第一篇:初中數學幾何題訓練題
1.如圖,已知:點B、F、C、E在一條直線上,FB=CE,AC=DF.能否由上面的已知條件證明AB∥ED?如果能,請給出證明;如果不能,請從下列三個條件中選擇一個合適的條件,添加到已知條件中,使AB∥ED成立,并給出證明.供選擇的三個條件(請從其中選擇一個):
①AB=ED;
②BC=EF;
③∠ACB=∠DFE.
2.如圖,在△ABC中,D是BC邊上的點(不與B,C重合),F,E分別是AD及其延長線上的點,CF∥BE.請你添加一個條件,使△BDE≌△CDF(不再添加其它線段,不再標注或使用其他字母),并給出證明.
(1)你添加的條件是:
3.如圖,分別過點C、B作△ABC的BC邊上的中線AD及其延長線的垂線,垂足分別為E、F.求證:BF=CE.
4.如圖10,已知與相交于點,連接,. ,(1)圖中還有幾對全等三角形,請你一一列舉;(2)求證:.
5.如圖,在△ABC中,∠ACB=900,AC=BC,CE⊥BE,CE與AB相交于點F,AD⊥CF于點D,且AD平分∠FAC,請寫出圖中兩對全等三角形,并選擇其中一對加以證明。
6.如圖10,在四邊形ABCD中,AD∥BC,E為CD的中點,連結AE、BE,BE⊥AE,延長AE交BC的延長線于點F.求證:(1)FC=AD;
(2)AB=BC+AD
第二篇:初中數學幾何經典題:測試題訓練及答案
初中數學幾何經典題
1、三角形ABC中,AD為中線,P為AD上任意一點,過p的直線交AB于M.交ac于N,若AN=AM,求證PM/PN=AC/AB 證明:過P點作BC的平行線交AB,AC分別于M',N'點;再分別過M,M'兩點分別作AC的平行線分別交AD(或延長線)于P',A'兩點。
由M'N'平行BC得:AC/AN'=AB/AM',即AC/AB=AN'/AM'.且M'P=N'P 由三角形AN'P全等三角形A'M'P得:M'A'=AN'.所以,AC/AB=A'M'/AM' 由三角形AM'A'相似三角形AMP'得:AM/AM'=MP'/A'M',即A'M'/AM'=MP'/AM 所以:AC/AB=MP'/AM 由三角形MP'P相似三角形ANP得:MP'/AN=MP/PN 而AN=AM 所以:MP'/AM=MP/PN 所以:AC/AB=MP/PN
1題圖
2題圖
2、在三角形BCD中,BC=BD,延長BC至A,延長BD至E,使AC=BE,連接AD,AE,AD=AE,求BCD為等邊
證明:過點A作CD的平行線交BE的延長線于F點。則∠BDC=∠F=∠BCD=∠A,即∠A=∠F.又因為:四邊形AFDC是梯形 所以:AC=DF=FE+DE 而AC=BD+DE 所以:BD=FE 又因為:AD=AE,∠BDA=∠FEA 所以:三角形ABD和三角形AFE全等 所以:∠B=∠F 所以:∠B=∠BCD=∠BDC=60° 所以:三角形BCD是等邊三角形。
3、三角形ABC中若圓O在變化過程中都落在三角形ABC內(含相切), A為60度,AC為8,AB為10,X為未知數,是AE的長.圓O與AB,AC相切,圓O與AB的切點為E, X的范圍是? 解:如圖,當元O與三角形ABC三條邊都相切時,x的值最大。此時: 過B作BD垂直AC,則可求得BD=5(√3),DC=3 根據勾股定理求得BC=2(√21)
設元O與邊AB,BC,CA的切點分別為E,F,G,且AE=x,BE=y,CF=z,則有方程組: x+y=10,x+z=8,y+z=2(√21), 解這個方程組得:x=9-(√21)因此:x的范圍是(0,9-√21 ]
