第一篇:初中數(shù)學圓的幾何復習題
圓復習測試
班級________學號_________姓名_________________
一、填空(每題2分,共30分)
1、在⊙O中,AB是直徑,CD是弦,若AB⊥CD于E,且AE=2,BE=8,則CD=______.2、在圓內接四邊形ABCD中,若AB=BC=CD,AC是對角線,∠ACD=30°,則∠
CAD=______°.3、如圖1,∠APC=30°,弧BD等于30°,則弧AC等于_______°,∠AEB=_____°.4、過⊙O內一點P,的最長弦是10,最短的弦是6,那么OP的長為____________.5、圓內相交的兩弦中,一弦長是20,且被交點平分,另一弦被交點分成兩線段之比
是1:4,另一弦長是____________.6、在圓內接四邊形ABCD中,∠A:∠B:∠C=5:2:1,則∠D=_______.7、若PA、PB分別切⊙O于A、B,∠APB=60°,OP=12,則OA=______,PB=________.8、⊙O的內接正方形ABCD的邊長為6,E是BC的中點,AE的延長線交⊙O于F,則EF=______
9、△ABC中,∠A=80°,若O1是內心,則∠BO1C=_____;若O2是外心,則∠
BO2C=______.10、如圖2,AB=BC=CD,過點D作B的切線DE,E為切點,過C點作AD的垂線
交DE于F,則EF:FD=___________(填比值).11、如圖3,⊙O中弦AD、CE相交于點F,過點A作⊙O的切線與EC延長線相交
于點B,若AB=BF=FD,BC=1,CE=8,則AF=______________.12、如圖4,PAB、PCD是⊙O的兩條割線。且PA=AB,CD=3PC,則PC:PA=______.二、選擇題(每題3分,共27分)
1、下列命題中假命題是()
A.相等的圓心角所對的弧相等B.圓內接四邊形對角互補
C.一條弧的對的圓心角等于它所對的圓周角的2倍D.直徑所對的圓周角是直角
2、圓的外切平行四邊形為()
A.矩形B.菱形C.等腰梯形D.平行四邊形
3、已知⊙O的半徑為6cm,⊙O的一條弦AB的長為63cm,則弦AB所對的圓周角是()
A.30°B.60°C.30°或150°D.60°或120°
4、若兩半徑分別是R和r,圓心距是d,且d?r?R?2dr,則兩圓位置關系是()
2A.外切或內切B.外離C.相交D.內含
5、已知兩圓的半徑分別是方程x2?11x?2?0的兩根,圓心距為12,那么兩圓公切
線的條數(shù)是()
A.1B.2C.3D.
46、半徑為為25cm的⊙O中,弦AB=40cm,則此弦和所的對弧的中點的距離是()
A.10cmB.15cmC.40cmD.10cm和40cm7、圓心在x軸上的兩圓相交于A、B兩點,A點的坐標為(,2),則B點的坐標是()
A.,?2)B.(?3,2)C.(?3,?2)D.(2,3)
8、如圖5,ABCD為⊙O的內接四邊形,AC平分∠BAD,并與BD交于E點,CF切⊙O于C點并與AD的延長線交于F,圖中的四個三角形:①△CAF;②△ABC;③△ABD;④△BEC,其中與△CDF一定相似的是()
A.①②③B.②③④C.①③④D.①②④
9、以長為a的線段AB為斜邊的Rt△ABC的直角頂點C的軌跡是()
a的一條直線;
2aB.與AB平行且到AB距離為的二條直線; 2
aC.以AB的中點為圓心,為半徑的一個圓; 2A.與AB平行且到AB距離為
D.以AB為直徑的一個圓(A、B兩點除外)。
三、計算題(18分)
1、已知:⊙O的外切等腰梯形的中位線長為10,兩底長的差為12,求⊙O的半徑。
2、如圖,AB是⊙O的直徑,PCM與⊙O相切于點C,且∠ACM=57°,求P的度數(shù)。
3、如圖,△ABC中,∠C=90°,點O在BC邊上,半圓O過點C,切AB于點D,交BC于E,又BE=1,BD=2,求AD的長。
三、證明題(25分)
1、如圖,已知:AB是⊙O的直徑,BC是⊙O的切線,切點為B,OC∥弦AD。求證:DC是⊙O的切線。
2、如圖:PA切⊙O于點A,PBC交⊙O于點B、C,M是弧BC的中點,AM交BC于點D。求證:PD?PB?PC3、如圖,已知:ADB、AEC是⊙O的兩條割線,PA∥ED交CB的延長線于點P,PE
切⊙O于點F。
求證:PA=PF。
附加題
已知:如圖,在△ABC中,AB=AC,以AB為直徑作圓分別交BC、AC于D、G,作DE⊥AC于E,連結BE交⊙O于F。
求證:(1)DE為⊙O的切線;
(2)DG=DC;
(3)AE·EC=BE·
EF
第二篇:中考數(shù)學幾何證明復習題
幾何證明練習
1.如圖13-1,一等腰直角三角尺GEF的兩條直角邊與正方形ABCD的兩條邊分別重合在一起.現(xiàn)正方形ABCD保持不動,將三角尺GEF繞斜邊EF的中點O(點O也是BD中點)按順時針方向旋轉.
