第一篇:余弦定理的三個無字證明
余弦定理的三個無字證明
無需任何廢話,三張圖片即可說明一切!證明一:
證明二:
證明三:
來源:http://books.google.com/books?id=Kx2cjyzTIYkC&lpg=PP1&dq=Proofs%20without%20words&pg=PA31#v=onepage&q=&f=false
第二篇:余弦定理的三個無字證明
余弦定理的三個無字證明
無需任何廢話,三張圖片即可說明一切!證明一:
證明二:
證明三:
來源:http://books.google.com/books?id=Kx2cjyzTIYkC&lpg=PP1&dq=Proofs%20without%20words&pg=PA31#v=onepage&q=&f=false
第三篇:余弦定理證明過程
余弦定理證明過程
ma=√(c^2+(a/2)^2-ac*cosB)
=(1/2)√(4c^2+a^2-4ac*cosB)
由b^2=a^2+c^2-2ac*cosB
得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表達式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
證畢。
2在任意△ABC中,作AD⊥BC.∠C對邊為c,∠B對邊為b,∠A對邊為a-->
BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
勾股定理可知:
AC2=AD2+DC2
b2=(sinB*c)2+(a-cosB*c)2
b2=sin2B*c2+a2+cos2B*c2-2ac*cosB
b2=(sin2B+cos2B)*c2-2ac*cosB+a2
b2=c2+a2-2ac*cosB
所以,cosB=(c2+a2-b2)/2ac
2如右圖,在ABC中,三內角A、B、C所對的邊分別是a、b、c.以A為原點,AC所在的直線為x軸建立直角坐標系,于是C點坐標是(b,0),由三角函數的定義得B點坐標是(ccosA,csinA).∴CB=(ccosA-b,csinA).現將CB平移到起點為原點A,則AD=CB.而|AD|=|CB|=a,∠DAC=π-∠BCA=π-C,根據三角函數的定義知D點坐標是(acos(π-C),asin(π-C))即D點坐標是(-acosC,asinC),∴AD=(-acosC,asinC)而AD=CB∴(-acosC,asinC)=(ccosA-b,csinA)∴asinC=csinA…………①-acosC=ccosA-b……②由①得asinA=csinC,同理可證asinA=bsinB,∴asinA=bsinB=csinC.由②得acosC=b-ccosA,平方得:a2cos2C=b2-2bccosA+c2cos2A,即a2-a2sin2C=b2-2bccosA+c2-c2sin2A.而由①可得a2sin2C=c2sin2A∴a2=b2+c2-2bccosA.同理可證b2=a2+c2-2accosB,c2=a2+b2-2abcosC.到此正弦定理和余弦定理證明完畢。3△ABC的三邊分別為a,b,c,邊BC,CA,AB上的中線分別為ma.mb,mc,應用余弦定理證明:
mb=(1/2)
mc=(1/2)ma=√(c^2+(a/2)^2-ac*cosB)
=(1/2)√(4c^2+a^2-4ac*cosB)
由b^2=a^2+c^2-2ac*cosB
得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表達式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
同理可得:
mb=
mc=
ma=√(c^2+(a/2)^2-ac*cosB)
=(1/2)√(4c^2+a^2-4ac*cosB)
由b^2=a^2+c^2-2ac*cosB
得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表達式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
證畢。
第四篇:余弦定理證明
余弦定理證明
在任意△ABC中,作AD⊥BC.∠C對邊為c,∠B對邊為b,∠A對邊為a-->
BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
勾股定理可知:
AC2=AD2+DC2
b2=(sinB*c)2+(a-cosB*c)2
b2=sin2B*c2+a2+cos2B*c2-2ac*cosB
b2=(sin2B+cos2B)*c2-2ac*cosB+a2
b2=c2+a2-2ac*cosB
所以,cosB=(c2+a2-b2)/2ac
