第一篇:巧用二元均值不等式證明一組優美不等式
巧用二元均值不等式證明不等式
江蘇省常熟市中學
査正開 215500
*** zhazhengkai3@163.com
二元均值不等式是高中數學的重要內容,也是后繼學習的基礎。利用二元均值不等式求函數的最值和求參數的范圍問題一直是高考的重點和熱點,同時二元均值不等式也是證明不等式的利器。本文將利用二元均值不等式來巧證兩組優美不等式,供參考。題1已知a,b,c?R?,則
(1)(2)(3)
b?bc?c
aa?ab?b
ac?ac?a
a
?
c?ac?a
b
?
a?ab?b
c
?a?b?c當且僅當a?b?c時取等號
??
?
b?bc?c
ba?ab?b
b
?
c?ca?a
cb?bc?c
c
?a?b?c當且僅當a?b?c時取等號
?
?a?b?c當且僅當a?b?c時取等號
證明:(1)?a,b,c?R?b?bc?c?(b?c)?bc3?b(?c?
b?bc?c
a
2)?
b?(c?)
(b?c)4
?a?
(b?c)4a
?a?b?c
a?ab?b
c
同理?
c?ac?a
b
?b?a?c??c?a?b
三式相加,再注意等號成立條件,即得原不等式成立。
(2)證法1:仿(1)
證法2:
a?ab?b
a
?
b?bc?c
b
??c?ca?a
c
a
b
?a?bac
?b?cb
c
?c
a
???
cabca
b
c
?a??a?
bb
a
?2bb?c
?bb
b
?2cc?
c
?2a
b
a
?c
a
c
2?b2?c2? a 即
a
?
c
b
?
a
c
?b?c?a
故原不等式成立
(3)證法仿(1)(2)題2.已知a,b,c?R?,則(1)(2)(3)
a?ab?b
ac?ca?a
ab?bc?c
a
???
b?bc?c
ba?ab?b
b
???
c?ca?a
cb?bc?c
ca?ab?b
c
?3(a?b?c)當且僅當a?b?c時取等號?3(a?b?c)當且僅當a?b?c時取等號
c?ca?a
b
222
?3(a?b?c)當且僅當a?b?c時取等號
證明:(1)證法1:左=a?b?
b
?2(a?b?c)a
b
a
?b?c?cb
c
b
?c?a??3(a
?b
a
c
ac
?c)(由1(2)結論)
證法2:a2?ab?b2??
a?ab?b
a
(a?b)
?3?
(a?b)4a
同理:
(a?b)4a
b?bc?c
b
?3?
(b?c)4b
c?ca?a
c(c?a)4c
?3?
(c?a)4c
?a?a?b
(b?c)4b(c?a)4c
?b?b?c
?c?c?a
(a?b)4a
?
(b?c)4bbb
?
?a?b?c
?
a?ab?b
a
?
b?bc?c
?
c?ca?a
c
?3(a?b?c)
(2)證明仿(1)(3)證明:左=
ab
?
bcac
?
c
a
?a
c
b
?
cab
?c
a
b
?
a
cb
?
abcb
?
b
c
bca?caba??abc?
=((?
a
+
?
b
+
c)+(cab?abc
a
+
a
+
abc
c)+(bca)?3(a?b?c)
abc
?a?b?c)
bca
cab
?2c,?2a,?
?2b,?
bccab
第二篇:常用均值不等式及證明證明
常用均值不等式及證明證明
這四種平均數滿足Hn?Gn?
An?Qn
?、ana1、a2、?R?,當且僅當a1?a2??
?an時取“=”號
僅是上述不等式的特殊情形,即D(-1)≤D(0)≤D(1)≤D(2)由以上簡化,有一個簡單結論,中學常用
均值不等式的變形:
(1)對實數a,b,有a
2?b2?2ab(當且僅當a=b時取“=”號),a,b?0?2ab
(4)對實數a,b,有
a?a-b??b?a-b?
a2?b2?
