第一篇:奧數學習起步晚如何備戰小升初
奧數學習起步晚如何備戰小升初
奧數目前已經成為小升初中的一個重要的角色。很多的同學學習奧數起步比較晚,基礎不是很好,說到奧數可能就會頭大。其實只要掌握恰當的學習方法,基礎不好的孩子一樣可以學好奧數,并在小升初中升上不錯的初中學校。下面來具體說說如何做:
一、題目最好做兩遍
要想學好奧數,平時的練習必不可少,但這并不意味著要進行題海戰術,做練習也要講究科學性。根據自己的進度,找到1―2本左右,不要太多。(網校的課程中,要把例題、在線測試、周周練的題都要做對做會)。選擇一些參考書后要認真完整地做,每一本好的參考書都存在著一個知識體系,有些同學這本書做一點,那本書做一點,到最后做了許多本書但都沒有做完,無法形成一個完整的知識體系,效果反而不好。做題的時候要多做簡單題,并且要定好時間,這樣可以提高解題速度。
在小升初的沖刺階段要保證1―2天做一套試卷來保持狀態。最重要的是要通過做題發現并解決自己已有的問題,總結出各類題目的解題方法并且熟練掌握。
二、應考時要舍得放棄
對于大部分奧數基礎不是很扎實的同學來說,放棄難題應該是一個比較明智的選擇。試卷的最后兩題一般比較難,奧數較弱的同學不要花太多的時間在這里,而應把精力放在前面的基礎題上。
在對待粗心這個常見問題上,有兩個建議:一是少打草稿,把步驟都寫在試卷上;二是規范草稿,讓草稿一目了然,這樣便不太會出現看錯或抄錯的現象了。
每一次考試的試卷和各區的模擬卷都是珍貴的復習資料,一定要妥善保存。
三、杜絕負面的自我暗示
首先對奧數習不要抱有放棄的想法。有些同學認為奧數差一點沒關系,只要英語、語文多用功就可以了,這種想法是非常錯誤的。教育界有一個“木桶原理”:一只木桶盛水量的多少取決于它最短的一塊木板。小升初也是如此,只有各科全面發展才能受到重點中學的青睞,跟何況很多學校都喜歡要奧數好的孩子。
其次是要杜絕負面的自我暗示。臨近小升初,在小學的奧數班上會有許許多多的考試,不可能每一次都取得自己理想的成績。在失敗的時候不要有“我肯定沒希望了”、“我是學不好了”這樣的暗示,相反地,要對自己始終充滿信心,最終成功會來到你的身邊。
四、小升初時抄筆記別丟了“西瓜”
其實小升初考察的奧數題大部分都是基礎題,只要把這些基礎題做好,分數便不會低了。要想做好基礎題,平時上課時的聽課效率便顯得格外重要。一般教奧數的都是有著豐富經驗的老師,他們上課時所用的講義內容可謂是精華,認真聽講1個小時要比自己在家復習兩個小時還要有效。
聽課時可以適當地做些筆記,但前提是不影響聽課的效果。有些同學光顧著抄下題目的步驟解法卻忽略了老師解題的思路,這樣就是“撿了芝麻丟了西瓜”,反而有些得不償失。
第二篇:奧數不好的孩子如何備戰小升初
奧數對于小升初的孩子來說是個非常重要的學科,但是有些基礎不好的同學卻是“談奧數色變”。其實只要掌握恰當的學習方法,基礎不好的孩子一樣可以學好奧數,并在小升初中升上不錯的初中。
杜絕負面的自我暗示
首先對奧數習不要抱有放棄的想法。有些同學認為奧數差一點沒關系,只要英語、語文多用功就可以了,這種想法是非常錯誤的。教育界有一個“木桶原理”:一只木桶盛水量的多少取決于它最短的一塊木板。小升初也是如此,只有各科全面發展才能受到重點中學的青睞,跟何況很多學校都喜歡要奧數好的孩子。
其次是要杜絕負面的自我暗示。臨近小升初,在小學的奧數班上會有許許多多的考試,不可能每一次都取得自己理想的成績。在失敗的時候不要有“我肯定沒希望了”、“我是學不好了”這樣的暗示,相反地,要對自己始終充滿信心,最終成功會來到你的身邊。
抄筆記別丟了“西瓜”
其實小升初考察的奧數題大部分都是基礎題,只要把這些基礎題做好,分數便不會低了。要想做好基礎題,平時上課時的聽課效率便顯得格外重要。一般教奧數的都是有著豐富經驗的老師,他們上課時所用的講義內容可謂是精華,認真聽講1個小時要比自己在家復習兩個小時還要有效。
聽課時可以適當地做些筆記,但前提是不影響聽課的效果。有些同學光顧著抄下題目的步驟解法卻忽略了老師解題的思路,這樣就是“撿了芝麻丟了西瓜”,反而有些得不償失。題目最好做兩遍
要想學好奧數,平時的練習必不可少,但這并不意味著要進行題海戰術,做練習也要講究科學性。在選擇參考書方面可以聽一下老師的意見,一般來說老師會根據自己的教學方式和進度給出一定的建議,數量基本在1—2本左右,不要太多。
在選好參考書以后要認真完整地做,每一本好的參考書都存在著一個知識體系,有些同學這本書做一點,那本書做一點,到最后做了許多本書但都沒有做完,無法形成一個完整的知識體系,效果反而不好。做題的時候要多做簡單題,并且要定好時間,這樣可以提高解題速度。
在小升初的沖刺階段要保證1—2天做一套試卷來保持狀態。最重要的是要通過做題發現并解決自己已有的問題,總結出各類題目的解題方法并且熟練掌握。
在這里有兩個小建議:一是在做填空選擇題時可以在旁邊的空白處寫一些解題過程以方便以后復習;二是題目最好做兩遍以上,可以加深印象。
應考時要舍得放棄
對于大部分奧數基礎不是很扎實的同學來說,放棄難題應該是一個比較明智的選擇。試卷的最后兩題一般比較難,奧數較弱的同學不要花太多的時間在這里,而應把精力放在前面的基礎題上。
每一次考試的試卷和各校的模擬卷都是珍貴的復習資料,一定要妥善保存。
第三篇:六年級小升初奧數
奧林匹克數學競賽或數學奧林匹克競賽,簡稱奧數。奧數體現了數學與奧林匹克體育運動精神的共通性:更快、更高、更強。小升初可以通過奧數這門競賽來為自己爭取到更好的機會。下面就是小編為大家梳理歸納的內容,希望能夠幫助到大家。
六年級小升初奧數
1、一個兩位數除72,余數是12,那么滿足要求的所有兩位數有幾個?分別是多少?