(1)如圖13-2,當EF與AB相交于點M,GF與BD相交于點N時,通過觀察或測量BM,F(xiàn)N的長度,猜想BM,F(xiàn)N滿足的數(shù)量關系,并證明你的猜想;
(2)若三角尺GEF旋轉到如圖13-3所示的位置時,線段FE的延長線與AB的延長線相交于點M,線
段BD的延長線與GF的延長線相交于點N,此時,(1)中的猜想還成立嗎?若成立,請證明;若
不成立,請說明理由.
A(E)圖13-1 圖13-
2圖13-
32.將兩塊全等的含30°角的三角尺如圖(1)擺放在一起,它們的較短直角邊長為3.(1)將△ECD沿直線l向左平移到圖(2)的位置,使E點落在AB上,則CC′=______;
(2)將△ECD繞點C逆時針旋轉到圖(3)的位置,使點E落在AB上,則△ECD繞點C旋轉的度數(shù)=______;
(3)將△ECD沿直線AC翻折到圖(4)的位置,ED′與AB相交于點F,求證AF=FD′
A A A A
E E’ E’D’ F’
l B(2)
(3)D’(4)
3.填空或解答:點B、C、E在同一直線上,點A、D在直線CE的同側,AB=AC,EC=ED,∠BAC=∠CED,直線AE、BD交于點F。
(1)如圖①,若∠BAC=60°,則∠AFB=_________;如圖②,若∠BAC=90°,則∠AFB=_________;(2)如圖③,若∠BAC=α,則∠AFB=_________(用含α的式子表示);
(3)將圖③中的△ABC繞點C旋轉(點F不與點A、B重合),得圖④或圖⑤。在圖④中,∠AFB與∠α的數(shù)量關系是________________;在圖⑤中,∠AFB與∠α的數(shù)量關系是________________。請你任選其中一個結論證明。
D
4.用兩個全等的正方形ABCD和CDFE拼成一個矩形ABEF,把一個足夠大的直角三角尺的直角頂點與這個矩形的邊AF的中點D重合,且將直角三角尺繞點D按逆時針方向旋轉.
(1)當直角三角尺的兩直角邊分別與矩形ABEF的兩邊BE,EF相交于點G,H時,如圖甲,通過觀察或測量BG與EH的長度,你能得到什么結論?并證明你的結論.
(2)當直角三角尺的兩直角邊分別與BE的延長線,EF的延長線相交于點G,H時(如圖乙),你在圖甲中得到的結論還成立嗎?簡要說明理由.
圖②(第5題圖)
圖①
A圖③
B圖④
(第5題圖)
圖⑤
H
A B
F A B
F E
G
C 圖甲
C 圖乙
5.已知∠AOB=90,在∠AOB的平分線OM上有一點C,將一個三角板的直角頂點與C重合,它的兩條直角邊分別與OA、OB(或它們的反向延長線)相交于點D、E.
當三角板繞點C旋轉到CD與OA垂直時(如圖1),易證:2OC.
當三角板繞點C旋轉到CD與OA不垂直時,在圖
2、圖3這兩種情況下,上述結論是否還成立?若成立,請
給予證明;若不成立,線段OD、OE、OC之間又有怎樣的數(shù)量關系?請寫出你的猜想,不需證明。
6.把一副三角板如圖甲放置,其中∠ACB?∠DEC?90,∠A?45,∠D?30,斜邊AB?6cm,DC?7cm.把三角板DCE繞點C順時針旋轉15°得到△D1CE1(如圖乙).這時AB與CD1相交于點O,與
D1E1相交于點F.