2ab?0
(5)對非負實數a,b,有
(8)對實數a,b,c,有
a2?
b2?c2?ab?bc?ac
a?b?c?abc(10)對實數a,b,c,有
均值不等式的證明:
方法很多,數學歸納法(第一或反向歸納)、拉格朗日乘數法、琴生不等式法、排序
不等式法、柯西不等式法等等
用數學歸納法證明,需要一個輔助結論。
引理:設A≥0,B≥0,則?A?B??An?nA?n-1?B
n
注:引理的正確性較明顯,條件A≥0,B≥0可以弱化為A≥0,A+B≥0(用數學歸納法)。
當n=2時易證;
假設當n=k時命題成立,即
那么當n=k+1時,不妨設ak?1是則設
a1,a2,?,ak?1中最大者,kak?1?a1?a2???ak?1 s?a1?a2???ak
用歸納假設
下面介紹個好理解的方法琴生不等式法
琴生不等式:上凸函數f?x?,x1,x2,?,xn是函數f?x?在區間(a,b)內的任意n個點,設f?x??lnx,f
?x?為上凸增函數所以,在圓中用射影定理證明(半徑不小于半弦)
第三篇:均值不等式證明
均值不等式證明
一、已知x,y為正實數,且x+y=1求證
xy+1/xy≥17/
41=x+y≥2√(xy)
得xy≤1/4
而xy+1/xy≥
2當且僅當xy=1/xy時取等
也就是xy=1時
畫出xy+1/xy圖像得
01時,單調增
而xy≤1/4
∴xy+1/xy≥(1/4)+1/(1/4)=4+1/4=17/4
得證
繼續追問:
拜托,用單調性誰不會,讓你用均值定理來證
補充回答:
我真不明白我上面的方法為什么不是用均值不等式證的法二:
證xy+1/xy≥17/4
即證4(xy)2-17xy+4≥0
即證(4xy-1)(xy-4)≥0
即證xy≥4,xy≤1/4
而x,y∈R+,x+y=
1顯然xy≥4不可能成立
∵1=x+y≥2√(xy)
∴xy≤1/4,得證
法三:
∵同理0
xy+1/xy-17/4
=(4x2y2-4-17xy)/4xy
=(1-4xy)(4-xy)/4xy
≥0
∴xy+1/xy≥17/4
試問怎樣叫“利用均值不等式證明”,是說只能用均值不等式不能穿插別的途徑?!
二、已知a>b>c,求證:1/(a-b)+1/(b-c)+1/(c-a)>0
a-c=(a-b)+(b-c)≥2√(a-b)*(b-c)
于是c-a≤-2√(a-b)*(b-c)<0
即:1/(c-a)≥-1/【2√(a-b)*(b-c)】
那么
1/(a-b)+1/(b-c)+1/(c-a)
≥1/(a-b)+1/(b-c)-1/【2√(a-b)*(b-c)】
≥2/【√(a-b)*(b-c)】-1/【2√(a-b)*(b-c)】=(3/2)/【2√(a-b)*(b-c)】>0
三、1、調和平均數:Hn=n/(1/a1+1/a2+...+1/an)
2、幾何平均數:Gn=(a1a2...an)^(1/n)
3、算術平均數:An=(a1+a2+...+an)/n4、平方平均數:Qn=√(a1^2+a2^2+...+an^2)/n這四種平均數滿足Hn≤Gn≤An≤Qn的式子即為均值不等式。
概念:
1、調和平均數:Hn=n/(1/a1+1/a2+...+1/an)
2、幾何平均數:Gn=(a1a2...an)^(1/n)
3、算術平均數:An=(a1+a2+...+an)/n4、平方平均數:Qn=√
這四種平均數滿足Hn≤Gn≤An≤Qn
a1、a2、…、an∈R+,當且僅當a1=a2=…=an時勸=”號
均值不等式的一般形式:設函數D(r)=^(1/r)(當r不等于0時);
(a1a2...an)^(1/n)(當r=0時)(即D(0)=(a1a2...an)^(1/n))
則有:當r注意到Hn≤Gn≤An≤Qn僅是上述不等式的特殊情形,即D(-1)≤D(0)≤D(1)≤D(2)
由以上簡化,有一個簡單結論,中學常用2/(1/a+1/b)≤√ab≤(a+b)/2≤√