解答:由題意知,所求的兩位數應是7212=60的約數,還應大于12。在60的約數中,兩位數有10、12、15、20、30、60這六個數,大于12的有:15、20、30、60這四個數。所以滿足要求的兩位數有4個,分別是15、20、30、60。
2、有寫著5、9、17的卡片各8張,現在從中任意抽出5張,這5張卡片上的數字之和可能是()。
A、31 B、39 C、55 D、41
解答:5、9、17三個數除以4都是余1的,任取5張,也是除以4余1的,所以是D。
3、某校五年級學生排成一個實心方陣,最外一層總人數為60人,問方陣最外層每邊有多少人?這個方陣共有學生多少人?
解答:方陣最外層每邊人數:604+1=16(人)
整個方陣共有學生人數:1616=256(人)
4、12張乒乓球臺上共有34人在打球,那么正在進行單打和雙打的臺子各有多少張?
解答:利用雞兔同籠的想法,假設都在進行單打,那么應有122=24人,多出34-24=10人。把單打變為雙打,每個臺子需要增加2人,所以雙打的臺子有102=5張,單打的臺子有12-5=7張。
5、一隊學生站成20行20列方陣,如果去掉4行4列,那么要減少多少人?
解答:20-4=16(人),2020=400(人),1616=256(人),400-256=144(人)
6、有黑白兩種棋子共300枚,按每堆3枚分成100堆。其中只有1枚白子的共27堆,有2枚或3枚黑子的共42堆,有3枚白子的與有3枚黑子的堆數相等。那么在全部棋子中,白子共有多少枚?
解答:271+432+153=158(枚)
7、有336個蘋果、252個桔子、210個梨,用這些水果最多可以分成多少份同樣的禮物?每份禮物中的三樣水果各有多少個?
解答:(336,252)=(84,252)=84
(84,210)=(84,42)=42所以可以分成42份禮物
蘋果:33642=8(個)桔子:25242=6(個)梨:21042=5(個)
8、正方形操場四周栽了一圈樹,每兩棵樹相隔5米。甲乙二人同時從一個角出發,向不同的方向走去,甲的速度是乙的2倍,乙在拐了第一彎之后的第5棵樹與甲相遇。操場四周一共栽了多少棵樹?
解答:由于甲速是乙速的2倍,所以乙在拐了第一彎時,甲正好拐了兩個彎,即兩個人開始同時沿著最上邊走。
乙走過了5棵樹,也就是走過了5個間隔,所以甲走過了10個間隔,四周一共有(5+10)4=60個間隔,根據植樹問題,一共栽了60棵樹。
9、有甲乙丙三種貨物,若購甲3件,乙7件,丙1件共需315元。若購甲4件,乙10件,丙1件共需420元。現購甲乙丙各一件共需多少元?
解答:設甲、乙、丙每件分別為x、y、z元
3x+7y+z=315
4x+10y+z=420
可知x+3y=105,2x+6y=210,x+y+z=105,即三種貨物各一件需要105元。
10、某年一月份有4個星期四、5個星期五,這一年1月4日是星期幾?
解答:畫一個日歷表,從表中馬上看出:1月4日星期一。
說明:根據“有五個星期五”,可知從第一個星期五到第五個星期五之間共有29天。31-29=2(天),這多余的2天是在第一個星期五前,還是在第五個星期五之后呢?如果在第一個星期五之前,那就多一個星期四,這與題中條件不符。
小學六年級奧數小升初測試題
1、一個三位數除以43,商是a,余數是b(a、b都是整數)則a+b的值是。
2、上底是10厘米,下底是25厘米的梯形,如果下底減少8厘米,而上底不變,面積就減少84平方厘米,那么原梯形的面積是平方厘米。
3、有甲、乙、丙三個數,甲、乙兩數的和是147,丙、乙兩數的和是123,甲、丙兩數的和是132,則甲數是,乙數是,丙數是。
4、用一個小數減去一個末尾數字不為零的整數,如果給整數添上一個小數點,使它變成小數,差就增加154.44,那么這個整數是。
5、一個表面積為54平方分米的正方體,切成兩個完全相等的長方體后,表面積總和是。
6、把一根長3米的長方體木料,平均鋸成3段,表面積增加了2.4平方米,這根木料的體積是立方米。
7、有一筐蘋果,第一次取出全部的一半多2個,第二次取出余下的一半少2個,筐中還剩20個,筐中原有蘋果個。
8、小軍期末考試,語文、英語(論壇)、科學三門的平均成績是78分,數學成績公布后,四門的平均成績提高了5分,小軍數學考了分。
二、應用題(每題6分,共60分)
1、甲、乙兩列火車從相距470千米的兩城相向而行,甲車每小時行駛38千米,乙車每小時行駛40千米。乙車先出發兩小時后,甲車才出發,甲車行駛多少小時后與乙車相遇?
2、某小隊學生參加工廠勞動,平均每人生產76個零件,已知每個人至少做70個,其中一人做了88個,如果不把這個同學計算在內,那么平均每人做74個,這個小隊做得最多的同學可以做多少個零件?
3、已知兩個自然數的積是5766,它們的公因數是31,求這兩個數。
4、把一根長2.4米,寬0.8米,高0.4米的木料鋸成體積相等的兩份,它的表面積最少增加多少平方米?
5、甲、乙、丙、丁四個數,每次去掉一個數,將其余三個數求平均數,這樣算了四次,得到以下四個數:45,60,65,70,求甲、乙、丙、丁四個數的平均數。
6、小明前幾次數學測驗的平均成績是84分,這次要考100分才能把平均成績提高到86分,問這次是第幾次測試?
7、小紅每分鐘行80米,小英每分鐘行60米,兩人在同一地點同時相背而行,走了三分鐘后,小紅調頭去追小英,追上小英時,兩人各行了多少米?
8、張老師找甲、乙、丙三名學生來辦公室談話,甲要10分鐘談完,乙要12分鐘談完,丙要8分鐘談完,怎么樣安排三人的談話順序,使三人花的總時間最少?最少是幾分鐘?
小升初面試經典奧數思維題
1、已知一張桌子的價錢是一把椅子的10倍,又知一張桌子比一把椅子多288元,一張桌子和一把椅子各多少元?
2、3箱蘋果重45千克。一箱梨比一箱蘋果多5千克,3箱梨重多少千克?
3、甲乙二人從兩地同時相對而行,經過4小時,在距離中點4千米處相遇。甲比乙速度快,甲每小時比乙快多少千米?
4、李軍和張強付同樣多的錢買了同一種鉛筆,李軍要了13支,張強要了7支,李軍又給張強0.6元錢。每支鉛筆多少錢?
