第一篇:素描-成角透視教案
素描-成角透視教案
【學生分析】
1、學生對象: 初中一年級(12歲)
2、教學內容:成角透視
3、內容分析:透視是美術基礎教學中一個重要的知識點,涉及面很廣,從小學中高年級、初中一年級及高考美術輔導培訓課的學習中均被列為重難點。在高等教育的美術專業學習中,透視有專門的教材,是一門必修課。由此,透視知識若存在問題,必是影響深遠的!掌握透視的原理和透視變化規律,是學習基礎素描,提高素描造型能力的重要課題。” 【教學目標】
1、知識目標:通過學習,細致觀察使學生理解成角透視消失規律
2、能力目標:培養分析探究能力、動手繪畫能力。
3、情感目標:培養愛美、會美、審美的能力。【教學重點】
理解成角透視基本概念和原理。【教學難點】
如何在繪畫中運用成角透視知識。【教 具】
鉛筆 橡皮 范畫、多媒體課件。【學 具】 鉛筆、橡皮。【教學過程】
一、復習近平行透視 導入新課
1、出示圖片,復習近平行透視的規律。
2.通過播放圖片學習成角透視的規律
二、學習新課 通過橋梁建筑研究成角透視
1、學習透視的基本術語。(1)視平線的概念(2)2個消失點的概念
2、學習成角透視。展示范畫
教師:【教師活動】:演示一正立方體,假如正立方體沒有一個面正對著你所產生的透視現象被稱之為什么透視? 生:成角透視?
【教師活動】平行透視有幾個消失點呢? 生:成角透視有兩個消失點。
三、課堂訓練
1展示范畫,講解本節課的重點 2教師示范,鼓勵學生發揮自己的想象力
【教師活動】:講解作圖提示,進行巡堂指導。
【學生活動】:完成課堂練習。
四、實踐應用 鞏固新知識。
1、這節課我們學習了哪種透視?它有什么規律?
2、看圖練習:哪些景物運用了成角透視
五 課后訓練
1.課下觀察樓房、馬路及兩邊樹木的透視變化。2.擺一擺,畫一畫立方體不同狀態透視的關系。教學總結與反思:
通過本課的互動教學,學生能進行自主學習、參與體驗、掌握透視作圖的方法與技巧,提高了操作能力;個別學生在學習過程中還要取長補短,調整好自己的作方畫法,以更好地提高學習效果。
第二篇:平行透視與成角透視教案示例
平行透視與成角透視教案示例
1、風景是怎樣表現物體空間的?
2、平行透視和成角透視各有什么消逝的規律? 教學目標:
讓學生理解透視是造成物體在繪畫中產生空間感的主要因素,并且掌握平行透視和成角透視的規律,進而激發學生動手的興趣。教學重點:
掌握平行透視和成角透視的消逝規律 教學難點:平行透視和成角透視的實際運用。教法:講授 設疑示范 鼓勵 教材分析:
本單元教材內容較少,符合各地根據自己的實際情況進行彈性教學,讓教師自己根據學生實際情況、條件進行教材的重新構建,從而對教師熟悉運用教材、教輔、工具書的要求提高到一個新的層面,鑒于教材的定位清楚,知識重點突出,給教師一個方向去自由發揮,這是教改和新課程理念的一個體現,教材是骨架,血肉靠師生根據教學目的去豐盈,極大提高了師生互動,積極探究。課型:綜合課 課時準備:
1、教具、多媒體課件、教材、直尺、裁紙刀、廢舊VCD外殼、廢三合板(三層板)
2、學具、鉛筆、素描紙(美術本)。授課過程:
①組織教學,按常規進行(1分鐘)。
②導入新課:大家同學在生活中,校園中一定發現很多有趣的現象,比如我們經常在公路兩旁看到排列著近高遠低的樹木,(展示霍貝瑪《林間小道》)還有成語“一葉幛目”這些現象都是我們親身經歷的,我們現在來討論一下路兩旁的樹木是不是近處的高,遠處的低呢? 收集同學討論結果:(估計)A、是因為眼睛的角度不同(視點)。B、樹木是一樣高的。