方法很多,數學歸納法(第一或反向歸納)、拉格朗日乘數法、琴生不等式法、排序不等式法、柯西不等式法等等
用數學歸納法證明,需要一個輔助結論。
引理:設A≥0,B≥0,則(A+B)^n≥A^n+nA^(n-1)B。
注:引理的正確性較明顯,條件A≥0,B≥0可以弱化為A≥0,A+B≥0,有興趣的同學可以想想如何證明(用數學歸納法)。
原題等價于:((a1+a2+…+an)/n)^n≥a1a2…an。
當n=2時易證;
假設當n=k時命題成立,即
((a1+a2+…+ak)/k)^k≥a1a2…ak。那么當n=k+1時,不妨設a(k+1)是a1,a2,…,a(k+1)中最大者,則
ka(k+1)≥a1+a2+…+ak。
設s=a1+a2+…+ak,{/(k+1)}^(k+1)
={s/k+/}^(k+1)
≥(s/k)^(k+1)+(k+1)(s/k)^k/k(k+1)用引理
=(s/k)^k*a(k+1)
≥a1a2…a(k+1)。用歸納假設
下面介紹個好理解的方法
琴生不等式法
琴生不等式:上凸函數f(x),x1,x2,...xn是函數f(x)在區間(a,b)內的任意n個點,則有:f≥1/n*
設f(x)=lnx,f(x)為上凸增函數
所以,ln≥1/n*=ln
即(x1+x2+...+xn)/n≥(x1*x2*...*xn)^(1/n)
在圓中用射影定理證明(半徑不小于半弦)。
第四篇:不等式證明,均值不等式
1、設a,b?R,求證:ab?(ab)?aba?b2?abba2、已知a,b,c是不全相等的正數,求證:a(b2?c2)?b(c2?a2)?c(a2?b2)>6abc
3、(a?b?c)(1119??)? a?bb?cc?a24、設a,b?R?,且a?b?1,求證:(a?)?(b?)?
5、若a?b?1,求證:asinx?bcosx?
16、已知a?b?1,求證:a?b?
7、a,b,c,d?R求證:1<?441a21b225 2221 8abcd+++<2 a?b?db?c?ac?d?bd?a?c11118、求證2?2?2???2<2 123n
1111????<1
9、求證:?2n?1n?22n10、求下列函數的最值
(1)已知x>0,求y?2?x?
(2)已知x>2,求y?x?4的最大值(-2)x1的最小值(4)x?
2111(3)已知0<x<,求y?x(1?2x)的最大值()221611、若正數a,b滿足ab?(a?b)?1則a?b的最小值是()
(2?2333)
12、已知正數a,b求使不等式(a?b)?k(a?b)成立的最小k值為()(4)
13、求函數y?
14、二次函數f(x)?x?ax?x?a的兩根x1,x2滿足0<x1<x2< 1,求a的取值范圍()(0,15、關于x的方程x?2m(x?3)?2m?14?0有兩個實數根,且一個大于1,一個小于1,則m的取值范圍是()(m<-
22221)
416、關于x的方程mx?2x?1?0至少有一個負根,則m的取值范圍是(m?1)
17、關于x的方程2kx?2x?3k?2?0有兩個實數根,一個小于1,另一個大于1,求實數k的取值范圍(k>0或k<-4)
218、為使方程x2?2px?1?0的兩根在(-2,2)內,求p的取值范圍(-<p<
19、函數f(x)?ax2?x?1有零點,則a的取值范圍是(a?
20、判斷函數f(x)?x-
21、已知方程x?22343)41)41?1的零點的個數(一個)x3?95?x?k在??1,1?上有實數根,求實數k的取值范圍(??,?)2?162?
22、已知方程7x2?(m?13)x?m2?m?2?0有兩個實數根,且一根在(0,1),一根在(1,2)上,求m的取值范圍((?2,?1)?(3,4))
23、關于的方程2ax?x?1?0在(0,1)內恰有一解,求實數a的取值范圍(1,??)