5、甲乙兩輛客車上午8時同時從兩個車站出發,相向而行,經過一段時間,兩車同時到達一條河的兩岸。由于河上的橋正在維修,車輛禁止通行,兩車需交換乘客,然后按原路返回各自出發的車站,到站時已是下午2點。甲車每小時行40千米,乙車每小時行45千米,兩地相距多少千米?(交換乘客的時間略去不計)
6、學校組織兩個課外興趣小組去郊外活動。第一小組每小時走4.5千米,第二小組每小時行3.5千米。兩組同時出發1小時后,第一小組停下來參觀一個果園,用了1小時,再去追第二小組。多長時間能追上第二小組?
7、有甲乙兩個倉庫,每個倉庫平均儲存糧食32.5噸。甲倉的存糧噸數比乙倉的4倍少5噸,甲、乙兩倉各儲存糧食多少噸?
8、甲、乙兩隊共同修一條長400米的公路,甲隊從東往西修4天,乙隊從西往東修5天,正好修完,甲隊比乙隊每天多修10米。甲、乙兩隊每天共修多少米?
9、學校買來6張桌子和5把椅子共付455元,已知每張桌子比每把椅子貴30元,桌子和椅子的單價各是多少元?
10、一列火車和一列慢車,同時分別從甲乙兩地相對開出。快車每小時行75千米,慢車每小時行65千米,相遇時快車比慢車多行了40千米,甲乙兩地相距多少千米?
11、某玻璃廠托運玻璃250箱,合同規定每箱運費20元,如果損壞一箱,不但不付運費還要賠償100元。運后結算時,共付運費4400元。托運中損壞了多少箱玻璃?
12、五年級一中隊和二中隊要到距學校20千米的地方去春游。第一中隊步行每小時行4千米,第二中隊騎自行車,每小時行12千米。第一中隊先出發2小時后,第二中隊再出發,第二中隊出發后幾小時才能追上一中隊?
13、某廠運來一堆煤,如果每天燒1500千克,比計劃提前一天燒完,如果每天燒1000千克,將比計劃多燒一天。這堆煤有多少千克?
14、媽媽讓小紅去商店買5支鉛筆和8個練習本,按價錢給小紅3.8元錢。結果小紅卻買了8支鉛筆和5本練習本,找回0.45元。求一支鉛筆多少元?
15、學校組織外出參觀,參加的師生一共360人。一輛大客車比一輛卡車多載10人,6輛大客車和8輛卡車載的人數相等。都乘卡車需要幾輛?都乘大客車需要幾輛?
16、某筑路隊承擔了修一條公路的任務。原計劃每天修720米,實際每天比原計劃多修80米,這樣實際修的差1200米就能提前3天完成。這條公路全長多少米?
17、某鞋廠生產1800雙鞋,把這些鞋分別裝入12個紙箱和4個木箱。如果3個紙箱加2個木箱裝的鞋同樣多。每個紙箱和每個木箱各裝鞋多少雙?
18、某工地運進一批沙子和水泥,運進沙子袋數是水泥的2倍。每天用去30袋水泥,40袋沙子,幾天以后,水泥全部用完,而沙子還剩120袋,這批沙子和水泥各多少袋?
19、學校里買來了5個保溫瓶和10個茶杯,共用了90元錢。每個保溫瓶是每個茶杯價錢的4倍,每個保溫瓶和每個茶杯各多少元?
20、兩個數的和是572,其中一個加數個位上是0,去掉0后,就與第二個加數相同。這兩個數分別是多少?
21、一桶油連桶重16千克,用去一半后,連桶重9千克,桶重多少千米?
22、一桶油連桶重10千克,倒出一半后,連桶還重5.5千克,原來有油多少千克?
23、用一只水桶裝水,把水加到原來的2倍,連桶重10千克,如果把水加到原來的5倍,連桶重22千克。桶里原有水多少千克?
24、小紅和小華共有故事書36本。如果小紅給小華5本,兩人故事書的本數就相等,原來小紅和小華各有多少本?
25、有5桶油重量相等,如果從每只桶里取出15千克,則5只桶里所剩下油的重量正好等于原來2桶油的重量。原來每桶油重多少千克?
26、把一根木料鋸成3段需要9分鐘,那么用同樣的速度把這根木料鋸成5段,需要多少分?
27、一個車間,女工比男工少35人,男、女工各調出17人后,男工人數是女工人數的2倍。原有男工多少人?女工多少人?
28、李強騎自行車從甲地到乙地,每小時行12千米,5小時到達,從乙地返回甲地時因逆風多用1小時,返回時平均每小時行多少千米?
29、甲、乙二人同時從相距18千米的兩地相對而行,甲每小時行走5千米,乙每小時走4千米。如果甲帶了一只狗與甲同時出發,狗以每小時8千米的速度向乙跑去,遇到乙立即回頭向甲跑去,遇到甲又回頭向飛跑去,這樣二人相遇時,狗跑了多少千米?
30、有紅、黃、白三種顏色的球,紅球和黃球一共有21個,黃球和白球一共有20個,紅球和白球一共有19個。三種球各有多少個?
31、在一根粗鋼管上接細鋼管。如果接2根細鋼管共長18米,如果接5根細鋼管共長33米。一根粗鋼管和一根細鋼管各長多少米?
32、水泥廠原計劃12天完成一項任務,由于每天多生產水泥4.8噸,結果10天就完成了任務,原計劃每天生產水泥多少噸?
33、學校舉辦歌舞晚會,共有80人參加了表演。其中唱歌的有70人,跳舞的有30人,既唱歌又跳舞的有多少人?
34、學校舉辦語文、數學雙科競賽,三年級一班有59人,參加語文競賽的有36人,參加數學競賽的有38人,一科也沒參加的有5人。雙科都參加的有多少人?
35、學校買了4張桌子和6把椅子,共用640元。2張桌子和5把椅子的價錢相等,桌子和椅子的單價各是多少元?
36、父親今年45歲,5年前父親的年齡是兒子的4倍,今年兒子多少歲?
37、有兩桶油,甲桶油重是乙桶油重的4倍,如果從甲桶倒入乙桶18千克,兩桶油就一樣重,原來每桶各有多少千克油?
38、光明小學舉辦數學知識競賽,一共20題。答對一題得5分,答錯一題扣3分,不答得0分。小麗得了79分,她答對幾道,答錯幾道,有幾題沒答?
39、甲列火車長240米,每秒行20米;乙列火車長264米,每秒行16米,兩車相向而行,從兩車頭相遇到兩車尾相離需要幾秒?
