一、發展結構“頭重腳輕”
重點突破基礎領域,建立自己的生態體系
賽迪研究院公布的《2018中國人工智能產業展望》提出,由于我國人工智能產業重應用技術、輕基礎理論,底層技術積累薄弱,存在“頭重腳輕”的結構不均衡問題,使我國人工智能產業猶如建立在沙灘上的城堡,根基不穩。基層技術積累薄弱使人工智能核心環節受制于人,阻礙重大科技創新,不利于國內企業參與國際競爭。從國家層面洞悉AI發展態勢,重點突破基礎領域,針對人工智能底層技術,加強對以深度學習為代表的底層算法模型的深入研究,并積極布局影響人工智能未來發展的前沿基礎理論研究。現在國內也有一些小團隊在做相關開發項目,有一定潛質,而且我們擁有全世界最多的應用開發者、非常多的應用場景、大體量的市場、蓬勃的創新創業環境等,這些都是國外比不了的。”
二、商業應用路徑不明確
瞄準市場需求,實現落地是關鍵
據億歐智庫《2018中國智能商業落地研究報告》統計,2017年中國人工智能創業公司獲得累計融資超過500億元,但商業落地百強創業公司累計收入不足100億元,90%以上人工智能企業虧損。不少業內人士擔心,國內人工智能領域存在巨大泡沫,或將迎來一波倒閉潮。《2018中國人工智能產業展望》提出,我國人工智能產業處于早期發展階段,商業化應用路徑尚不明確,商業落地痛點突出,致使近期實際商業價值變現難度較大。對初創企業而言,人工智能有門檻,創業成本較高。因此,建議企業不要太盲目,要盡快找準發力方向,而AI項目商業應用場景的落地是其成敗與否的關鍵,快速積累核心技術優勢,打造商業模式,才能做出真正有市場需求的產品,產生現金流。這也有助于人工智能行業回歸理性。據《2017年中美人工智能創投現狀與趨勢研究報告》顯示,中國智能機器人與無人機相關技術創業最為火爆;其次為語義分析、語音識別、聊天機器人等自然語言系列技術;然后是人臉識別、視頻/監控、自動駕駛、圖像識別等計算機視覺系列技術;另外,情感計算包含心理學、語義、視覺、環境感知等多種復雜應用的技術也在慢慢成長。
三、專業人才成稀缺資源
加快AI及相關學科布局,培養跨學科人才
目前,人工智能最大痛點之一是人才難得,AI被炒得很熱,稍微懂點算法的人一出來就能收到很多Offer,身價水漲船高。《2017年中美人工智能創投現狀與趨勢研究報告》指出,目前中國人工智能的人才培養已成為一個關鍵問題,人才缺失可能會對未來AI產業發展產生牽制作用。美國國家科技委員會發布的2017年人工智能全球大學排名中,前50名均位于歐美地區,我國大學無一上榜。此外,國內缺乏人工智能與傳統行業的跨界人才,不利于AI在各垂直行業應用推廣。據業內對中美AI人才分析顯示,截至2017年6月,中國共有592家人工智能公司,擁有員工約39200名。相比之下,美國人才數量是我國兩倍。據領英數據顯示,我國從業經驗10年以上的AI人才比例不足40%,而美國這一比例超過70%;美國人工智能基礎層、技術層和應用層的人才數量占比分別為22.7%、37.4%和39.9%,而中國為3.3%、34.9%和61.8%。我國需加快人工智能及相關學科布局,高校加強學科建設,依托現有人工智能相關學科,培養跨學科人才,并鼓勵高校、科研院所加大與人工智能企業、國外高校及相關機構的合作力度,打造多種形式人才培養平臺;針對人工智能芯片、基礎算法模型等重點領域,充分利用現有各類人才計劃,并設立專門通道和定向優惠政策,加大對國際頂級科學家和高層次人才的吸引力,加快人才引進效率,擴大人才引進規模;重視培養貫通人工智能基礎理論、軟硬件技術、市場產品及垂直領域應用的縱向跨界人才,以及兼顧人工智能與經濟、社會和法律等橫向跨界人才,以及兼顧人工智能與經濟、社會和法律等橫向跨界人才。