24、若關于的方程lg(x
x2x2?20x)?lg(8x?6a?3)?0有唯一實根,求a的取值范圍
第五篇:用均值不等式證明不等式
用均值不等式證明不等式
【摘要】:不等式的證明在競賽數學中占有重要地位.本文介紹了用均值不等式證明幾個不等式,我們在證明不等式時,常用到均值不等式。要求我們要認真分析題目,本文通過幾個國內外競賽數學的試題,介紹用均值不等式證明初等不等式的基本方法及技巧。
【關鍵詞】:均值不等式;不等式;方法;技巧
均值不等式
設 a1、a2、?、an 是 n 個 正數,則不等式H(a)?G(a)?A(a)?Q(a)稱為均值不等式[1].其中
H(a)?
n
1a
1?1a
2???
1an,G(a)?
a1a2a1a?an,A(n)?
a1?a2???an
n
22,2
Q(n)?
a1?a2???an
n
?、an 的調和不等式,幾何平均值,算術平均值,均方根平均分別稱為 a1、a2、值.
例1設a1、a2、…、an均為正,記
?(n)?n(a1?a2???an
n
?
a1a2?an)
試證:?(n)??(n?1),并求等號成立的條件.
證明由所設條件,得
?(n)??(n?1)
=n(a1?a2???an
n
?
n
a1a2?an)?(n?1)(a1?a2??an?
1n?1
?
n?1
a1a2?an?1)
=a1?a2???an?nna1a2?an?(a1?a2???an?1)?(n?1)n?1a1a2?an?1
=an?(n?1)(a1a2?an?1)n?1?n(a1a2?an)n,n?1
???(a1a2?an?1)n?1,有 將G(a)?A(a)應用于n個正數:an,(a1a2?an?1)
?????????????????
n?1個
an?(n?1)(a1a2?an?1)n?1
n
?(a1a2?an)n,即
an?(n?1)(a1a2?an?1)n?1?n(a1a2?an)n.
所以?(n)??(n?1),當且僅當an?(a1a2?an?1)立.
n?1,即ann?1?a1a2?an?時等號成1
此題不只是公式的直接應用.代表了均值不等式中需要挖掘信
?、an 的一類題. 息找a1、a2、例2設x?y?z?0,求證:6(x3?y3?z3)2?(x2?y2?z2)3. 證明當x?y?z?0時不等式顯然成立.
除此情況外,x、y、z中至少有一正一負.不妨設xy?0,因為
z??(x?y),所以
I?6(x?y?z)?6[x?y?(x?y)]?6[?3xy(x?y)]?54xyz
.
若由此直接用G(a)?A(a)(n?3),只能得到較粗糙的不等式
I?54xyz?54(x?y?z
2)?2(x?y?z),3222
3如果改用下面的方法,用G(a)?A(a),便得
I?54xyz
222
?216
xy2
?
xy2
?z
?xy?xy2???z?
??(2z2?2xy)3,?216???3????
再注意到x2?y2?(x?y)2?2xy?z2?2xy,因而2z2?2xy?x2?y2?z2,于是即得欲證的不等式.
此題解題的關鍵在于構造a1、a2、?、an通常需要拓寬思路多次嘗試,此類也屬均值不等式的常考類題. 例3設x?0,證明:2
x
?2
x
?2?2
x
.(第16屆全蘇數學競賽試題[2])
證明此不等式的外形有點像均值不等式. 由G(a)?A(a),得
x?2
x
x
?2
x
?2?2
x
?2
x
?2?2,又
x?2
x
1111
?(x12x4)2?x6,即得要證的不等式.
結語
有些不等式則可以利用某個已經證明成立的不等式來證明(因此多熟悉幾個比較常見的不等式是有好處的);有些不等式還要用數學歸納法來證明等等.而且在一個題目的證明過程中,也往往不止應用一種方法,而需要靈活運用各種方法.因此,要培養和提高自己的證題能力。
參考文獻
[1]陳傳理等編.數學競賽教程 [M].北京:高等教育出版設,1996,(10):
133-134.
[2]常庚哲等編.高中數學競賽輔導講座[M].上海:上海科學技術出版社,1987.38-49