40、一列火車長600米,通過一條長1150米的隧道,已知火車的速度是每分700米,問火車通過隧道需要幾分?
41、小明從家里到學校,如果每分走50米,則正好到上課時間;如果每分走60米,則離上課時間還有2分。問小明從家里到學校有多遠?
42、有一周長600米的環形跑道,甲、乙二人同時、同地、同向而行,甲每分鐘跑300米,乙每分鐘跑400米,經過幾分鐘二人第一次相遇?
43、有一個長方形紙板,如果只把長增加2厘米,面積就增加8平方米;如果只把寬增加2厘米,面積就增加12平方厘米。這個長方形紙板原來的面積是多少?
44、媽媽買蘋果和梨各3千克,付出20元找回7.4元。每千克蘋果2.4元,每千克梨多少元?
45、甲乙兩人同時從相距135千米的兩地相對而行,經過3小時相遇。甲的速度是乙的2倍,甲乙兩人每小時各行多少千米?
46、盒子里有同樣數目的黑球和白球。每次取出8個黑球和5個白球,取出幾次以后,黑球沒有了,白球還剩12個。一共取了幾次?盒子里共有多少個球?
47、上午6時從汽車站同時發出1路和2路公共汽車,1路車每隔12分鐘發一次,2路車每隔18分鐘發一次,求下次同時發車時間。
48、父親今年45歲,兒子今年15歲,多少年前父親的年齡是兒子年齡的11倍?
49、王老師有一盒鉛筆,如平均分給2名同學余1支,平均分給3名同學余2支,平均分給4名同學余3支,平均分給5名同學余4支。問這盒鉛筆最少有多少支?
50、一塊平行四邊形地,如果只把底增加8米,或只把高增加5米,它的面積都增加40平方米。求這塊平行四邊形地原來的面積?
小升初的奧數題精選
1.已知一張桌子的價錢是一把椅子的10倍,又知一張桌子比一把椅子多288元,一張桌子和一把椅子各多少元?
考點:列方程解含有兩個未知數的應用題;差倍問題。
專題:和倍問題;列方程解應用題。
分析:設一把椅子的價格是x元,則一張桌子的價格就是10x元,根據等量關系:“一張桌子比一把椅子多288元”,列出方程即可解答.解答:解:設一把椅子的價格是x元,則一張桌子的價格就是10x元,根據題意可得方程:
10x﹣x=288,9x=288,x=32;
則桌子的價格是:32×10=320(元),答:一張桌子320元,一把椅子32元.點評:此題也可以用算術法計算:由已知條件可知,一張桌子比一把椅子多的288元,正好是一把椅子價錢的(10﹣1)倍,由此可求得一把椅子的價錢.再根據椅子的價錢,就可求得一張桌子的價錢,所以:一把椅子的價錢:288÷(10﹣1)=32(元)一張桌子的價錢:32×10=320(元);答:一張桌子320元,一把椅子32元.2.3箱蘋果重45千克.一箱梨比一箱蘋果多5千克,3箱梨重多少千克?
考點:整數、小數復合應用題。
專題:簡單應用題和一般復合應用題。
分析:可先求出3箱梨比3箱蘋果多的重量,再加上3箱蘋果的重量,就是3箱梨的重量.據此解答
解答:解:45+5×3,=45+15,=60(千克);
答:3箱梨重60千克.點評:本題的關鍵是先求出3箱梨比3箱蘋果多的重量,然后再根據加法的意義求出3箱梨的重量.3.甲乙二人從兩地同時相對而行,經過4小時,在距離中點4千米處相遇.甲比乙速度快,甲每小時比乙快多少千米?
考點:簡單的行程問題。
專題:行程問題。
分析:根據在距離中點4千米處相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知經過4小時相遇.即可求甲比乙每小時快多少千米.解答:解:4×2÷4
=8÷4,=2(千米);
答:甲每小時比乙快2千米.點評:解答此題的關鍵是確定甲比乙在4小時內多走了多少千米,然后再根據路程÷時間=速度進行計算即可.4.李軍和張強付同樣多的錢買了同一種鉛筆,李軍要了13支,張強要了7支,李軍又給張強0.6元錢.每支鉛筆多少錢?
考點:整數、小數復合應用題。
專題:簡單應用題和一般復合應用題。
分析:根據兩人付同樣多的錢買同一種鉛筆和李軍要了13支,張強要了7支,可知每人應該得(13+7)÷2支,而李軍要了13支比應得的多了3支,因此又給張強0.6元錢,即可求每支鉛筆的價錢.據此解答.解答:解:0.6÷[13﹣(13+7)÷2],=0.6÷[13﹣20÷2],=0.6÷3,=0.2(元);
答:每支鉛筆0.2元.點評:本題的關鍵是求出李軍給張強0.6元錢,是幾支鉛筆的價錢.5.甲乙兩輛客車上午8時同時從兩個車站出發,相向而行,經過一段時間,兩車同時到達一條河的兩岸.由于河上的橋正在維修,車輛禁止通行,兩車需交換乘客,然后按原路返回各自出發的車站,到站時已是下午2點.甲車每小時行40千米,乙車每小時行45千米,兩地相距多少千米?(交換乘客的時間略去不計)
考點:簡單的行程問題。
專題:行程問題。
分析:根據已知兩車上午8時從兩站出發,下午2點返回原車站,可求出兩車所行駛的時間.根據兩車的速度和行駛的時間可求兩車行駛的總路程.解答:解:下午2點是14時.往返用的時間:14﹣8=6(時)
兩地間路程:(40+45)×6÷2
=85×6÷2,=255(千米);
答:兩地相距255千米.點評:解答此題的關鍵是確定兩車行駛的時間,然后再根據公式速度×時間=路程計算出兩車行駛的總路程,再除以就是兩地相距的距離.6.學校組織兩個課外興趣小組去郊外活動.第一小組每小時走4.5千米,第二小組每小時行3.5千米.兩組同時出發1小時后,第一小組停下來參觀一個果園,用了1小時,再去追第二小組.多長時間能追上第二小組?
考點:追及問題。
專題:行程問題。
分析:第一小組停下來參觀果園時間,第二小組多行了[3.5﹣(4.5﹣3.5)]千米,也就是第一組要追趕的路程.又知第一組每小時比第二組快(4.5﹣3.5)千米,由此便可求出追趕的時間.解答:解:第一組追趕第二組的路程:
3.5﹣(4.5﹣3.5),=3.5﹣1,=2.5(千米);
第一組追趕第二組所用時間:
2.5÷(4.5﹣3.5),=2.5÷1,=2.5(小時);
答:第一組2.5小時能追上第二小組.點評:此題屬于復雜的追擊應用題,此類題的解答方法是根據“追及路程÷速度差=追及時間”,代入數值,計算即可
7.有甲乙兩個倉庫,每個倉庫平均儲存糧食32.5噸.甲倉的存糧噸數比乙倉的4倍少5噸,甲、乙兩倉各儲存糧食多少噸?