(1)求∠OFE1的度數(shù);(2)求線段AD1的長;
(3)若把三角形D1CE1繞著點C順時針再旋轉30°得△D2CE2,這時點B在△D2CE2的內部、外部、還是邊上?說明理由.
A
C
(甲)
E(乙)
1B
D
A
D
17.如圖,在△ABC 中,點O是AC邊上的一個動點,過點O作直線MN∥BC,設MN交∠BCA的角平分線于點E,交∠BCA的外角平分線于點F.(1)求證:EO=FO;(2)當點O運動到何處時,四邊形AECF是矩形?并證明你的結論.
MB
E
OC
FN
(第19題圖)
8.如圖甲,在△ABC中,∠ACB為銳角.點D為射線BC上一動點,連接AD,以AD為一邊且在AD的右側作正方形ADEF. 解答下列問題:
(1)如果AB=AC,∠BAC=90o.
①當點D在線段BC上時(與點B不重合),如圖乙,線段CF、BD之間的位置關系為,數(shù)量關系為.
②當點D在線段BC的延長線上時,如圖丙,①中的結論是否仍然成立,為什么?
(2)如果AB≠AC,∠BAC≠90o,點D在線段BC上運動.
試探究:當△ABC滿足一個什么條件時,CF⊥BC(點C、F重合除外)?畫出相應圖形,并說明理由.(畫圖不寫作法)
(3)若AC
=BC=3,在(2)的條件下,設正方形ADEF的邊DE與線段CF相交于點P,求線段CP
F
長的最大值.
E
A F
CBBECE
圖甲 圖乙 圖丙
第8題圖
9.如圖,矩形紙片ABCD中,AB?8,將紙片折疊,使頂點B落在邊AD的E點上,折痕的一端G點在邊
BC上,BG?10.
(1)當折痕的另一端F在AB邊上時,如圖(1),求△EFG的面積;(2)當折痕的另一端F在AD邊上時,如圖(2),證明四邊形BGEF為菱形,并求出折痕GF的長.
H(A)
E(B)E(B)D
A D
C B C
G
圖(1)圖(2)
10.如圖,在邊長為4的正方形ABCD中,點P在AB上從A向B運動,連接DP交AC于點Q.(1)試證明:無論點P運動到AB上何處時,都有△ADQ≌△ABQ;(2)當點P在AB上運動到什么位置時,△ADQ的面積是正方形ABCD面積的1; 6
(3)若點P從點A運動到點B,再繼續(xù)在BC上運動到點C,在整個運動過程中,當點P 運動到什么
位置時,△ADQ恰為等腰三角形.
11.如圖15,平行四邊形ABCD中,AB?AC,AB?
1,BC?.對角線AC,BD相交于點O,將直線AC繞點O順時針旋轉,分別交BC,AD于點E,F(xiàn).(1)證明:當旋轉角為90時,四邊形ABEF是平行四邊形;
(2)試說明在旋轉過程中,線段AF與EC總保持相等;
(3)在旋轉過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如果能,說明理由并求出此時AC繞點O順時針旋轉的度數(shù).
FD
B C圖15
12.已知∠MAN,AC平分∠MAN。
⑴在圖1中,若∠MAN=120°,∠ABC=∠ADC=90°,求證:AB+AD=AC;
⑵在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則⑴中的結論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;⑶在圖3中:
①若∠MAN=60°,∠ABC+∠ADC=180°,則AB+AD=____AC;②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,則AB+AD=____AC(用含α的三角函數(shù)表示),并給出證明。
M
MM
CCC
DDD
ABNABABN N
13.已知,將兩塊等腰直角三角板ABC和ADE如圖放置,再以CE,CB為邊作平行四邊形CEHB,連DC,CH。a)如圖1,連接DH,請你判斷△DHC的形狀,猜想CH與CD之間有何數(shù)量關系?請說明理由。b)將圖1中的△ADE繞A點逆時針旋轉45°得圖2,請你猜想CH與CD之間的數(shù)量關
系。
c)將圖1中的△ADE繞A點順時針旋轉a(0°<a<45°)得圖3,(2)中的猜想是否還成立,若
成立,請給出證明;不成立,說明理由。
14.如圖13—1,以△ABC的邊AB,AC為直角邊作等腰△ABE和△ACD,M是BC的中點.(1)若∠BAC=90°,如圖13—1.請你猜想線段DE,AM的數(shù)量關系,并證明你的結論;(2)若∠BAC≠
90°.