4、已知三角形ABE中 C、D分別為AB、BE上的點,且AD=AE,三角形BCD為等邊三角形,求證BC+DE=AC 證明:過D點作BE的垂線DF,交AB于F點,過A點作BE的垂線AH,H是垂足,再過F點作AH的垂線FG,G是垂足。則:四邊形DHGF是矩形,有FG=DH.而由△ADE是等腰三角形得知DH=HE, 所以:FG=(1/2)DE.又由于角B=60°,所以:∠BAH=30° 所以:FG=(1/2)AF 所以:AF=DE 而在直角△BDF中,由于∠B=∠BDC=60° 所以:∠CDF=∠CFD=30° 所以:CF=CD=BC 所以:BC+DE=CF+AF 即:BC+DE=AC
5、已知在三角形ABC中,AD是BC邊上的中線,E是AD上的一點,且BE=AC,延長BE交AC與F,求證AF=EF 證明:如圖,連接EC,取EC的中點G,AE的中點H,連接DG,HG 則:GH=DG 所以:角1=∠2,而∠1=∠4,∠2=∠3=∠5 所以;∠4=∠5 所以:AF=EF.6、在△ABC中,D是BC邊中點,O是AD上一點,BO,CO的延長線分別交AC,AB于E,F 求證:EF平行BC。
證明:分別過B,C兩點作AD的平行線分別交CF,BE的延長線于M,N兩點。則: 四邊形MBCN是平行四邊形。
由MB‖AO‖CN,得:OF/FM=OA/BM,OE/EN=OA/CN.(相似三角形對應邊成比例)而BM=CN 所以:OF/FM=OE/EN 所以:MN‖EF 而MN‖BC 所以:EF‖BC.7、已知:在△ABC和△A'B'C'中,AB=A'B', AC=A'C'.AD,A'D'分別是△ABC和△A'B'C'的中線,且AD=A'D'.求證:△ABC≌△A'B'C' 證明:分別過B,B'點作BE‖AC,B'E'‖A'C'.交AD,A'D'的延長線于E,E'點。則:△ADC≌△EDB, △A'D'C'≌△E'D'B' 所以:AC=EB,A'C'=E'B'; AD=DE, A'D'=D'E'.所以:BE=B'E', AE=A'E' 所以:△ABE≌△A'B'E' 所以:角E=∠E'
角BAD=角B'A'D' 所以:角BAC=角B'A'C' 所以:△ABC≌△A'B'C'
8、四邊形ABCD為菱形,E,F為AB,BC的中點,EP⊥CD,∠BAD=110o,求∠FPC的度數
解:
連接BD,交AC于O點,過A作CD的垂線,垂足為G,過O作BC的平行線交CD于H.因為:角DAB=110°,∠GAB=90° 所以:∠DAG=20°。
由∠AOD=∠AGD=90°知AOGD四點共元,所以∠DOG=∠DAG=20° 由OH‖BC‖AD知:∠HOC=∠DAC=(1/2)∠BAD=55° 所以:∠GOH=90°-20°-55°=15° 而:∠OHG=∠BCD=110° 所以:∠OGH=180°-15°-110°=55° 由于:不難證明∠FPC=∠OGH(過程略)所以:∠FPC=55°
9、已知:E是正方形ABCD內的一點,且∠DAE=∠ADE=15°,求證:△EBC是等邊三角形
證明:過E點作AB的平行線EP,交BC于P點,交AD于Q點,以D為角頂點,DA為角的一邊,向正方形ABCD內作∠ADF=30°,角的一邊交EP于F點。設DQ=√3,則:FQ=1, DF=2, AD=2√3,PC=PB=AQ=√3,由角平分線定理得:QE/EF=QD/DF, 即:QE/(1-QE)=(√3)/2 解得:QE=2(√3)-3 所以:PE=PQ-QE=2(√3)-[2(√3)-3]=3 在△EPC中由勾股定理得:EC=√(PE2+PC2)=2√3 而:BE=CE 所以:BC=BE=CE=2√3 即:△EBC是等邊三角形。
10、在三角形ABC中,經過BC的中點M,有垂直相交于M的兩條直線,它們與AB,AC分別交于D、E,求證,BD+CE>DE 證明:
如圖,延長EM到E',使E'M=ME,則:DE=DE', 由△BE'M≌△CEM得:CE=BE' 在△BE'D中,有BD+BE'>DE' 等量代換得:BD+CE>DE