考點:列方程解含有兩個未知數的應用題;和倍問題。
專題:簡單應用題和一般復合應用題;和倍問題。
分析:設乙倉庫的存糧是x噸,則甲倉庫的存糧是4x﹣5噸,則根據等量關系:“兩個倉庫的存糧一共有32.5×2=65噸”,由此列出方程解決問題.解答:解:設乙倉庫的存糧是x噸,則甲倉庫的存糧是4x﹣5噸,根據題意可得方程:
x+4x﹣5=32.5×2,5x=70,x=14,則甲倉庫存糧:14×4﹣5=51(噸),答:甲倉庫有51噸,乙倉庫有14噸.點評:此題屬于含有兩個未知數的應用題,這類題用方程解答比較容易,關鍵是找準數量間的相等關系,設一個未知數為x,另一個未知數用含x的式子來表示,進而列并解方程即可.8.甲、乙兩隊共同修一條長400米的公路,甲隊從東往西修4天,乙隊從西往東修5天,正好修完,甲隊比乙隊每天多修10米.甲、乙兩隊每天共修多少米?
考點:簡單的工程問題。
專題:工程問題。
分析:根據甲隊每天比乙隊多修10米,可以這樣考慮:如果把甲隊修的4天看作和乙隊4天修的同樣多,那么總長度就減少4個10米,這時的長度相當于乙(4+5)天修的.由此可求出乙隊每天修的米數,進而再求兩隊每天共修的米數.解答:解:乙每天修的米數:
(400﹣10×4)÷(4+5),=(400﹣40)÷9,=360÷9,=40(米);
甲乙兩隊每天共修的米數:
40×2+10=80+10=90(米);
答:兩隊每天修90米.點評:本題不能直接求出甲乙的工作效率和,要采取假設法,假設甲乙的工作效率相同,找出由此引起的工作量的變化,再根據工作效率=工作量÷工作時間求解.9.學校買來6張桌子和5把椅子共付455元,已知每張桌子比每把椅子貴30元,桌子和椅子的單價各是多少元?
考點:簡單的等量代換問題。
專題:簡單應用題和一般復合應用題。
分析:已知每張桌子比每把椅子貴30元,如果桌子的單價與椅子同樣多,那么總價就應減少30×6元,這時的總價相當于(6+5)把椅子的價錢,由此可求每把椅子的單價,再求每張桌子的單價.解答:解:每把椅子的價錢:
(455﹣30×6)÷(6+5),=(455﹣180)÷11,=275÷11,=25(元);
每張桌子的價錢:
25+30=55(元);
答:每張桌子55元,每把椅子25元.點評:解答此題的關鍵是根據“每張桌子比每把椅子貴30元,”得出總價里面減去每張桌子多的30元,剩下的就相當于是(6+5)=11把椅子的價格,從而求出椅子的價格即可解答問題.10.一列火車和一列慢車,同時分別從甲乙兩地相對開出.快車每小時行75千米,慢車每小時行65千米,相遇時快車比慢車多行了40千米,甲乙兩地相距多少千米?
考點:簡單的行程問題。
專題:行程問題。
分析:根據已知的兩車的速度可求速度差,根據兩車的速度差及快車比慢車多行的路程,可求出兩車行駛的時間,進而求出甲乙兩地的路程.解答:解:(75+65)×[40÷(75﹣65)],=140×[40÷10],=140×4,=560(千米);
答:甲乙兩地相距560千米.點評:解題的關鍵是理解用快車比慢車多行的路程÷兩車的速度差=兩車行駛的時間,再根據速度和×兩車行駛的時間求出兩地的距離.11.某玻璃廠托運玻璃250箱,合同規定每箱運費20元,如果損壞一箱,不但不付運費還要賠償100元.運后結算時,共付運費4400元.托運中損壞了多少箱玻璃?
考點:盈虧問題。
專題:簡單應用題和一般復合應用題。
分析:根據已知托運玻璃250箱,每箱運費20元,可求出應付運費總錢數.根據每損壞一箱,不但不付運費還要賠償100元的條件可知,則損壞一個就少收運費100+20元,應付的錢數和實際付的錢數的差里有幾個(100+20)元,就是損壞幾箱.解答:解:(20×250﹣4400)÷(100+20),=600÷120,=5(箱)
答:損壞了5箱.點評:明確損壞一個就少收運費100+20元是完成本題的關鍵.12.五年級一中隊和二中隊要到距學校20千米的地方去春游.第一中隊步行每小時行4千米,第二中隊騎自行車,每小時行12千米.第一中隊先出發2小時后,第二中隊再出發,第二中隊出發后幾小時才能追上一中隊?
考點:追及問題。
專題:行程問題。
分析:因第一中隊早出發2小時比第二中隊先行4×2千米,即此時兩個中隊之間的距離是8千米,而每小時第二中隊比第一中隊多行(12﹣4)千米,由此即可求第二中隊追上第一中隊的時間.解答:解:4×2÷(12﹣4);
=4×2÷8;
=1(時);
答:第二中隊1小時能追上第一中隊.點評:本題體現了追及問題的基本關系式:路程差÷速度差=追及時間.13.某廠運來一堆煤,如果每天燒1500千克,比計劃提前一天燒完,如果每天燒1000千克,將比計劃多燒一天.這堆煤有多少千克?
考點:有關計劃與實際比較的三步應用題。
專題:簡單應用題和一般復合應用題。
分析:由已知條件可知道,前后燒煤總數量相差(1500+1000)千克,是由每天相差(1500﹣1000)千克造成的,由此可求出原計劃燒的天數,進而再求出這堆煤的數量.解答:解:原計劃燒煤天數:
(1500+1000)÷(1500﹣1000),=2500÷500,=5(天);
這堆煤的重量:
1500×(5﹣1),=1500×4,=6000(千克);
答:這堆煤有6000千克.點評:解答此題的關鍵是求原計劃燒的天數,用前后燒煤總數相差除以每天燒煤量之差即原計劃燒的天數,進而求出這堆煤的數
六年級小升初奧數
第四篇:經典小升初奧數題及答案
都江堰戴氏精品堂數學教師輔導講義
學生姓名:_______ 任課教師:何老師(Tel:***)
1、某次數學測驗共20題,作對1題得5分,做錯1題扣1分,不做得0分,小華得了76分,他對了多少題?