①如圖13—2.請你猜想線段DE,AM的數(shù)量關系,并證明你的結論; ②如圖13—3.請你判斷線段DE,AM的數(shù)量關系.A D
B
D
E圖13—3圖13—1 圖13—2
第三篇:初中數(shù)學幾何證明題
初中數(shù)學幾何證明題
分析已知、求證與圖形,探索證明的思路。
對于證明題,有三種思考方式:
(1)正向思維。對于一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細講述了。
(2)逆向思維。顧名思義,就是從相反的方向思考問題。運用逆向思維解題,能使學生從不同角度,不同方向思考問題,探索解題方法,從而拓寬學生的解題思路。這種方法是推薦學生一定要掌握的。在初中數(shù)學中,逆向思維是非常重要的思維方式,在證明題中體現(xiàn)的更加明顯,數(shù)學這門學科知識點很少,關鍵是怎樣運用,對于初中幾何證明題,最好用的方法就是用逆向思維法。如果你已經(jīng)上初三了,幾何學的不好,做題沒有思路,那你一定要注意了:從現(xiàn)在開始,總結做題方法。同學們認真讀完一道題的題干后,不知道從何入手,建議你從結論出發(fā)。例如:可以有這樣的思考過程:要證明某兩條邊相等,那么結合圖形可以看出,只要證出某兩個三角形相等即可;要證三角形全等,結合所給的條件,看還缺少什么條件需要證明,證明這個條件又需要怎樣做輔助線,這樣思考下去……這樣我們就找到了解題的思路,然后把過程正著寫出來就可以了。這是非常好用的方法,同學們一定要試一試。
(3)正逆結合。對于從結論很難分析出思路的題目,同學們可以結合結論和已知條件認真的分析,初中數(shù)學中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們三角形某邊中點,我們就要想到是否要連出中位線,或者是否要用到中點倍長法。給我們梯形,我們就要想到是否要做高,或平移腰,或平移對角線,或補形等等。正逆結合,戰(zhàn)無不勝。
幾何證明題入門難,證明題難做,是許多初中生在學習中的共識,這里面有很多因素,有主觀的、也有客觀的,學習不得法,沒有適當?shù)慕忸}思路則是其中的一個重要原因。掌握證明題的一般思路、探討證題過程中的數(shù)學思維、總結證題的基本規(guī)律是求解幾何證明題的關鍵。在這里結合自己的教學經(jīng)驗,談談自己的一些方法與大家一起分享。
一要審題。很多學生在把一個題目讀完后,還沒有弄清楚題目講的是什么意思,題目讓你求證的是什么都不知道,這非常不可齲我們應該逐個條件的讀,給的條件有什么用,在腦海中打個問號,再對應圖形來對號入座,結論從什么地方入手去尋找,也在圖中找到位置。
二要記。這里的記有兩層意思。第一層意思是要標記,在讀題的時候每個條件,你要在所給的圖形中標記出來。如給出對邊相等,就用邊相等的符號來表示。第二層意思是要牢記,題目給出的條件不僅要標記,還要記在腦海中,做到不看題,就可以把題目復述出來。
三要引申。難度大一點的題目往往把一些條件隱藏起來,所以我們要會引申,那么這里的引申就需要平時的積累,平時在課堂上學的基本知識點掌握牢固,平時訓練的一些特殊圖形要熟記,在審題與記的時候要想到由這些條件你還可以得到哪些結論(就像電腦一下,你一點擊開始立刻彈出對應的菜單),然后在圖形旁邊標注,雖然有些條件在證明時可能用不上,但是這樣長期的積累,便于以后難題的學習。
四要分析綜合法。分析綜合法也就是要逆向推理,從題目要你證明的結論出發(fā)往回推理??纯唇Y論是要證明角相等,還是邊相等,等等,如證明角相等的方法有(1.對頂角相等2.平行線里同位角相等、內錯角相等3.余角、補角定理4.角平分線定義5.等腰三角形6.全等三角形的對應角等等方法。然后結合題意選出其中的一種方法,然后再考慮用這種方法證明還缺少哪些條件,把題目轉換成證明其他的結論,通常缺少的條件會在第三步引申出的條件和題目中出現(xiàn),這時再把這些條件綜合在一起,很條理的寫出證明過程。
