2021年高中數(shù)學(xué)人教A版(新教材)選擇性必修第二冊(cè)4.2.2 第2課時(shí) 等差數(shù)列前n項(xiàng)和的性質(zhì)及應(yīng)用
一、選擇題
1.?dāng)?shù)列{an}為等差數(shù)列,它的前n項(xiàng)和為Sn,若Sn=(n+1)2+λ,則λ的值是()
A.-2
B.-1 C.0 D.1
2.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若S10=10,S20=60,則S40=()
A.110
B.150
C.210
D.280
3.在等差數(shù)列{an}中,a1=-2
018,其前n項(xiàng)和為Sn,若-=2,則S2
018的值等于()
A.-2
018
B.-2
016
C.-2
019
D.-2
017
4.兩個(gè)等差數(shù)列{an}和{bn},其前n項(xiàng)和分別為Sn,Tn,且=,則=()
A.
B.
C.
D.
5.++++…+等于()
A.
B.
C.
D.
6.(多選題)已知數(shù)列{an}為等差數(shù)列,其前n項(xiàng)和為Sn,若Sn=S13-n(n∈N*且n<13),有以下結(jié)論,則正確的結(jié)論為()
A.S13=0
B.a(chǎn)7=0
C.{an}為遞增數(shù)列
D.a(chǎn)13=0
7.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S4=40,Sn=210,Sn-4=130,則n=()
A.12
B.14
C.16
D.18
二、填空題
8.已知等差數(shù)列{an}中,Sn為其前n項(xiàng)和,已知S3=9,a4+a5+a6=7,則S9-S6=________.9.在數(shù)列{an}中,a1=,an+1=an+(n∈N*),則a2
019的值為________.
10.?dāng)?shù)列{an}滿足a1=3,且對(duì)于任意的n∈N*都有an+1-an=n+2,則a39=________.11.(一題兩空)設(shè)項(xiàng)數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項(xiàng)之和為44,偶數(shù)項(xiàng)之和為33,則這個(gè)數(shù)列的中間項(xiàng)的值是________,項(xiàng)數(shù)是________.
12.一個(gè)等差數(shù)列的前12項(xiàng)的和為354,前12項(xiàng)中偶數(shù)項(xiàng)的和與奇數(shù)項(xiàng)的和的比為32∶27,則該數(shù)列的公差d為________.
三、解答題
13.已知兩個(gè)等差數(shù)列{an}與{bn}的前n(n>1)項(xiàng)和分別是Sn和Tn,且Sn∶Tn=(2n+1)∶(3n-2),求的值.
14.等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=10,a2為整數(shù),且Sn≤S4.(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=,求數(shù)列{bn}的前n項(xiàng)和Tn.15.設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和,且a2=15,S5=65.(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn,且Tn=Sn-10,求數(shù)列{|bn|}的前n項(xiàng)和Rn.參考答案
一、選擇題
1.答案:B
解析:等差數(shù)列前n項(xiàng)和Sn的形式為Sn=an2+bn,∴λ=-1.2.
答案:D
解析:∵等差數(shù)列{an}前n項(xiàng)和為Sn,∴S10,S20-S10,S30-S20,S40-S30也成等差數(shù)列,故(S30-S20)+S10=2(S20-S10),∴S30=150.又∵(S20-S10)+(S40-S30)=2(S30-S20),∴S40=280.故選D.3.
答案:A
解析:由題意知,數(shù)列為等差數(shù)列,其公差為1,所以=+(2
018-1)×1=-2
018+2
017=-1.所以S2
018=-2
018.4.
答案:D
解析:因?yàn)榈炔顢?shù)列{an}和{bn},所以==,又S21=21a11,T21=21b11,故令n=21有==,即=,所以=,故選D.5.
答案:C
解析:通項(xiàng)an==,∴原式=
==.6.
答案:AB
解析:對(duì)B,由題意,Sn=S13-n,令n=7有S7=S6?S7-S6=0?a7=0,故B正確.
對(duì)A,S13==13a7=0.故A正確.
對(duì)C,當(dāng)an=0時(shí)滿足Sn=S13-n=0,故{an}為遞增數(shù)列不一定正確.故C錯(cuò)誤.