11、AB是等腰直角三角形ABC的斜邊,若點M在邊AC上,點N在邊BC上,沿直線MN把△MCN翻折,使點C落在AB上設其落點
(1).如圖一,當是AB的中點時,求證:PA/PB=CM/CN(2).如圖二當P不是AB中點時,結論PA/PB=CM/CN是否成立?若成立,請給出證明(1)、證明:因為P是AB中點,所以:AP/PB=1, 因為:P點是C點沿直線MN折疊的落點,所以:MN垂直平分PC, 所以:CM=MP, 由AP=BP得∠ACP=∠BCP=45° 所以:CM=MN 所以:CM/CN=1 所以:PA/PB=CM/CN
(2)、結論仍然成立。證明:
過P點分別作AC,BC的垂線PE,PD.E,D是垂足。過C作CF垂直AB,F是垂足。則: S△APC=(1/2)AC*PE=(1/2)AP*CF S△BPC=(1/2)BC*PD=(1/2)BP*CF 而AC=BC 所以:PE/PD=AP/BP
由∠MCN=∠MPN=90°知MCNP四點共元 所以:∠PME=∠PND 所以:RT△PEM∽RT△PDN 所以:PE/PD=PM/PN 而PM=MC,PN=NC 所以:PE/PD=MC/NC 所以:AP/BP=MC/NC
12、三角形ABC中,BC=5,M和I分別是三角形ABC的重心和內心,若MI平行于BC,則AB+AC的值是多少? 解:
設內心到三邊的距離為r,BC邊上的高為AE=h, 如圖。因為MI‖BC,AM=2MD 所以:h=3r 而:S△ABC=(1/2)BC*h=(5/2)h=(15/2)r S△ABC=S△ABI+S△BCI+S△ACE=(1/2))r(AB+AC+5)所以:(15/2)r=(1/2))r(AB+AC+5)
解得:AB+AC=10
13、已知圓O是三角形ABC的外接圓 CD是AB邊上的高,AE是圓O的直徑。求證:AC*BC=AE*CD 證明:
以E為圓心,以BC長為半徑畫弧交元O于F點。連接EF,FA.則:EF=BC,∠AFE=90° 所以:∠EAF=∠DAC(弦相等,弦所對的圓周角相等)所以:RT△ADC∽RT△EFA 所以:AC/AE=CD/EF 即AC*EF=AE*CD 而:EF=BC 所以:AC*BC=AE*CD
14、已知:D.E位△ABC內的兩點 求證:AB+AC>BD+DE+EC 證明:設直線DE交AB于F,交AC于G,則: 在△AFG中,有AF+AG>FD+DE+EG 在△BFD中,有BF+FD>BD 在△EGC中,有EG+GC>EC 所以:三個不等式兩邊相加得AF+AG+BF+FD+EG+GC>FD+DE+EG+BD+EC 即:AB+AC>DE+BD+EC
15、在三角形ABC中,BD,CE是邊AC,AB上的中點,BD與CE相交于點O,BO與OD的長度有什么關系?BC邊上的中線是否一定過點O?為什么? 答:BO=2DO,BC邊上的中線過O點。
證明:連接AO,設M,N分別是BO,CO的中點,連接EM,DN,則: EM平行并等于AO的一半,DN平行并等于AO的一半 所以:EM平行并等于DN 所以:四邊形EMND是平行四邊形 所以:MO=OD 所以:BM=MO=OD 所以:BO=2DO
延長AO交BC于G,延長DN交BC于H,延長EM交BC于Q,則: 由AG‖EQ‖DH,BM=MO=OD得知BQ=QG=GH=HC 所以;BG=GC 所以;BC邊上的中線過O點。
16、在△ABC中,AB,BE是△ABC的高,交于點H,邊BC,AC的垂直平分線FO,GO相交于點O 求證:OF=1/2AH,OG=1/2BH 證明:連接CO并延長交△ABC的外接圓于M點。則:OC是元的直徑。OF=(1/2)BM, ∠MBC=∠MAC=∠ADB=∠BEA=90° 所以:BM‖AD,AM‖BE 所以:四邊形MBHA是平行四邊形 所以:BM=AH 所以:OF=(1/2)AH.同理可證:OG=(1/2)BH.17、三角形中線分別為9 12 15 求三角形面積 解:過F點作AE的平行線,交DC于H點,則:FH=(1/2)AM=5, MH=3,(三角形中位線定理,三中線交點分中線性質)而:MF=4 所以:三角形FMH是直角三角形,即BM⊥DC.所以:S△BCD=(1/2)*9*8=36, 所以:S△ADC=S△BCD=36(同高等底的兩個三角形面積相等)所以:S△ABC=72