五要歸納總結。很多同學把一個題做出來,長長的松了一口氣,接下來去做其他的,這個也是不可取的,應該花上幾分鐘的時間,回過頭來找找所用的定理、公理、定義,重新審視這個題,總結這個題的解題思路,往后出現(xiàn)同樣類型的題該怎樣入手。
第四篇:初中數(shù)學幾何模型
初中數(shù)學幾何模型大全+經(jīng)典題型(含答案)
全等變換
平移:平行等線段(平行四邊形)
對稱:角平分線或垂直或半角
旋轉:相鄰等線段繞公共頂點旋轉
對稱全等模型
說明:以角平分線為軸在角兩邊進行截長補短或者作邊的垂線,形成對稱全等。兩邊進行邊或者角的等量代換,產(chǎn)生聯(lián)系。垂直也可以做為軸進行對稱全等。
對稱半角模型
說明:上圖依次是45°、30°、22.5°、15°及有一個角是30°直角三角形的對稱(翻折),翻折成正方形或者等腰直角三角形、等邊三角形、對稱全等。
旋轉全等模型
半角:有一個角含1/2角及相鄰線段
自旋轉:有一對相鄰等線段,需要構造旋轉全等
共旋轉:有兩對相鄰等線段,直接尋找旋轉全等
中點旋轉:倍長中點相關線段轉換成旋轉全等問題
旋轉半角模型
說明:旋轉半角的特征是相鄰等線段所成角含一個二分之一角,通過旋轉將另外兩個和為二分之一的角拼接在一起,成對稱全等。
自旋轉模型
構造方法:
遇60度旋60度,造等邊三角形
遇90度旋90度,造等腰直角
遇等腰旋頂點,造旋轉全等
遇中點旋180度,造中心對稱
共旋轉模型
說明:旋轉中所成的全等三角形,第三邊所成的角是一個經(jīng)??疾斓膬热?。通過“8”字模型可以證明。
模型變形
說明:模型變形主要是兩個正多邊形或者等腰三角形的夾角的變化,另外是等腰直角三角形與正方形的混用。
當遇到復雜圖形找不到旋轉全等時,先找兩個正多邊形或者等腰三角形的公共頂點,圍繞公共頂點找到兩組相鄰等線段,分組組成三角形證全等。
中點旋轉:
說明:兩個正方形、兩個等腰直角三角形或者一個正方形一個等腰直角三角形及兩個圖形頂點連線的中點,證明另外兩個頂點與中點所成圖形為等腰直角三角形。證明方法是倍長所要證等腰直角三角形的一直角邊,轉化成要證明的等腰直角三角形和已知的等腰直角三角形(或者正方形)公旋轉頂點,通過證明旋轉全等三角形證明倍長后的大三角形為等腰直角三角形從而得證。
幾何最值模型
對稱最值(兩點間線段最短)
對稱最值(點到直線垂線段最短)
說明:通過對稱進行等量代換,轉換成兩點間距離及點到直線距離。
旋轉最值(共線有最值)
說明:找到與所要求最值相關成三角形的兩個定長線段,定長線段的和為最大值,定長線段的差為最小值。
剪拼模型
三角形→四邊形
四邊形→四邊形
說明:剪拼主要是通過中點的180度旋轉及平移改變圖形的形狀。
矩形→正方形
說明:通過射影定理找到正方形的邊長,通過平移與旋轉完成形狀改變
正方形+等腰直角三角形→正方形
面積等分
旋轉相似模型
說明:兩個等腰直角三角形成旋轉全等,兩個有一個角是300角的直角三角形成旋轉相似。
推廣:兩個任意相似三角形旋轉成一定角度,成旋轉相似。第三邊所成夾角符合旋轉“8”字的規(guī)律。
相似模型
說明:注意邊和角的對應,相等線段或者相等比值在證明相似中起到通過等量代換來構造相似三角形的作用。
說明:(1)三垂直到一線三等角的演變,三等角以30度、45度、60度形式出現(xiàn)的居多。
(2)內外角平分線定理到射影定理的演變,注意之間的相同與不同之處。另外,相似、射影定理、相交弦定理(可以推廣到圓冪定理)之間的比值可以轉換成乘積,通過等線段、等比值、等乘積進行代換,進行證明得到需要的結論。
說明:相似證明中最常用的輔助線是做平行,根據(jù)題目的條件或者結論的比值來做相應的平行線。
初中數(shù)學經(jīng)典幾何題(附答案)
經(jīng)典難題(一)
1、已知:如圖,O是半圓的圓心,C、E是圓上的兩點,CD⊥AB,EF⊥AB,EG⊥CO.
