第一篇:2018考研數學:高數最容易出證明題的知識點
2018考研數學:高數最容易出證明題的知識點
來源:智閱網
考研數學難題一般出現在高等數學,所以我們一定對高等數學重點進行復習。高等數學題目中比較困難的是證明題,在整個高等數學,容易出證明題的地方如下:
一、數列極限的證明
數列極限的證明是數一、二的重點,特別是數二最近幾年考的非常頻繁,已經考過好幾次大的證明題,一般大題中涉及到數列極限的證明,用到的方法是單調有界準則。
二、微分中值定理的相關證明
微分中值定理的證明題歷來是考研的重難點,其考試特點是綜合性強,涉及到知識面廣,涉及到中值的等式主要是三類定理:
1.零點定理和介質定理;
2.微分中值定理;
包括羅爾定理,拉格朗日中值定理,柯西中值定理和泰 勒定理,其中泰勒定理是用來處理高階導數的相關問題,考查頻率底,所以以前兩個定理為主。
3.微分中值定理
積分中值定理的作用是為了去掉積分符號。
在考查的時候,一般會把三類定理兩兩結合起來進行考查,所以要總結到現在為止,所考查的題型。
三、方程根的問題
包括方程根唯一和方程根的個數的討論。
四、不等式的證明
五、定積分等式和不等式的證明
主要涉及的方法有微分學的方法:常數變異法;積分學的方法:換元法和分布積分法。
六、積分與路徑無關的五個等價條件
這一部分是數一的考試重點,最近幾年沒涉及到,所以要重點關注。
上面我們講述的這幾個點是我們復習的重點,在歷年考試中,考察的頻率較高,考生們一定要重點關注。2018湯家鳳《考研數學復習大全》(數學一)這本書對我們的考試幫助很大,考生們一定要好好利用。
第二篇:2018考研數學高數:證明題常出的6個地方
凱程考研輔導班,中國最權威的考研輔導機構
2018考研數學高數:證明題常出的6個地方 要命的數學每年都會難倒一大批考研黨,各位考研黨可得在數學上多下功夫了。在此整理了容易出證明題的凱程與小伙伴兒們分享,希望對大家有所幫助。
考試難題一般出現在高等數學,對高等數學一定要抓住重難點進行復習。高等數學題目中比較困難的是證明題,在整個高等數學,容易出證明題的地方如下:
一、數列極限的證明
數列極限的證明是數一、二的重點,特別是數二最近幾年考的非常頻繁,已經考過好幾次大的證明題,一般大題中涉及到數列極限的證明,用到的方法是單調有界準則。
二、微分中值定理的相關證明
微分中值定理的證明題歷來是考研的重難點,其考試特點是綜合性強,涉及到知識面廣,涉及到中值的等式主要是三類定理:
1.零點定理和介質定理;
2.微分中值定理;
包括羅爾定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用來處理高階導數的相關問題,考查頻率底,所以以前兩個定理為主。
3.微分中值定理
積分中值定理的作用是為了去掉積分符號。
在考查的時候,一般會把三類定理兩兩結合起來進行考查,所以要總結到現在為止,所考查的題型。
三、方程根的問題
包括方程根唯一和方程根的個數的討論。
四、不等式的證明
五、定積分等式和不等式的證明
主要涉及的方法有微分學的方法:常數變異法;積分學的方法:換元法和分布積分法。
六、積分與路徑無關的五個等價條件
頁 共 1 頁
凱程考研輔導班,中國最權威的考研輔導機構
這一部分是數一的考試重點,最近幾年沒設計到,所以要重點關注。
以上是容易出證明題的地方,同學們在復習的時候重點歸納這類題目的解法。其實看看凱程考研怎么樣,最簡單的一個辦法,看看他們有沒有成功的學生,最直觀的辦法是到凱程網站,上面有大量學員經驗談視頻,這些都是凱程扎扎實實的輔導案例,其他機構網站幾乎沒有考上學生的視頻,這就是凱程和其他機構的優勢,凱程是扎實輔導、嚴格管理、規范教學取得如此優秀的成績。