18、在△ABC中∠A=90°,AD⊥BC于D,M是AD的中點,延長BM交AC于E,過E作EF⊥BC于F。求證:EF2=AE*CE 證明:如圖,延長BA,FE交于N.因為:AD‖FN 所以:AM/NE=BM/BE,MD/EF=BM/BE 所以:AM/NE=MD/EF 而:AM=DM 所以:NE=EF
由于:角NAC=∠NFC=90° 所以:AFCN四點共圓 所以:AE*EC=EF*EN
所以:EF^2=AE*EC
19、已知E為平行四邊形ABCD的邊BC上的任一點,DE延長線交AB延長線與F,求證S△ABE=S△CEF。
證明:分別過C,E兩點作AB的垂線CH,EG,H,G是垂足。設BE=m,EC=n 由△BFE∽△CDE得:BF/CD=m/n.即BF/(BF+CD)=m/(m+n)也就是BF/AF=m/(m+n)(因為AB=CD,有AF=BF+CD)由RT△BEG∽RT△BCH得:HC/GE=(m+n)/m 所以:(BF/CD)*(HC/GE)=1 而:S△AFE=(1/2)AF*GE
S△BFC=(1/2)BF*CH 所以:S△BFC/S△AFE=BF*HC/AF*GE=1 所以:S△BFC=S△AFE 兩邊同時減去S△BFE得:S△ABE=S△CEF。
20、等腰直角三角形,角A為90°,D,E兩點為斜邊上的動點,角DAE=45°,當D合B重合或E和C重合時,線段DE的長度等于BD+EC 當不重合時,DE 以A點為頂點,AC為一邊向△ABC的外側作∠CAB',使∠CAB'=∠DAB.截取AB'=AD.又因為:AC=AB.所以:△CAB'≌△BAD 所以:B'C=DB 因為:∠BAC=90°,∠DAE=45°。所以:∠BAD+∠CAE=45°。 所以:∠B'AE=∠B'AC+∠CAE=45°=∠EAD.又AD=AB',AE=AE 所以:△B'AE≌△DAE 所以:DE=EB' 在△ECB'中,有EB' 重合時,證明(略) 1.已知:△ABC. 求證:∠A+∠B+∠C=180°. 圖 27.1.3J解∶ 做AC∥BE ∴∠A=∠1∠C=∠ 2∵∠ABC+∠1+∠2=180° ∴∠A+∠B+∠C=180° 2.求證: 三角形的一個外角等于和它不相鄰的兩個內角的和. 已知: 如圖27.1.4,∠CBD是△ABC的一個外角. 求證: ∠CBD=∠A+∠C. 圖 27.1.43.已知: 如圖27.2.2,在△ABC和△AˊBˊCˊ中,∠ACB=∠AˊCˊBˊ=90°,AB=AˊBˊ,AC=AˊCˊ. 求證: △ABC≌△AˊBˊCˊ. 圖 27.2.2 4.已知: 如圖27.2.3,OC是∠AOB平分線,點P是OC上任意一點,PD⊥OA,PE⊥OB,點D、E 為垂足. 求證: PD=PE. 分析 圖中有兩個直角三角形△PDO與△PEO,容易看出滿足(A.A.S.) 定理的條件. 圖 27.2.35.已知:如圖27.2.4,QD⊥OA,QE⊥OB,點D、E為垂足,QD=QE.求證:點Q在∠AOB的平 分線上. 圖 27.2.4 6.已知: MN⊥AB,垂足為點C,AC=BC,點P是直線MN上任意一點. 求證: PA=PB. 平行四邊形判定定理1 一組對邊平行且相等的四邊形是平行四邊形. 7.已知:四邊形ABCD中,AB∥CD,AB=CD. 求證:四邊形ABCD是平行四邊形. 分析 要證明四邊形ABCD是平行四邊形,只要證明另一組對邊平行,因此,可以連結其中一條對角線,然后證明內錯角相等. 