2、一班有學生45人,男生2/5和女生的1/4參加了數學競賽,參賽的共有15人,男女生各幾人
3、一列火車長200米,通過一條長430的隧道用了42秒,以同樣的速度通過某站臺用25秒,這個站臺長多少米?
4、一項工作,甲單獨做需15天完成,乙單獨做需12天完成。這項工作由甲乙兩人合做,并且施工期間乙休息7天,問幾天完成?
5、本騎車前往一座城市,去時的速度為x,回來時的速度為y。他整個行程的平均速度是多少?
6、游泳池里,參加游泳的學生,小學生占30%,又來一批學生后,學生總數增加20%,小學生占學生總數的40%,小學
7、將37分為甲、乙、丙三個數,使甲、乙、丙三個數的乘積為1440,并且甲、乙兩數的積比丙數多12,求甲、乙、丙各是幾?
8、在800米環島上,每隔50米插一面彩旗,后來又增加了一些彩旗,就把彩旗的間隔縮短了,起點的彩旗不動,重新插后發現,一共有四根彩旗沒動,問現在的彩旗間隔多少米?
9、小學組織春游,同學們決定分成若干輛至多可乘32人的大巴車前去。如果打算每輛車坐22個人,就會有一人沒有座位;如果少開一輛車,那么,這批同學剛好平均分成余下的大巴。那么原來有多少同學?多少輛大巴?
10、一塊正方體木塊,體積是1331立方厘米。這塊正方體木塊的棱長是多少厘米?(適于六年級)
11、李明是個集郵愛好者。他集的小型張是郵票總數的十一分之一,后來他又收集到十五張小型張,這時小型張是郵票總數的九分之一,李明一共收集郵票多少張
12、兩堆沙,第一堆25噸,第二堆21噸。這兩堆中各用去同樣多的一部分后,第二堆剩下的是第一堆的3/4,每堆用多
13、幼兒園買來的蘋果是梨的3倍,吃掉10個梨和6個蘋果后,還有蘋果正好是梨的5倍。原來買來蘋果和梨共多少個?
14、在一個圓里畫一個最大的正方形,已知圓的面積是628平方厘米,求正方形的面積。
15、在一個正方形內畫一個最大的圓,已知正方形的面積是20平方厘米,圓的面積是多少?
16、小明看一本故事書,第一天看的頁數與總頁數的比是3:7,如果再看15頁,正好是這本書的一半,這本書有多少頁?
17、某服裝店出售某種服裝,已知售價比進價高20%以上才能出售。為了獲得更高的利潤,該店老板以高出進價80%的格標價。若你想買下標價360元的這種服裝,店老板最多降價多少元?
18、李大爺靠墻圍了一個半徑是10米的半圓形養雞場,用了多長的籬笆?面積是多少?
19、甲書架上的書是乙書架上的5分之4,從這兩個書架上各借出112本后,甲書架上的書是乙書架上的7分之4,原來甲、乙兩個書架各有多少本書?(解方程,要有過程)
20、六1班訂閱數學報,訂窗報紙人數占年級人數的百分之四十,訂數學報人數占訂閱人數的百分之四十訂語文報人數 的四分之三,兩報都訂的有15人,全年級有幾人
21、六年級有三個班,一班占全年級的1/3,二班和三班的比是1:13,二班比三班少8人,三個班各有幾人?
22、張叔叔家種月季花36棵,種菊花的棵樹是月季花的53,種蘭花的棵樹是菊花的,128張叔叔家種了多少棵蘭花(40棵)23、4噸葡萄在新疆測得含水量是99%,運抵南京后測得含水量是98%,問葡萄運抵南京后還剩幾噸?
24、一塊長方形試驗田,長和寬各增加3米,它的面積就增加99平方米。現在要在擴建后的試驗田四周圍上一圈籬笆,25、三角形三條邊分別是3厘米.4厘米.5厘米。這個三角形斜邊上的高是多少厘米?
26、一輛汽車每小時行40千米,自行車每行1千米比汽車多用2.5分鐘,自行車速度是汽車速度的百分之幾?
28、一個圓柱形油桶的容積是60立方分米,底面積是7.5平方分米,裝了五分之三桶油,油面高多少分米?30、用五個長10厘米,寬5厘米,高4厘米的長方體拼成一個表面積最大的長方體,它的表面積是多少?
31、用3個長5厘米、寬3厘米、高2厘米的長方體拼成一個表面積最小的長方體,32、同學們從學校去公園,走了全程的百分之八十時,正好到達少年宮;沿原路返回時行了全程的四分之一就過了少年宮0.3千米,學校離公園多少千米?
33、一列客車長200m,一列貨車長280m,它們在平行的軌道上相向行駛,從相遇到車尾離開需18s.已知客車與貨車的速度為5:3,求兩車每秒各行多少千米?
34、5名同學一個組去參觀少年宮,正好分成4組,每組一位教師帶隊,參觀少年宮的一共有多少人?
35、六年級(1)班原來有學生54人,男生占全班人數的5/9,后來男生轉走了幾人,這時男生占全班的13/25,問男生轉走了幾人?
36、小猴子扒了50個香蕉,它很貪吃,每走1米就吃一個,猴子家離樹林50米,最多能運回家多少根香蕉?
37、五年級一班有學生45人,其中男生人數比女生多1/7,后來又轉來男生若干人,這時男生和女生人數的比是9:7,現在全班有學生多少人?
38、有一張寬6厘米,長12厘米的長方形鐵皮,用它做成一個長方形無蓋的盒子,盒子的容積可能是多少?(長、寬、高均為整厘米)
40、一列客車長200m,一列貨車長280m,它們在平行的軌道上相向行駛,從相遇到車尾離開需18s.41、一本書的中間被撕掉了一張,佘下的各頁碼數的和正好是1200。這本書有()頁,撕掉的一張上的頁碼是()和()
42、有3個非零數字,能組成的所有的三位數之和是3108,這3個數字的和是()
43、某船在靜水中的速度是每小時15千米,它從上游甲地開往下游乙是共用8小時,水速每小時3千米,它從乙地返回甲地用()小時?
44、圓錐形容器中裝有2升水,水面高度正好是圓錐高度的一半,這個容器還能裝多少升水?
45、修一條路,第一天修了全長的1/2多2千米,第二天修了余下的1/3還少1千米,第三天修了全長的1/4多1千米,這時還剩20千米,求公路總長。
46、一對孿生姐妹今年的年齡的和、差、積、商相加的和為100,她們今年多少歲? 年齡為X,則:
47、將14拆成幾個自然數的和,再求出這些數的乘積,可以求出的最大乘積是多少?