對(duì)D,由A,B項(xiàng),可設(shè)當(dāng)an=7-n時(shí)滿足Sn=S13-n,但a13=-6.故D錯(cuò)誤.
故AB正確.
7.答案:B
解析:Sn-Sn-4=an+an-1+an-2+an-3=80,S4=a1+a2+a3+a4=40,所以4(a1+an)=120,a1+an=30,由Sn==210,得n=14.二、填空題
8.答案:5
解析:∵S3,S6-S3,S9-S6成等差數(shù)列,而S3=9,S6-S3=a4+a5+a6=7,∴S9-S6=5.9.答案:1
解析:因?yàn)閍n+1=an+(n∈N*),所以an+1-an==-,a2-a1=1-,a3-a2=-,…
a2
019-a2
018=-,各式相加,可得a2
019-a1=1-,a2
019-=1-,所以a2
019=1,故答案為1.10.
答案:820
解析:因?yàn)閍n+1-an=n+2,所以a2-a1=3,a3-a2=4,a4-a3=5,…,an-an-1=n+1(n≥2),上面n-1個(gè)式子左右兩邊分別相加得an-a1=,即an=,所以a39==820.11.
答案:11 7
解析:設(shè)等差數(shù)列{an}的項(xiàng)數(shù)為2n+1,S奇=a1+a3+…+a2n+1==(n+1)an+1,S偶=a2+a4+a6+…+a2n==nan+1,所以==,解得n=3,所以項(xiàng)數(shù)為2n+1=7,S奇-S偶=an+1,即a4=44-33=11為所求中間項(xiàng).
12.答案:5
解析:設(shè)等差數(shù)列的前12項(xiàng)中奇數(shù)項(xiàng)的和為S奇,偶數(shù)項(xiàng)的和為S偶,等差數(shù)列的公差為d.由已知條件,得
解得
又S偶-S奇=6d,所以d==5.]
三、解答題
13.解:法一:=======.法二:∵數(shù)列{an},{bn}均為等差數(shù)列,∴設(shè)Sn=A1n2+B1n,Tn=A2n2+B2n.又=,∴令Sn=tn(2n+1),Tn=tn(3n-2),t≠0,且t∈R.∴an=Sn-Sn-1=tn(2n+1)-t(n-1)(2n-2+1)
=tn(2n+1)-t(n-1)(2n-1)
=t(4n-1)(n≥2),bn=Tn-Tn-1=tn(3n-2)-t(n-1)(3n-5)
=t(6n-5)(n≥2).
∴==(n≥2),∴===.14.解:(1)由a1=10,a2為整數(shù)知,等差數(shù)列{an}的公差d為整數(shù).
因?yàn)镾n≤S4,故a4≥0,a5≤0,于是10+3d≥0,10+4d≤0.解得-≤d≤-,因此d=-3.所以數(shù)列{an}的通項(xiàng)公式為an=13-3n.(2)bn==.于是Tn=b1+b2+…+bn
=
于是Tn=b1+b2+…+bn
=++…+
=
=.15解:(1)設(shè)等差數(shù)列{an}的公差為d,則解得
∴an=a1+(n-1)d=17-2(n-1)=-2n+19.(2)由(1)得Sn==-n2+18n,∴Tn=-n2+18n-10.當(dāng)n=1時(shí),b1=T1=7;
當(dāng)n≥2且n∈N*時(shí),bn=Tn-Tn-1=-2n+19.經(jīng)驗(yàn)證b1≠17,∴bn=
當(dāng)1≤n≤9時(shí),bn>0;當(dāng)n≥10時(shí),bn<0.∴當(dāng)1≤n≤9時(shí),Rn=|b1|+|b2|+…+|bn|=b1+b2+…+bn=-n2+18n-10;
當(dāng)n≥10時(shí),Rn=|b1|+|b2|+…+|bn|
=b1+b2+…+b9-(b10+b11+…+bn)
=2(b1+b2+…+b9)-(b1+b2+…+b9+b10+b11+…+bn)
=-Tn+2T9=n2-18n+152,綜上所述:Rn=