第一篇:余弦定理的三種證明
△ABC中的三個內角∠A,∠B,∠C的對邊,分別用a,b,c表示.余弦定理 三角形任何一邊的平方等于其他兩邊的平方和減去這兩邊與它們夾角的余弦的積的兩倍.即
c2=a2+b2-2abcosC,b2=a2+c2-2accosB,a2=b2+c2-2bccosA
證明:按照三角形的分類,分三種情形證明之.(1)在Rt?ABC中,如圖1-1 根據勾股定理: c=a+b
因為cosC=0,所以c=a+b-2abcosC
A
a222,所以b=a+c-2accosB cb222
因為cosA=,所以a=b+c-2bccosA
c
因為cosB=
(2)在銳角△ABC中,如圖1-2 作CD?AB于點D,有
b
c
C a
B C
CD=asinB,BD=acosB,AD=AB-BD=c-acosB
b
b2=CD2+AD2=(asinB)2+(c-acosB)2=a2+c2-2accosB
同理可證:
A
c
B
D
c2=a2+b2-2abcosC, a2=b2+c2-2bccosA
(3)在鈍角△ABC中,如圖1-3
作CD?AB,交AB的延長線于點D,則
CD=asin?CBD=asinB,BD=acos?CBD=-acosB,AD=AB+BD=c-acosB
b2=CD2+AD2=(asinB)2+(c-acosB)2=a2+c2-2accosB
按照(2)的方法可以證明:
b
a
c2=a2+b2-2abcosC, a2=b2+c2-2bccosA
綜上所述,在任意的三角形中,余弦定理總是成立.A
B D
???????????????證明:在△ABC中,令AB=c,AC=b,BC=a
???????????????a?BC?BA?AC?b?c
???2?2???2??2?2?|a|?(b?c)?b?2b?c?c?|b|?2|b|?|c|?cosA?|c|2
即a=b+c-2bccosA
同理可證:c=a+b-2abcosC,b=a+c-2accosB
證明:對于任意一個?ABC,建立直角坐標系如圖所示,那么A(bcosC,bsinC),B(a,0)
因為余弦定理中涉及到c,我們自然想到計算AB的長度。根據兩點間的距離公式,我們有: 2222222222A c
B a b C
c2?|AB|2?(bcosC?a)2?(bsinC)2?a2?b2?2abcosC,即c?a?b?2abcosC
222
第二篇:怎么證明余弦定理
怎么證明余弦定理
證明余弦定理:
因為過C作CD垂直于AB,AD=bcosA;所以(c-bcosA)^2+(bsinA)^2=a^2。
又因為b^2-(bcosA)^2=(bsinA)^2,所以(c-x)^2+b^2-(bcosA)^2=a^2,所以c^2-2cbcosA+(bcosA)^2+b^2-(bcosA)^2=a^2,所以c^2-2cbcosA+b^2=a^2,所以c^2+b^2-a^2=2cbcosA,所以cosA=(c^2+b^2-a^2)/2bc
同理cosB=(a^2+c^2-b^2)/2ac,cosC=(a^2+b^2-c^2)/2ab
2在任意△ABC中,作AD⊥BC.∠C對邊為c,∠B對邊為b,∠A對邊為a-->
BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
勾股定理可知:
AC2=AD2+DC2
b2=(sinB*c)2+(a-cosB*c)2
b2=sin2B*c2+a2+cos2B*c2-2ac*cosB
b2=(sin2B+cos2B)*c2-2ac*cosB+a2
b2=c2+a2-2ac*cosB
所以,cosB=(c2+a2-b2)/2ac
2如右圖,在ABC中,三內角A、B、C所對的邊分別是a、b、c.以A為原點,AC所在的直線為x軸建立直角坐標系,于是C點坐標是(b,0),由三角函數的定義得B點坐標是(ccosA,csinA).∴CB=(ccosA-b,csinA).現將CB平移到起點為原點A,則AD=CB.而|AD|=|CB|=a,∠DAC=π-∠BCA=π-C,根據三角函數的定義知D點坐標是(acos(π-C),asin(π-C))即D點坐標是(-acosC,asinC),∴AD=(-acosC,asinC)而AD=CB∴(-acosC,asinC)=(ccosA-b,csinA)∴asinC=csinA…………①-acosC=ccosA-b……②由①得asinA=csinC,同理可證asinA=bsinB,∴asinA=bsinB=csinC.由②得acosC=b-ccosA,平方得:a2cos2C=b2-2bccosA+c2cos2A,即a2-a2sin2C=b2-2bccosA+c2-c2sin2A.而由①可得a2sin2C=c2sin2A∴a2=b2+c2-2bccosA.同理可證b2=a2+c2-2accosB,c2=a2+b2-2abcosC.到此正弦定理和余弦定理證明完畢。3△ABC的三邊分別為a,b,c,邊BC,CA,AB上的中線分別為ma.mb,mc,應用余弦定理證明:
mb=(1/2)
mc=(1/2)ma=√(c^2+(a/2)^2-ac*cosB)
=(1/2)√(4c^2+a^2-4ac*cosB)
由b^2=a^2+c^2-2ac*cosB
得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表達式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
同理可得:
mb=
mc=
ma=√(c^2+(a/2)^2-ac*cosB)
=(1/2)√(4c^2+a^2-4ac*cosB)
由b^2=a^2+c^2-2ac*cosB
得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表達式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
證畢。
第三篇:余弦定理證明
余弦定理證明
在任意△ABC中,作AD⊥BC.∠C對邊為c,∠B對邊為b,∠A對邊為a-->
BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
勾股定理可知:
AC2=AD2+DC2
b2=(sinB*c)2+(a-cosB*c)2
b2=sin2B*c2+a2+cos2B*c2-2ac*cosB
b2=(sin2B+cos2B)*c2-2ac*cosB+a2
b2=c2+a2-2ac*cosB
所以,cosB=(c2+a2-b2)/2ac
2如右圖,在ABC中,三內角A、B、C所對的邊分別是a、b、c.以A為原點,AC所在的直線為x軸建立直角坐標系,于是C點坐標是(b,0),由三角函數的定義得B點坐標是(ccosA,csinA).∴CB=(ccosA-b,csinA).現將CB平移到起點為原點A,則AD=CB.而|AD|=|CB|=a,∠DAC=π-∠BCA=π-C,根據三角函數的定義知D點坐標是(acos(π-C),asin(π-C))即D點坐標是(-acosC,asinC),∴AD=(-acosC,asinC)而AD=CB∴(-acosC,asinC)=(ccosA-b,csinA)∴asinC=csinA…………①-acosC=ccosA-b……②由①得asinA=csinC,同理可證asinA=bsinB,∴asinA=bsinB=csinC.由②得acosC=b-ccosA,平方得:a2cos2C=b2-2bccosA+c2cos2A,即a2-a2sin2C=b2-2bccosA+c2-c2sin2A.而由①可得a2sin2C=c2sin2A∴a2=b2+c2-2bccosA.同理可證b2=a2+c2-2accosB,c2=a2+b2-2abcosC.到此正弦定理和余弦定理證明完畢。3△ABC的三邊分別為a,b,c,邊BC,CA,AB上的中線分別為ma.mb,mc,應用余弦定理證明:
mb=(1/2)
mc=(1/2)ma=√(c^2+(a/2)^2-ac*cosB)
=(1/2)√(4c^2+a^2-4ac*cosB)
由b^2=a^2+c^2-2ac*cosB
得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表達式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
同理可得:
mb=
mc=
ma=√(c^2+(a/2)^2-ac*cosB)
=(1/2)√(4c^2+a^2-4ac*cosB)
由b^2=a^2+c^2-2ac*cosB
得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表達式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