48、只布袋中裝有大小相同,但顏色不同的手套若干只。已知手套的顏色有黑白灰三種。最少要取多少只手套才有保證有3副手套是同色的?
49、一個時鐘的時針長20厘米,如果走一晝夜,那么它的尖端所走過的路程有多長?時針所掃過的面積有多大?
50、參加數學競賽的男生比女生多28人,女生全部優勝,男生的3/4得優勝,男女生各優勝的共42人,求男女生參加競賽的各多少人?
過橋問題(1)
1.一列火車經過南京長江大橋,大橋長6700米,這列火車長140米,火車每分鐘行400米,這列火車通過長江大橋需要多少分鐘?
2.一列火車長200米,全車通過長700米的橋需要30秒鐘,這列火車每秒行多少米?
3.一列火車長240米,這列火車每秒行15米,從車頭進山洞到全車出山洞共用20秒,山洞長多少米?和倍問題
1.秦奮和媽媽的年齡加在一起是40歲,媽媽的年齡是秦奮年齡的4倍,問秦奮和媽媽各是多少歲?
2.甲乙兩架飛機同時從機場向相反方向飛行,3小時共飛行3600千米,甲的速度是乙的2倍,求它們的速度各是多少?
3.弟弟有課外書20本,哥哥有課外書25本,哥哥給弟弟多少本后,弟弟的課外書是哥哥的2倍?
4.甲乙兩個糧庫原來共存糧170噸,后來從甲庫運出30噸,給乙庫運進10噸,這時甲庫存糧是乙庫存糧的2倍,兩個糧庫原來各存糧多少噸?
第五篇:小升初奧數題
過橋問題(1)
1.一列火車經過南京長江大橋,大橋長6700米,這列火車長140米,火車每分鐘行400米,這列火車通過長江大橋需要多少分鐘?
分析:這道題求的是通過時間。根據數量關系式,我們知道要想求通過時間,就要知道路程和速度。路程是用橋長加上車長。火車的速度是已知條件。
總路程:(米)
通過時間:(分鐘)
答:這列火車通過長江大橋需要17.1分鐘。
2.一列火車長200米,全車通過長700米的橋需要30秒鐘,這列火車每秒行多少米?
分析與解答:這是一道求車速的過橋問題。我們知道,要想求車速,我們就要知道路程和通過時間這兩個條件。可以用已知條件橋長和車長求出路程,通過時間也是已知條件,所以車速可以很方便求出。
總路程:(米)
火車速度:(米)
答:這列火車每秒行30米。
3.一列火車長240米,這列火車每秒行15米,從車頭進山洞到全車出山洞共用20秒,山洞長多少米?
分析與解答:火車過山洞和火車過橋的思路是一樣的。火車頭進山洞就相當于火車頭上橋;全車出洞就相當于車尾下橋。這道題求山洞的長度也就相當于求橋長,我們就必須知道總路程和車長,車長是已知條件,那么我們就要利用題中所給的車速和通過時間求出總路程。
總路程:
山洞長:(米)答:這個山洞長60米。
和倍問題
1.秦奮和媽媽的年齡加在一起是40歲,媽媽的年齡是秦奮年齡的4倍,問秦奮和媽媽各是多少歲?
我們把秦奮的年齡作為1倍,“媽媽的年齡是秦奮的4倍”,這樣秦奮和媽媽年齡的和就相當于秦奮年齡的5倍是40歲,也就是(4+1)倍,也可以理解為5份是40歲,那么求1倍是多少,接著再求4倍是多少?(1)秦奮和媽媽年齡倍數和是:4+1=5(倍)
(2)秦奮的年齡:40÷5=8歲
(3)媽媽的年齡:8×4=32歲
綜合:40÷(4+1)=8歲
8×4=32歲
為了保證此題的正確,驗證
(1)8+32=40歲
(2)32÷8=4(倍)計算結果符合條件,所以解題正確。
2.甲乙兩架飛機同時從機場向相反方向飛行,3小時共飛行3600千米,甲的速度是乙的2倍,求它們的速度各是多少? 已知兩架飛機3小時共飛行3600千米,就可以求出兩架飛機每小時飛行的航程,也就是兩架飛機的速度和。看圖可知,這個速度和相當于乙飛機速度的3倍,這樣就可以求出乙飛機的速度,再根據乙飛機的速度求出甲飛機的速度。甲乙飛機的速度分別每小時行800千米、400千米。
3.弟弟有課外書20本,哥哥有課外書25本,哥哥給弟弟多少本后,弟弟的課外書是哥哥的2倍?
思考:(1)哥哥在給弟弟課外書前后,題目中不變的數量是什么?
(2)要想求哥哥給弟弟多少本課外書,需要知道什么條件?
(3)如果把哥哥剩下的課外書看作1倍,那么這時(哥哥給弟弟課外書后)弟弟的課外書可看作是哥哥剩下的課外書的幾倍?
思考以上幾個問題的基礎上,再求哥哥應該給弟弟多少本課外書。根據條件需要先求出哥哥剩下多少本課外書。如果我們把哥哥剩下的課外書看作1倍,那么這時弟弟的課外書可看作是哥哥剩下的課外書的2倍,也就是兄弟倆共有的倍數相當于哥哥剩下的課外書的3倍,而兄弟倆人課外書的總數始終是不變的數量。
(1)兄弟倆共有課外書的數量是20+25=45。
(2)哥哥給弟弟若干本課外書后,兄弟倆共有的倍數是2+1=3。
(3)哥哥剩下的課外書的本數是45÷3=15。
(4)哥哥給弟弟課外書的本數是25-15=10。
試著列出綜合算式:
4.甲乙兩個糧庫原來共存糧170噸,后來從甲庫運出30噸,給乙庫運進10噸,這時甲庫存糧是乙庫存糧的2倍,兩個糧庫原來各存糧多少噸?
根據甲乙兩個糧庫原來共存糧170噸,后來從甲庫運出30噸,給乙庫運進10噸,可求出這時甲、乙兩庫共存糧多少噸。根據“這時甲庫存糧是乙庫存糧的2倍”,如果這時把乙庫存糧作為1倍,那么甲、乙庫所存糧就相當于乙存糧的3倍。于是求出這時乙庫存糧多少噸,進而可求出乙庫原來存糧多少噸。最后就可求出甲庫原來存糧多少噸。
甲庫原存糧130噸,乙庫原存糧40噸。
列方程組解應用題
(一)1.用白鐵皮做罐頭盒,每張鐵皮可制盒身16個,或制盒底43個,一個盒身和兩個盒底配成一個罐頭盒,現有150張鐵皮,用多少張制盒身,多少張制盒底,才能使盒身與盒底正好配套?