求證:CD=GF.(初二)
A
F
G
C
E
B
O
D2、已知:如圖,P是正方形ABCD內點,∠PAD=∠PDA=150.
A
P
C
D
B
求證:△PBC是正三角形.(初二)
3、如圖,已知四邊形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分別是AA1、BB1、CC1、DD1的中點.
求證:四邊形A2B2C2D2是正方形.(初二)
D2
C2
B2
A2
D1
C1
B1
C
B
D
A
A1
A
N
F
E
C
D
M
B4、已知:如圖,在四邊形ABCD中,AD=BC,M、N分別是AB、CD的中點,AD、BC的延長線交MN于E、F.
求證:∠DEN=∠F.
經(jīng)典難題(二)
1、已知:△ABC中,H為垂心(各邊高線的交點),O為外心,且OM⊥BC于M.
(1)求證:AH=2OM;
·
A
D
H
E
M
C
B
O
(2)若∠BAC=600,求證:AH=AO.(初二)
·
G
A
O
D
B
E
C
Q
P
N
M2、設MN是圓O外一直線,過O作OA⊥MN于A,自A引圓的兩條直線,交圓于B、C及D、E,直線EB及CD分別交MN于P、Q.
求證:AP=AQ.(初二)
3、如果上題把直線MN由圓外平移至圓內,則由此可得以下命題:
設MN是圓O的弦,過MN的中點A任作兩弦BC、DE,設CD、EB分別交MN于P、Q.
·
O
Q
P
B
D
E
C
N
M
·
A
求證:AP=AQ.(初二)
4、如圖,分別以△ABC的AC和BC為一邊,在△ABC的外側作正方形ACDE和正方形CBFG,點P是EF的中點.
P
C
G
F
B
Q
A
D
E
求證:點P到邊AB的距離等于AB的一半.(初二)
經(jīng)典難題(三)
1、如圖,四邊形ABCD為正方形,DE∥AC,AE=AC,AE與CD相交于F.
A
F
D
E
C
B
求證:CE=CF.(初二)
2、如圖,四邊形ABCD為正方形,DE∥AC,且CE=CA,直線EC交DA延長線于F.
求證:AE=AF.(初二)
E
D
A
C
B
F3、設P是正方形ABCD一邊BC上的任一點,PF⊥AP,CF平分∠DCE.
D
F
E
P
C
B
A
求證:PA=PF.(初二)
O
D
B
F
A
E
C
P4、如圖,PC切圓O于C,AC為圓的直徑,PEF為圓的割線,AE、AF與直線PO相交于B、D.求證:AB=DC,BC=AD.(初三)
經(jīng)典難題(四)
1、已知:△ABC是正三角形,P是三角形內一點,PA=3,PB=4,PC=5.
A
P
C
B
求:∠APB的度數(shù).(初二)
2、設P是平行四邊形ABCD內部的一點,且∠PBA=∠PDA.
求證:∠PAB=∠PCB.(初二)
P
A
D
C
B3、設ABCD為圓內接凸四邊形,求證:AB·CD+AD·BC=AC·BD.(初三)
C
B
D
A4、平行四邊形ABCD中,設E、F分別是BC、AB上的一點,AE與CF相交于P,且
AE=CF.求證:∠DPA=∠DPC.(初二)
F
P
D
E
C
B
A
經(jīng)典難題(五)
1、設P是邊長為1的正△ABC內任一點,L=PA+PB+PC,求證:≤L<2.
2、已知:P是邊長為1的正方形ABCD內的一點,求PA+PB+PC的最小值.
A
C
B
P
D
A
P
C
B
A
C
B
P
D3、P為正方形ABCD內的一點,并且PA=a,PB=2a,PC=3a,求正方形的邊長.