2如右圖,在ABC中,三內角A、B、C所對的邊分別是a、b、c.以A為原點,AC所在的直線為x軸建立直角坐標系,于是C點坐標是(b,0),由三角函數的定義得B點坐標是(ccosA,csinA).∴CB=(ccosA-b,csinA).現將CB平移到起點為原點A,則AD=CB.而|AD|=|CB|=a,∠DAC=π-∠BCA=π-C,根據三角函數的定義知D點坐標是(acos(π-C),asin(π-C))即D點坐標是(-acosC,asinC),∴AD=(-acosC,asinC)而AD=CB∴(-acosC,asinC)=(ccosA-b,csinA)∴asinC=csinA…………①-acosC=ccosA-b……②由①得asinA=csinC,同理可證asinA=bsinB,∴asinA=bsinB=csinC.由②得acosC=b-ccosA,平方得:a2cos2C=b2-2bccosA+c2cos2A,即a2-a2sin2C=b2-2bccosA+c2-c2sin2A.而由①可得a2sin2C=c2sin2A∴a2=b2+c2-2bccosA.同理可證b2=a2+c2-2accosB,c2=a2+b2-2abcosC.到此正弦定理和余弦定理證明完畢。3△ABC的三邊分別為a,b,c,邊BC,CA,AB上的中線分別為ma.mb,mc,應用余弦定理證明:
mb=(1/2)
mc=(1/2)ma=√(c^2+(a/2)^2-ac*cosB)
=(1/2)√(4c^2+a^2-4ac*cosB)
由b^2=a^2+c^2-2ac*cosB
得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表達式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
同理可得:
mb=
mc=
ma=√(c^2+(a/2)^2-ac*cosB)
=(1/2)√(4c^2+a^2-4ac*cosB)
由b^2=a^2+c^2-2ac*cosB
得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表達式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
證畢。
第五篇:怎么證明余弦定理
怎么證明余弦定理
證明余弦定理:
因為過C作CD垂直于AB,AD=bcosA;所以(c-bcosA)^2+(bsinA)^2=a^2。
又因為b^2-(bcosA)^2=(bsinA)^2,所以(c-x)^2+b^2-(bcosA)^2=a^2,所以c^2-2cbcosA+(bcosA)^2+b^2-(bcosA)^2=a^2,所以c^2-2cbcosA+b^2=a^2,所以c^2+b^2-a^2=2cbcosA,所以cosA=(c^2+b^2-a^2)/2bc
同理cosB=(a^2+c^2-b^2)/2ac,cosC=(a^2+b^2-c^2)/2ab
2在任意△ABC中,作AD⊥BC.∠C對邊為c,∠B對邊為b,∠A對邊為a-->
BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
勾股定理可知:
AC2=AD2+DC2
b2=(sinB*c)2+(a-cosB*c)2
b2=sin2B*c2+a2+cos2B*c2-2ac*cosB
b2=(sin2B+cos2B)*c2-2ac*cosB+a2
b2=c2+a2-2ac*cosB
所以,cosB=(c2+a2-b2)/2ac
2如右圖,在ABC中,三內角A、B、C所對的邊分別是a、b、c.以A為原點,AC所在的直線為x軸建立直角坐標系,于是C點坐標是(b,0),由三角函數的定義得B點坐標是(ccosA,csinA).∴CB=(ccosA-b,csinA).現將CB平移到起點為原點A,則AD=CB.而|AD|=|CB|=a,∠DAC=π-∠BCA=π-C,根據三角函數的定義知D點坐標是(acos(π-C),asin(π-C))即D點坐標是(-acosC,asinC),∴AD=(-acosC,asinC)而AD=CB∴(-acosC,asinC)=(ccosA-b,csinA)∴asinC=csinA…………①-acosC=ccosA-b……②由①得asinA=csinC,同理可證asinA=bsinB,∴asinA=bsinB=csinC.由②得acosC=b-ccosA,平方得:a2cos2C=b2-2bccosA+c2cos2A,即a2-a2sin2C=b2-2bccosA+c2-c2sin2A.而由①可得a2sin2C=c2sin2A∴a2=b2+c2-2bccosA.同理可證b2=a2+c2-2accosB,c2=a2+b2-2abcosC.到此正弦定理和余弦定理證明完畢。3△ABC的三邊分別為a,b,c,邊BC,CA,AB上的中線分別為ma.mb,mc,應用余弦定理證明:
mb=(1/2)
mc=(1/2)ma=√(c^2+(a/2)^2-ac*cosB)
=(1/2)√(4c^2+a^2-4ac*cosB)
由b^2=a^2+c^2-2ac*cosB
得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表達式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
同理可得:
mb=
mc=
ma=√(c^2+(a/2)^2-ac*cosB)
=(1/2)√(4c^2+a^2-4ac*cosB)
由b^2=a^2+c^2-2ac*cosB
得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表達式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
證畢。