證畢。
第四篇:余弦定理證明過程
在△ABC中,設BC=a,AC=b,AB=c,試根據b,c,A來表示a。 分析:由于初中平面幾何所接觸的是解直角三角形問題,所以應添加輔助線構造直角三角形,在直角三角形內通過邊角關系作進一步的轉化工作,故作CD垂直于AB于D,那么在Rt△BDC中,邊a可利用勾股定理用CD、DB表示,而CD可在Rt△ADC中利用邊角關系表示,DB可利用AB-AD轉化為AD,進而在Rt△ADC內求解。
解:過C作CD⊥AB,垂足為D,則在Rt△CDB中,根據勾股定理可得: a2=CD2+BD2
∵在Rt△ADC中,CD2=b2-AD2
又∵BD2=(c-AD)2=c2-2c·AD+AD2
∴a2=b2-AD2+c2-2c·AD+AD2=b2+c2
-2c·AD 又∵在Rt△ADC中,AD=b·cosA ∴a2=b2+c2-2bccosA類似地可以證明b2=a2+c2-2accosB,c2=a2+b2-2abcosC
第五篇:余弦定理證明過程
余弦定理證明過程
ma=√(c^2+(a/2)^2-ac*cosB)
=(1/2)√(4c^2+a^2-4ac*cosB)
由b^2=a^2+c^2-2ac*cosB
得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表達式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
證畢。
2在任意△ABC中,作AD⊥BC.∠C對邊為c,∠B對邊為b,∠A對邊為a-->
BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
勾股定理可知:
AC2=AD2+DC2
b2=(sinB*c)2+(a-cosB*c)2
b2=sin2B*c2+a2+cos2B*c2-2ac*cosB
b2=(sin2B+cos2B)*c2-2ac*cosB+a2
b2=c2+a2-2ac*cosB
所以,cosB=(c2+a2-b2)/2ac
2如右圖,在ABC中,三內角A、B、C所對的邊分別是a、b、c.以A為原點,AC所在的直線為x軸建立直角坐標系,于是C點坐標是(b,0),由三角函數的定義得B點坐標是(ccosA,csinA).∴CB=(ccosA-b,csinA).現將CB平移到起點為原點A,則AD=CB.而|AD|=|CB|=a,∠DAC=π-∠BCA=π-C,根據三角函數的定義知D點坐標是(acos(π-C),asin(π-C))即D點坐標是(-acosC,asinC),∴AD=(-acosC,asinC)而AD=CB∴(-acosC,asinC)=(ccosA-b,csinA)∴asinC=csinA…………①-acosC=ccosA-b……②由①得asinA=csinC,同理可證asinA=bsinB,∴asinA=bsinB=csinC.由②得acosC=b-ccosA,平方得:a2cos2C=b2-2bccosA+c2cos2A,即a2-a2sin2C=b2-2bccosA+c2-c2sin2A.而由①可得a2sin2C=c2sin2A∴a2=b2+c2-2bccosA.同理可證b2=a2+c2-2accosB,c2=a2+b2-2abcosC.到此正弦定理和余弦定理證明完畢。3△ABC的三邊分別為a,b,c,邊BC,CA,AB上的中線分別為ma.mb,mc,應用余弦定理證明:
mb=(1/2)
mc=(1/2)ma=√(c^2+(a/2)^2-ac*cosB)
=(1/2)√(4c^2+a^2-4ac*cosB)
由b^2=a^2+c^2-2ac*cosB
得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表達式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
同理可得:
mb=
mc=
ma=√(c^2+(a/2)^2-ac*cosB)
=(1/2)√(4c^2+a^2-4ac*cosB)
由b^2=a^2+c^2-2ac*cosB
得,4ac*cosB=2a^2+2c^2-2b^2,代入上述ma表達式:
ma=(1/2)√
=(1/2)√(2b^2+2c^2-a^2)
證畢。