E
D
C
B
A4、如圖,△ABC中,∠ABC=∠ACB=800,D、E分別是AB、AC上的點,∠DCA=300,∠EBA=200,求∠BED的度數(shù).
經(jīng)典難題(一)
1.如下圖做GH⊥AB,連接EO。由于GOFE四點共圓,所以∠GFH=∠OEG,即△GHF∽△OGE,可得==,又CO=EO,所以CD=GF得證。
2.如下圖做△DGC使與△ADP全等,可得△PDG為等邊△,從而可得
△DGC≌△APD≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG=150
所以∠DCP=300,從而得出△PBC是正三角形
3.如下圖連接BC1和AB1分別找其中點F,E.連接C2F與A2E并延長相交于Q點,連接EB2并延長交C2Q于H點,連接FB2并延長交A2Q于G點,由A2E=A1B1=B1C1=
FB2,EB2=AB=BC=FC1,又∠GFQ+∠Q=900和
∠GEB2+∠Q=900,所以∠GEB2=∠GFQ又∠B2FC2=∠A2EB2,可得△B2FC2≌△A2EB2,所以A2B2=B2C2,又∠GFQ+∠HB2F=900和∠GFQ=∠EB2A2,從而可得∠A2B2
C2=900,同理可得其他邊垂直且相等,從而得出四邊形A2B2C2D2是正方形。
4.如下圖連接AC并取其中點Q,連接QN和QM,所以可得∠QMF=∠F,∠QNM=∠DEN和∠QMN=∠QNM,從而得出∠DEN=∠F。
經(jīng)典難題(二)
1.(1)延長AD到F連BF,做OG⊥AF,又∠F=∠ACB=∠BHD,可得BH=BF,從而可得HD=DF,又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM
(2)連接OB,OC,既得∠BOC=1200,從而可得∠BOM=600,所以可得OB=2OM=AH=AO,得證。
3.作OF⊥CD,OG⊥BE,連接OP,OA,OF,AF,OG,AG,OQ。
由于,由此可得△ADF≌△ABG,從而可得∠AFC=∠AGE。
又因為PFOA與QGOA四點共圓,可得∠AFC=∠AOP和∠AGE=∠AOQ,∠AOP=∠AOQ,從而可得AP=AQ。
4.過E,C,F點分別作AB所在直線的高EG,CI,F(xiàn)H??傻肞Q=。
由△EGA≌△AIC,可得EG=AI,由△BFH≌△CBI,可得FH=BI。
從而可得PQ=
=,從而得證。
經(jīng)典難題(三)
1.順時針旋轉△ADE,到△ABG,連接CG.由于∠ABG=∠ADE=900+450=1350
從而可得B,G,D在一條直線上,可得△AGB≌△CGB。
推出AE=AG=AC=GC,可得△AGC為等邊三角形。
∠AGB=300,既得∠EAC=300,從而可得∠A
EC=750。
又∠EFC=∠DFA=450+300=750.可證:CE=CF。
2.連接BD作CH⊥DE,可得四邊形CGDH是正方形。
由AC=CE=2GC=2CH,可得∠CEH=300,所以∠CAE=∠CEA=∠AED=150,又∠FAE=900+450+150=1500,從而可知道∠F=150,從而得出AE=AF。
3.作FG⊥CD,F(xiàn)E⊥BE,可以得出GFEC為正方形。
令AB=Y,BP=X,CE=Z,可得PC=Y-X。
tan∠BAP=tan∠EPF==,可得YZ=XY-X2+XZ,即Z(Y-X)=X(Y-X),既得X=Z,得出△ABP≌△PEF,得到PA=PF,得證。
經(jīng)典難題(四)
1.順時針旋轉△ABP
600,連接PQ,則△PBQ是正三角形。
可得△PQC是直角三角形。
所以∠APB=1500。
2.作過P點平行于AD的直線,并選一點E,使AE∥DC,BE∥PC.可以得出∠ABP=∠ADP=∠AEP,可得:
AEBP共圓(一邊所對兩角相等)。
可得∠BAP=∠BEP=∠BCP,得證。
3.在BD取一點E,使∠BCE=∠ACD,既得△BEC∽△ADC,可得:
=,即AD?BC=BE?AC,①
又∠ACB=∠DCE,可得△ABC∽△DEC,既得
=,即AB?CD=DE?AC,②
由①+②可得:
AB?CD+AD?BC=AC(BE+DE)=
AC·BD,得證。
4.過D作AQ⊥AE,AG⊥CF,由==,可得:
=,由AE=FC。
可得DQ=DG,可得∠DPA=∠DPC(角平分線逆定理)。
第五篇:初中數(shù)學幾何怎么樣學
初中數(shù)學幾何怎么樣學?