辨別凱程和其他機構誰靠譜的辦法。
第三篇:2017考研:考研數學證明題知識點歸納
2017考研:考研數學證明題知識點歸納
高等數學題目中比較困難的是證明題,今天凱程老師給大家整理了在整個高等數學,容易出證明題的地方。
一、數列極限的證明
數列極限的證明是數一、二的重點,特別是數二最近幾年考的非常頻繁,已經考過好幾次大的證明題,一般大題中涉及到數列極限的證明,用到的方法是單調有界準則。
二、微分中值定理的相關證明
微分中值定理的證明題歷來是考研的重難點,其考試特點是綜合性強,涉及到知識面廣,涉及到中值的等式主要是三類定理:
1.零點定理和介質定理; 2.微分中值定理;
包括羅爾定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用來處理高階導數的相關問題,考查頻率底,所以以前兩個定理為主。
3.微分中值定理
積分中值定理的作用是為了去掉積分符號。
在考查的時候,一般會把三類定理兩兩結合起來進行考查,所以要總結到現在為止,所考查的題型。
三、方程根的問題
包括方程根唯一和方程根的個數的討論。
四、不等式的證明
五、定積分等式和不等式的證明
主要涉及的方法有微分學的方法:常數變異法;積分學的方法:換元法和分布積分法。
六、積分與路徑無關的五個等價條件
這一部分是數一的考試重點,最近幾年沒涉及到,所以要重點關注。
以上是容易出證明題的地方,同學們在復習的時候重點歸納這類題目的解法。考研不懂的地方,可以關注凱程微信公眾號“凱程考研”,第一時間發布考研資訊,精心推送考研經驗,匯聚考研正能量,提供權威擇校擇專業指導,答疑、求罵醒,你需要的都在這里。
第四篇:2018考研數學:易出證明題的知識點總結
http://www.tmdps.cn/kaoyan/ 考研數學:易出證明題的知識點總結
要命的考研數學每年都會難倒一大批考研黨,各位2018考研黨可得在數學上多下功夫了。今天文都網校考研頻道整理了一下容易出證明題的知識點與小伙伴兒們分享,希望對大家有所幫助。
考試難題一般出現在高等數學,對高等數學一定要抓住重難點進行復習。高等數學題目中比較困難的是證明題,在整個高等數學,容易出證明題的地方如下:
一、數列極限的證明
數列極限的證明是數一、二的重點,特別是數二最近幾年考的非常頻繁,已經考過好幾次大的證明題,一般大題中涉及到數列極限的證明,用到的方法是單調有界準則。
二、微分中值定理的相關證明
微分中值定理的證明題歷來是考研的重難點,其考試特點是綜合性強,涉及到知識面廣,涉及到中值的等式主要是三類定理:
1.零點定理和介質定理;
2.微分中值定理;
包括羅爾定理,拉格朗日中值定理,柯西中值定理和泰勒定理,其中泰勒定理是用來處理高階導數的相關問題,考查頻率底,所以以前兩個定理為主。
3.微分中值定理
積分中值定理的作用是為了去掉積分符號。
http://www.tmdps.cn/kaoyan/ 在考查的時候,一般會把三類定理兩兩結合起來進行考查,所以要總結到現在為止,所考查的題型。
三、方程根的問題
包括方程根唯一和方程根的個數的討論。
四、不等式的證明
五、定積分等式和不等式的證明
主要涉及的方法有微分學的方法:常數變異法;積分學的方法:換元法和分布積分法。
六、積分與路徑無關的五個等價條件
這一部分是數一的考試重點,最近幾年沒設計到,所以要重點關注。
以上是容易出證明題的地方,同學們在復習的時候重點歸納這類題目的解法。
2018考研學子想要了解更多考研資訊、復習資料與備考經驗,可以搜索文都網校進入考研頻道,查看2018考研輔導課程,咨詢專業老師考研相關內容。
考研不是你一個人在戰斗,漫漫考研路上,文都網校考研老師會一直陪伴在同學們左右。祝2018考研學子備考順利,考研成功!