依據題意可知這個題有兩個未知量,一個是制盒身的鐵皮張數,一個是制盒底的鐵皮張數,這樣就可以用兩個未知數表示,要求出這兩個未知數,就要從題目中找出兩個等量關系,列出兩個方程,組在一起,就是方程組。
兩個等量關系是:A做盒身張數+做盒底的張數=鐵皮總張數
B制出的盒身數×2=制出的盒底數 用86張白鐵皮做盒身,64張白鐵皮做盒底。
奇數與偶數
(一)其實,在日常生活中同學們就已經接觸了很多的奇數、偶數。
凡是能被2整除的數叫偶數,大于零的偶數又叫雙數;凡是不能被2整除的數叫奇數,大于零的奇數又叫單數。
因為偶數是2的倍數,所以通常用 這個式子來表示偶數(這里 是整數)。因為任何奇數除以2其余數都是1,所以通常用式子 來表示奇數(這里 是整數)。
奇數和偶數有許多性質,常用的有:
性質1 兩個偶數的和或者差仍然是偶數。
例如:8+4=12,8-4=4等。
兩個奇數的和或差也是偶數。
例如:9+3=12,9-3=6等。
奇數與偶數的和或差是奇數。
例如:9+4=13,9-4=5等。
單數個奇數的和是奇,雙數個奇數的和是偶數,幾個偶數的和仍是偶數。
性質2 奇數與奇數的積是奇數。
偶數與整數的積是偶數。
性質3 任何一個奇數一定不等于任何一個偶數。
1.有5張撲克牌,畫面向上。小明每次翻轉其中的4張,那么,他能在翻動若干次后,使5張牌的畫面都向下嗎? 同學們可以試驗一下,只有將一張牌翻動奇數次,才能使它的畫面由向上變為向下。要想使5張牌的畫面都向下,那么每張牌都要翻動奇數次。
5個奇數的和是奇數,所以翻動的總張數為奇數時才能使5張牌的牌面都向下。而小明每次翻動4張,不管翻多少次,翻動的總張數都是偶數。
所以無論他翻動多少次,都不能使5張牌畫面都向下。2.甲盒中放有180個白色圍棋子和181個黑色圍棋子,乙盒中放有181個白色圍棋子,李平每次任意從甲盒中摸出兩個棋子,如果兩個棋子同色,他就從乙盒中拿出一個白子放入甲盒;如果兩個棋子不同色,他就把黑子放回甲盒。那么他拿多少后,甲盒中只剩下一個棋子,這個棋子是什么顏色的?
不論李平從甲盒中拿出兩個什么樣的棋子,他總會把一個棋子放入甲盒。所以他每拿一次,甲盒子中的棋子數就減少一個,所以他拿180+181-1=360次后,甲盒里只剩下一個棋子。
如果他拿出的是兩個黑子,那么甲盒中的黑子數就減少兩個。否則甲盒子中的黑子數不變。也就是說,李平每次從甲盒子拿出的黑子數都是偶數。由于181是奇數,奇數減偶數等于奇數。所以,甲盒中剩下的黑子數應是奇數,而不大于1的奇數只有1,所以甲盒里剩下的一個棋子應該是黑子。
奧賽專題--稱球問題
例1 有4堆外表上一樣的球,每堆4個。已知其中三堆是正品、一堆是次品,正品球每個重10克,次品球每個重11克,請你用天平只稱一次,把是次品的那堆找出來。
解 :依次從第一、二、三、四堆球中,各取1、2、3、4個球,這10個球一起放到天平上去稱,總重量比100克多幾克,第幾堆就是次品球。有27個外表上一樣的球,其中只有一個是次品,重量比正品輕,請你用天平只稱三次(不用砝碼),把次品球找出來。
解 :第一次:把27個球分為三堆,每堆9個,取其中兩堆分別放在天平的兩個盤上。若天平不平衡,可找到較輕的一堆;若天平平衡,則剩下來稱的一堆必定較輕,次品必在較輕的一堆中。
第二次:把第一次判定為較輕的一堆又分成三堆,每堆3個球,按上法稱其中兩堆,又可找出次品在其中較輕的那一堆。
第三次:從第二次找出的較輕的一堆3個球中取出2個稱一次,若天平不平衡,則較輕的就是次品,若天平平衡,則剩下一個未稱的就是次品。
例3 把10個外表上一樣的球,其中只有一個是次品,請你用天平只稱三次,把次品找出來。
解:把10個球分成3個、3個、3個、1個四組,將四組球及其重量分別用A、B、C、D表示。把A、B兩組分別放在天平的兩個盤上去稱,則
(1)若A=B,則A、B中都是正品,再稱B、C。如B=C,顯然D中的那個球是次品;如B>C,則次品在C中且次品比正品輕,再在C中取出2個球來稱,便可得出結論。如B<C,仿照B>C的情況也可得出結論。
(2)若A>B,則C、D中都是正品,再稱B、C,則有B=C,或B<C(B>C不可能,為什么?)如B=C,則次品在A中且次品比正品重,再在A中取出2個球來稱,便可得出結論;如B<C,仿前也可得出結論。
(3)若A<B,類似于A>B的情況,可分析得出結論。奧賽專題--抽屜原理
【例1】一個小組共有13名同學,其中至少有2名同學同一個月過生日。為什么?
【分析】每年里共有12個月,任何一個人的生日,一定在其中的某一個月。如果把這12個月看成12個“抽屜”,把13名同學的生日看成13只“蘋果”,把13只蘋果放進12個抽屜里,一定有一個抽屜里至少放2個蘋果,也就是說,至少有2名同學在同一個月過生日。
【例 2】任意4個自然數,其中至少有兩個數的差是3的倍數。這是為什么? 【分析與解】首先我們要弄清這樣一條規律:如果兩個自然數除以3的余數相同,那么這兩個自然數的差是3的倍數。而任何一個自然數被3除的余數,或者是0,或者是1,或者是2,根據這三種情況,可以把自然數分成3類,這3種類型就是我們要制造的3個“抽屜”。我們把4個數看作“蘋果”,根據抽屜原理,必定有一個抽屜里至少有2個數。換句話說,4個自然數分成3類,至少有兩個是同一類。既然是同一類,那么這兩個數被3除的余數就一定相同。所以,任意4個自然數,至少有2個自然數的差是3的倍數。
【例3】有規格尺寸相同的5種顏色的襪子各15只混裝在箱內,試問不論如何取,從箱中至少取出多少只就能保證有3雙襪子(襪子無左、右之分)?
【分析與解】試想一下,從箱中取出6只、9只襪子,能配成3雙襪子嗎?回答是否定的。