怎樣學好初中數(shù)學
怎樣學好數(shù)學,是剛步入初中的同學面臨的共同問題。大家在小學學習數(shù)學時,往往偏重于模仿,依賴性較強,獨立思考和自學的能力不夠,很少去探究知識間的聯(lián)系和應用。到了中學,這種學習方法必須改變。那么如何學好數(shù)學呢?下面從“四多”談一談我的建議。
一、多看
主要是指認真閱讀數(shù)學課本。許多同學沒有養(yǎng)成這個習慣,把課本當成練習冊;也有一部分同學不知怎么閱讀,這是他們學不好數(shù)學的主要原因之一。一般地,閱讀可以分以下三個層次:
1.課前預習閱讀。預習課文時,要準備一張紙、一支筆,將課本中的關鍵詞語、產(chǎn)生的疑問和需要思考的問題隨手記下,對定義、公理、公式、法則等,可以在紙上進行簡單的復述。重點知識可在課本上批、劃、圈、點。這樣做,不但有助于理解課文,還能幫助我們在課堂上集中精力聽講,有重點地聽講。
2.課堂閱讀。預習時,我們只對所要學的教材內容有了一個大概的了解,不一定都已深透理解和消化吸收,因此有必要對預習時所做的標記和批注,結合老師的講授,進一步閱讀課文,從而掌握重點、關鍵,解決預習中的疑難問題。
3.課后復習閱讀。課后復習是課堂學習的延伸,既可解決在預習和課堂中仍然沒有解決的問題,又能使知識系統(tǒng)化,加深和鞏固對課堂學習內容的理解和記憶。一節(jié)課后,必須先閱讀課本,然后再做作業(yè);一個單元后,應全面閱讀課本,對本單元的內容前后聯(lián)系起來,進行綜合概括,寫出知識小結,進行查缺補漏。
二、多想
主要是指養(yǎng)成思考的習慣,學會思考的方法。獨立思考是學習數(shù)學必須具備的能力,同學們在學習時,要邊聽(課)邊想,邊看(書)邊想,邊做(題)邊想,通過自己積極思考,深刻理解數(shù)學知識,歸納總結數(shù)學規(guī)律,靈活解決數(shù)學問題,這樣才能把老師講的、課本上寫的變成自己的知識。
三、多做
主要是指做習題,學數(shù)學一定要做習題,并且應該適當?shù)囟嘧鲂?。做習題的目的首先是熟練和鞏固學習的知識;其次是初步啟發(fā)靈活應用知識和培養(yǎng)獨立思考的能力;第三是融會貫通,把不同內容的數(shù)學知識溝通起來。在做習題時,要認真審題,認真思考,應該用什么方法做?能否有簡便解法?做到邊做邊思考邊總結,通過練習加深對知識的理解。
四、多問
是指在學習過程中要善于發(fā)現(xiàn)和提出疑問,這是衡量一個學生學習是否有進步的重要標志之一。有經(jīng)驗的老師認為:能夠發(fā)現(xiàn)和提出疑問的學生才更有希望獲得學習的成功;反之,那種一問三不知,自己又提不出任何問題的學生,是無法學好數(shù)學的。那么,怎樣才能發(fā)現(xiàn)和提出問題呢?第一,要深入觀察,逐步培養(yǎng)自己敏銳的觀察能力;第二,要肯動腦筋,不愿意動腦筋,不去思考,當然發(fā)現(xiàn)不了什么問題,也提不出疑問。發(fā)現(xiàn)問題后,經(jīng)過自己的獨立思考,問題仍得不到解決時,應當虛心向別人請教,向老師、同學、家長,向一切在這個問題上比自己強的人請教。不要有虛榮心,不要怕別人看不起。只有善于提出問題、虛心學習的人,才有可能成為真正的學習上的強者。
學習方法是靈活多樣、因人而異的,能不斷改進自己的學習方法,是你學習能力不斷提高的表現(xiàn)。