第五篇:考研數學高數重要知識點
考研數學高數重要知識點
摘要:從整個學科上來看,高數實際上是圍繞著、導數和積分這三種基本的運算展開的。對于每一種運算,我們首先要掌握它們主要的計算方法;熟練掌握計算方法后,再思考利用這種運算我們還可以解決哪些問題,比如會計算以后:那么我們就能解決函數的連續性,函數間斷點的分類,導數的定義這些問題。這樣一梳理,整個高數的邏輯體系就會比較清晰。
函數部分:
函數的計算方法很多,總結起來有十多種,這里我們只列出主要的:四則運算,等價無窮小替換,洛必達法則,重要,泰勒公式,中值定理,夾逼定理,單調有界收斂定理。每種方法具體的形式教材上都有詳細的講述,考生可以自己回顧一下,不太清晰的地方再翻到對應的章節看一看。
接下來,我們來說說直接通過定義的基本概念:
通過,我們定義了函數的連續性:函數在處連續的定義是,根據的定義,我們知道該定義又等價于。所以討論函數的連續性就是計算。然后是間斷點的分類,討論函數間斷點的分類,需要計算左右。
再往后就是導數的定義了,函數在處可導的定義是存在,也可以寫成存在。這里的式與前面相比要復雜一點,但本質上是一樣的。最后還有可微的定義,函數在處可微的定義是存在只與有關而與無關的常數使得時,有,其中。直接利用其定義,我們可以證明函數在一點可導和可微是等價的,它們都強于函數在該點連續。
以上就是這個體系下主要的知識點。
導數部分:
導數可以通過其定義計算,比如對分段函數在分段點上的導數。但更多的時候,我們是直接通過各種求導法則來計算的。主要的求導法則有下面這些:四則運算,復合函數求導法則,反函數求導法則,變上限積分求導。其中變上限積分求導公式本質上應該是積分學的內容,但出題的時候一般是和導數這一塊的知識點一起出的,所以我們就把它歸到求導法則里面了。
能熟練運用這些基本的求導法則之后,我們還需要掌握幾種特殊形式的函數導數的計算:隱函數求導,參數方程求導。我們對導數的要求是不能有不會算的導數。這一部分的題目往往不難,但計算量比較大,需要考生有較高的熟練度。
然后是導數的應用。導數主要有如下幾個方面的應用:切線,單調性,極值,拐點。每一部分都有一系列相關的定理,考生自行回顧一下。
這中間導數與單調性的關系是核心的考點,考試在考查這一塊時主要有三種考法:
①求單調區間或證明單調性;
②證明不等式;
③討論方程根的個數。
同時,導數與單調性的關系還是理解極值與拐點部分相關定理的基礎。另外,數學三的考生還需要注意導數的經濟學應用;數學一和數學二的考生還要掌握曲率的計算公式。
積分部分:
一元函數積分學首先可以分成不定積分和定積分,其中不定積分是計算定積分的基礎。對于不定積分,我們主要掌握它的計算方法:第一類換元法,第二類換元法,分部積分法。這三種方法要融會貫通,掌握各種常見形式函數的積分方法。
熟練掌握不定積分的計算技巧之后再來看一看定積分。定積分的定義考生需要稍微注意一下,考試對定積分的定義的要求其實就是兩個方面:會用定積分的定義計算一些簡單的;理解微元法(分割、近似、求和、取)。至于可積性的嚴格定義,考生沒有必要掌握。
然后是定積分這一塊相關的定理和性質,這中間我們就提醒考生注意兩個定理:積分中值定理和微積分基本定理。這兩個定理的條件要記清楚,證明過程也要掌握,考試都直接或間接地考過。
至于定積分的計算,我們主要的方法是利用牛頓—萊布尼茲公式借助不定積分進行計算,當然還可以利用一些定積分的特殊性質(如對稱區間上的積分)。
一般來說,只要不定積分的計算沒問題,定積分的計算也就不成問題。定積分之后還有個廣義積分,它實際上就是把積分過程和求的過程結合起來了。考試對這一部分的要求不太高,只要掌握常見的廣義積分收斂性的判別,再會進行一些簡單的計算就可以了。
會計算積分了,再來看一看定積分的應用。定積分的應用分為幾何應用和物理應用。其中幾何應用包括平面圖形面積的計算,簡單的幾何體(主要是旋轉體)體積的計算,曲線弧長的計算,旋轉曲面面積的計算。物理應用主要是一些常見物理量的計算,包括功,壓力,質心,引力,轉動慣量等。其中數學一和數學二的考生需要全部掌握;數學三的考生只需掌握平面圖形面積的計算,簡單的幾何體(主要是旋轉體)體積的計算。這一部分題目的綜合性往往比較強,對考生綜合能力要求較高。
這就是高等數學整個學科從三種基本運算的角度梳理出來的主要知識點。除此之外,考生需要掌握的知識點還有多元函數微積分,它實際上是將一元函數中的,連續,可導,可微,積分等概念推廣到了多元函數的情況,考生可以按照上面一樣的思路來總結。