圖 27.3.1 初二幾何難題訓練題 1,如圖矩形ABCD對角線AC、BD交于O,E F分別是OA、OB的中點(1)求證△ADE≌△BCF:(2)若AD=4cm,AB=8cm,求CF的長。 2,如圖,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC,對角線AC⊥BD,垂足為F,過點F作EF∥AB,交AD于點E,CF=4cm.(1)求證:四邊形ABFE是等腰梯形;(2)求AE的長. 3,如圖,用三個全等的菱形ABGH、BCFG、CDEF拼成平行四邊形ADEH,連接AE與BG、CF分別交于P、Q,(1)若AB=6,求線段BP的長; (2)觀察圖形,是否有三角形與△ACQ全等?并證明你的結論 4,已知點E,F在三角形ABC的邊AB所在的直線上,且AE=BF,FH//EG//AC,FH、EC分別交邊BC所在的直線于點H,G 1 如果點E。F在邊AB上,那么EG+FH=AC,請證明這個結論 2 如果點E在AB上,FH,AC的長度關系是什么? 點F在AB的延長線上,那么線段EG,3 如果點E在AB的反向延長線上,點F在AB的延長線上,那么線段EG,FH,AC的長度關系是什么? 請你就1,2,3的結論,選擇一種情況給予證明 5,如圖是一個常見鐵夾的側面示意圖,OA,OB表示鐵夾的兩個面,C是軸,CD⊥OA于點D,已知DA=15mm,DO=24mm,DC=10mm,我們知道鐵夾的側面是軸對稱圖形,請求出A、B兩點間的距離. 6,如圖,在平行四邊形ABCD中,過點B作BE⊥CD,垂足為E,連接AE,F為AE上一點,且∠BFE=∠C,(1)求證:△ABF∽△EAD ;(2)若AB=5,AD=3,∠BAE=30°,求BF的長 7,如圖,AB與CD相交于E,AE=EB,CE=ED,D為線段FB的中點,GF與AB相交于點G,若CF=15cm,求GF之長。 8,如圖1,已知四邊形ABCD是菱形,G是線段CD上的任意一點時,連接BG交AC于F,過F作FH∥CD交BC于H,可以證明結論FH/AB =FG /BG 成立.(考生不必證明)(1)探究:如圖2,上述條件中,若G在CD的延長線上,其它條件不變時,其結論是否成立?若成立,請給出證明;若不成立,請說明理由;(2)計算:若菱形ABCD中AB=6,∠ADC=60°,G在直線CD上,且CG=16,連接BG交AC所在的直線于F,過F作FH∥CD交BC所在的直線于H,求BG與FG的長. (3)發現:通過上述過程,你發現G在直線CD上時,結論FH /AB =FG /BG 還成立嗎? 9,如圖,已知直角梯形ABCD中,AD∥BC,∠B=90°,AB=12cm,BC=8cm,DC=13cm,動點P沿A→D→C線路以2cm/秒的速度向C運動,動點Q沿B→C線路以1cm/秒的速度向C運動.P、Q兩點分別從A、B同時出發,當其中一點到達C點時,另一點也隨之停止.設運動時間為t秒,△PQB的面積為ycm2.(1)求AD的長及t的取值范圍; (2)當1.5≤t≤t0(t0為(1)中t的最大值)時,求y關于t的函數關系式; (3)請具體描述:在動點P、Q的運動過程中,△PQB的面積隨著t的變化而變化的規律. 初二幾何難題訓練題 1,如圖矩形ABCD對角線AC、BD交于O,E F分別是OA、OB的中點(1)求證△ADE≌△BCF:(2)若AD=4cm,AB=8cm,求CF的長。證明:(1)在矩形ABCD中,AC,BD為對角線,∴AO=OD=OB=OC ∴∠DAO=∠ADO=∠CBO=∠BCO ∵E,F為OA,OB中點 ∴AE=BF=1/2AO=1/2OB ∵AD=BC, ∠DAO=∠CBO,AE=BF ∴△ADE≌△BCF(2)過F作MN⊥DC于M,交AB于N ∵AD=4cm,AB=8cm ∴BD=4根號5 ∵BF:BD=NF:MN=1:4 ∴NF=1,MF=3 ∵EF為△AOB中位線 ∴EF=1/2AB=4cm ∵四邊形DCFE為等腰梯形 ∴MC=2cm ∴FC=根號13cm。 