作日內聯系你,一經查實,本站將立刻刪除涉嫌侵權內容。

相關范文推薦

    3.1直線與圓的位置關系教案

    3.1直線與圓的位置關系(2) 教學目標: 1、通過動手操作,經歷圓的切線的判定定理得產生過程,并幫助理解與記憶; 2、在探索圓的切線的判定定理的過程中,體驗切線的判定、切線的特殊性;......

    優質課教案直線與圓的位置關系

    《直線與圓的位置關系》 教材:華東師大版實驗教材九年級上冊 一、教材分析: 教材的地位和作用 圓的有關性質,被廣泛地應用于工農業生產、交通運輸等方面,所涉及的數學知識較為廣......

    高中數學 《圓與方程》教案

    圓的一般方程 一、教學目標 (一)知識教學點 使學生掌握圓的一般方程的特點;能將圓的一般方程化為圓的標準方程從而求出圓心的坐標和半徑;能用待定系數法,由已知條件導出圓的方......

    圓與圓的位置關系教學設計

    圓與圓的位置關系(1)教案 一、教學目標 1、經歷圓與圓的各種位置關系的探究過程,最終能總結出圓與圓的五種不同的位置關系。 2、掌握用圓心距與兩圓半徑之間的關系來判斷兩圓的......

    圓與圓的位置關系教學設計

    2.2.3 《圓與圓的位置關系》教學設計 王 逸 楠 152021072 王苑 152021073 張 丹 丹 152021076 趙 英 潔 152021077 一、教材內容分析 《圓與圓的位置關系》是蘇教版教材必修......

    圓與圓的位置關系教學設計

    《圓和圓的位置關系》教學設計 一、教學目標 (一)教學知識點 1.了解圓與圓之間的幾種位置關系. 2.了解兩圓外切、內切與兩圓圓心距d、半徑R和r的數量關系的聯系. (二)能力訓練要......

    圓與圓的位置關系教學設計

    圓與圓的位置關系 一、教學目標: (一)知識目標 1、利用計算機制作動畫(讓學觀察兩圓相對運動的過程)培養學生以運動變化的觀點來觀察問題(觀察出確定“兩圓位置關系”的關鍵 兩圓......

    圓與圓的位置關系教學設計

    《圓與圓的位置關系》教學設計 香壩中學數學教師:楊廷凡 一、教材內容分析 本節課的內容是湘教版九年級數學下第三章《3。3圓與圓的位置關系》。它是在學習了點與圓以及直......

主站蜘蛛池模板: 无码影片| 成年片色大黄全免费软件到| 国产成a人亚洲精品无码久久网| 青青草无码精品伊人久久7| 亚洲欧美日本韩国| 亚洲熟妇久久精品| 亚洲国产另类精品| 国产亚洲精品一区二区三区| 酒店大战丝袜高跟鞋人妻| 天堂国产一区二区三区| 综合久久国产九一剧情麻豆| 国产精品爱啪在线播放| 夜色资源站www国产在线视频| 乱熟女高潮一区二区在线| 夜夜爱夜鲁夜鲁很鲁| 欧美18videosex性欧美黑吊| 日韩~欧美一中文字幕| 好吊妞人成视频在线观看27du| 牛牛在线视频| 在线视频观看免费视频18| 人妻少妇精品无码系列| 极品少妇被猛得白浆直流草莓视频| 亚洲男人第一无码av网站| 亚洲欧美日韩综合一区在线观看| 久久精品国产丝袜人妻| 少妇挑战三个黑人惨叫4p国语| 无码全黄毛片免费看| 色屁屁www免费看欧美激情| 国产精品黄在线观看免费软件| 久久这里只精品国产免费9| 99久久精品日本一区二区免费| 国产在线精品一区在线观看| 亚洲精品国产精品国自产小说| 国产一区二区在线影院| 无码少妇一区二区| 国产精品丝袜久久久久久不卡| 少妇夜夜春夜夜爽试看视频| 精品国产av色一区二区深夜久久| 内射中出无码护士在线| 久久人妻少妇偷人精品综合桃色| 无码专区久久综合久中文字幕|