2,如圖,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC,對角線AC⊥BD,垂足為F,過點F作EF∥AB,交AD于點E,CF=4cm.(1)求證:四邊形ABFE是等腰梯形;(2)求AE的長. (1)證明:過點D作DM⊥AB,∵DC∥AB,∠CBA=90°,∴四邊形BCDM為矩形. ∴DC=MB. ∵AB=2DC,∴AM=MB=DC. ∵DM⊥AB,∴AD=BD. ∴∠DAB=∠DBA. ∵EF∥AB,AE與BF交于點D,即AE與FB不平行,∴四邊形ABFE是等腰梯形.(2)解:∵DC∥AB,∴△DCF∽△BAF. ∴CD AB =CF AF =1 2 . ∵CF=4cm,∴AF=8cm. ∵AC⊥BD,∠ABC=90°,在△ABF與△BCF中,∵∠ABC=∠BFC=90°,∴∠FAB+∠ABF=90°,∵∠FBC+∠ABF=90°,∴∠FAB=∠FBC,∴△ABF∽△BCF,即BF CF =AF BF,∴BF2=CF?AF. ∴BF=4 2 cm. ∴AE=BF=4 2 cm. 3,如圖,用三個全等的菱形ABGH、BCFG、CDEF拼成平行四邊形ADEH,連接AE與BG、CF分別交于P、Q,(1)若AB=6,求線段BP的長; (2)觀察圖形,是否有三角形與△ACQ全等?并證明你的結論 解:(1)∵菱形ABGH、BCFG、CDEF是全等菱形 ∴BC=CD=DE=AB=6,BG∥DE ∴AD=3AB=3×6=18,∠ABG=∠D,∠APB=∠AED ∴△ABP∽△ADE ∴BP DE =AB AD∴BP=AB AD ?DE=6 18 ×6=2;(2) ∵菱形ABGH、BCFG、CDEF是全等的菱形 ∴AB=BC=EF=FG ∴AB+BC=EF+FG ∴AC=EG ∵AD∥HE ∴∠1=∠2 ∵BG∥CF ∴∠3=∠4 ∴△EGP≌△ACQ. 4,已知點E,F在三角形ABC的邊AB所在的直線上,且AE=BF,FH//EG//AC,FH、EC分別交邊BC所在的直線于點H,G 1 如果點E。F在邊AB上,那么EG+FH=AC,請證明這個結論 2 如果點E在AB上,FH,AC的長度關系是什么? 點F在AB的延長線上,那么線段EG,3 如果點E在AB的反向延長線上,點F在AB的延長線上,那么線段EG,FH,AC的長度關系是什么? 請你就1,2,3的結論,選擇一種情況給予證明 解:(1)∵FH∥EG∥AC,∴∠BFH=∠BEG=∠A,△BFH∽△BEG∽△BAC. ∴BF/FH=BE/EG=BA/AC ∴BF+BE/FH+EG=BA/AC 又∵BF=EA,∴EA+BE/FH+EG=AB/AC ∴AB/FH+EG=AB/AC. ∴AC=FH+EG. (2)線段EG、FH、AC的長度的關系為:EG+FH=AC. 證明(2):過點E作EP∥BC交AC于P,∵EG∥AC,∴四邊形EPCG為平行四邊形. ∴EG=PC. ∵HF∥EG∥AC,∴∠F=∠A,∠FBH=∠ABC=∠AEP. 又∵AE=BF,∴△BHF≌△EPA. ∴HF=AP. ∴AC=PC+AP=EG+HF. 即EG+FH=AC. 5,如圖是一個常見鐵夾的側面示意圖,OA,OB表示鐵夾的兩個面,C是軸,CD⊥OA于 點D,已知DA=15mm,DO=24mm,DC=10mm,我們知道鐵夾的側面是軸對稱圖形,請求出A、B兩點間的距離. 解:連接AB,同時連接OC并延長交AB于E,因為夾子是軸對稱圖形,故OE是對稱軸,∴OE⊥AB,AE=BE,∴Rt△OCD∽Rt△OAE,∴OC:OA = CD:AE AE= =15,∵AB=2AE ∴ AB =30(mm)∵OC2=OD2+CD2 ∴OC =26,∴.(8分)答:AB兩點間的距離為30mm. 6,如圖,在平行四邊形ABCD中,過點B作BE⊥CD,垂足為E,連接AE,F為AE上一點,且∠BFE=∠C,(1)求證:△ABF∽△EAD ;(2)若AB=5,AD=3,∠BAE=30°,求BF的長 解: (1)∵四邊形ABCD是平行四邊形 ∴AB∥CD,AD∥BC ∴∠BAE=∠AED,∠D+∠C=180° 且∠BFE+∠AFB=180° 又∵∠BFE=∠C ∴∠D=∠AFB ∵∠BAE=∠AED,∠D=∠AFB ∴△ABF∽△EAD(2)∵∠BAE=30°,且AB∥CD,BE⊥CD ∴△ABEA為Rt△,且∠BAE=30° 又 ∵AB=4 ∴AE=3分之8倍根號3 7,如圖,AB與CD相交于E,AE=EB,CE=ED,D為線段FB的中點,GF與AB相交于點G,若CF=15cm,求GF之長。 解∵CE=DE BE=AE,∴△ACE≌△BDE ∴∠ACE=∠BDE ∵∠BDE+∠FDE=180° ∴∠FDE+∠ACE=180° ∴AC∥FB ∴△AGC∽△BGF ∵D是FB中點 DB=AC ∴AC:FB=1:2 ∴CG:GF=1:2 ; 設GF為x 則CG為15-X GF=CF/3C×2=10cm 8,如圖1,已知四邊形ABCD是菱形,G是線段CD上的任意一點時,連接BG交AC于F,過F作FH∥CD交BC于H,可以證明結論FH/AB =FG /BG 成立.(考生不必證明)(1)探究:如圖2,上述條件中,若G在CD的延長線上,其它條件不變時,其結論是否成立?若成立,請給出證明;若不成立,請說明理由;(2)計算:若菱形ABCD中AB=6,∠ADC=60°,G在直線CD上,且CG=16,連接BG交AC所在的直線于F,過F作FH∥CD交BC所在的直線于H,求BG與FG的長. (3)發現:通過上述過程,你發現G在直線CD上時,結論FH /AB =FG /BG 還成立嗎? 解:(1)結論FH AB =FG BG 成立 證明:由已知易得FH∥AB,∴FH/ AB =HC/ BC,∵FH∥GC,HC BC =FG BG∴FH/ AB =FG/ BG .(2)∵G在直線CD上,∴分兩種情況討論如下: ①G在CD的延長線上時,DG=10,如圖1,過B作BQ⊥CD于Q,由于四邊形ABCD是菱形,∠ADC=60°,∴BC=AB=6,∠BCQ=60°,. 又由FH∥GC,可得FH/ GC =BH /BC,而△CFH是等邊三角形,∴BH=BC-HC=BC-FH=6-FH,∴FH 16 =6-FH 6,∴FH=48 11,由(1)知FH/ AB =FG/ BG,②G在DC的延長線上時,CG=16,如圖2,過B作BQ⊥CG于Q,∵四邊形ABCD是菱形,∠ADC=60°,∴BC=AB=6,∠BCQ=60°. . 又由FH∥CG,可得FH/ GC =BH/ BC,∴FH 16 =BH 6 . ∵BH=HC-BC=FH-BC=FH-6,9,如圖,已知直角梯形ABCD中,AD∥BC,∠B=90°,AB=12cm,BC=8cm,DC=13cm,動點P沿A→D→C線路以2cm/秒的速度向C運動,動點Q沿B→C線路以1cm/秒的速度向C運動.P、Q兩點分別從A、B同時出發,當其中一點到達C點時,另一點也隨之停止.設運動時間為t秒,△PQB的面積為ycm2.(1)求AD的長及t的取值范圍; (2)當1.5≤t≤t0(t0為(1)中t的最大值)時,求y關于t的函數關系式; (3)請具體描述:在動點P、Q的運動過程中,△PQB的面積隨著t的變化而變化的規律.第三篇:七年級數學幾何題
第四篇:初二數學幾何綜合訓練題及答案
第五篇:初二數學幾何綜合訓練題及答案