C、離眼睛越近,物體變大,得出物體的空間是由透視產生的,而透視是繪畫語言的重要組成部份,一幅優美的風景畫往往取決于透視空間的表現。展示經典的較美的幾幅風景畫(7分鐘)
③講授新課A,大家欣賞了以上藝術大師的風景畫以后我們來了解一下透視,透視是研究物體在人們觀察角度改變而呈現的不同狀況的一門科學,它包括光影透視,焦點透視,空氣透視,色彩透視(簡要的解釋)而且風景畫成為一種獨立的畫種,就是因為它能描繪秀麗山川、美麗校園、街頭巷尾……,有透視才有縱深感,有透視才符合物體的視覺真實,才能在二維的平面上創造三維的空間,風景畫就是這樣表現物體空間的!B、大家同學欣賞了這些優美的風景畫,你們能畫出這樣好的畫嗎?(不能)想畫出來嗎?(想)想畫出來!好那我們必須好好的來學習透視知識中的平行透視和成角透視。(展示圖片)引導同學觀察平行透視和成角透視中正方體不同角度,不同方位的變化(左、右、仰、俯、中)和二者之間的聯系和不同。從透視圖的觀察和理解以后,請問A,大家從二個透視圖中觀察到什么位置,正方體最沒主體感,(答案,在心點位置時)。B、大家觀察平行透視和成角透視有兩個顯著不同的特點,請大家商量一下給指出來,好嗎?(平行透視是當物體一個面正對我們時,它只有一個消逝點;成角透視是當物體一條邊正對我們時,它有兩個消逝點。)(5分鐘)
④課堂練習:我們學習了平行透視和成角透視后想不想畫點什么呢?今天我們就先從身邊最常見的物體,諸如:課桌凳、家電、電桿……。繪制出它們的透視圖!(展示教師自制范畫)巡視指導 展示學生作業
(實物投影儀)在學生作業上批改示范(12分鐘)
⑤小結:今天我們對風景畫是怎樣表現物體的空間感以及平行透視,成角透視進行了學習,大家課堂訓練畫得相當不錯,我相信下節課,大家將會畫得更好!
第三篇:《平行透視與成角透視》教案示例
《平行透視與成角透視》教案示例
山東省鄆城縣侯集中學 嚴作濤
教材分析
《平行透視與成角透視》是人教版義務教育課程標準實驗教科書美術七年級上冊第二單元“多彩的學習生活”中的第一個活動。
本課屬于“造型·表現”學習領域,教學內容知識量大,邏輯性強,在教材中占有重要的位置。學習本課有益于提高學生的觀察能力、審美能力、造型能力,是美術教學重點。
學生分析
考慮到初一學生的知識特點,學生已經有了一定基礎的造型能力和表現能力,好奇心強。為了激發學生學習興趣,鍛煉學生感性和理性思維的能力,培養創新精神,形成勇于探索與實踐的良好學風,我帶領學生到室外觀察校園場景,讓學生自制取景框,學生間相互合作、相互學習、相互評價,進一步加深對知識的鞏固和應用。
設計理念
“優美的校園”中將《平行透視和成角透視》知識與學生學習生活空間──校園造型結合起來,多角度、多方位、多視點地去發現、尋找、理解、表現校園建筑的美感。培養學生的空間意識和表現能力。
為了更有利于學生學習,我采用多媒體和示范的教學方法,讓學生輕松地學習視覺元素和透視法則,并在實踐中加以運用。
活動方式
采用小組自主合作學習的活動方式。教學目標
1.引導學生通過細致的觀察,理解掌握透視規律。
2.結合校園建筑物,學習方形物體的透視現象和規律,了解平行透視和成角透視的基本知識。
教學流程 一.導入主題
用投影放出校園甬道、教學樓線描圖(有透視錯誤、無立體感),分析近大遠小、近寬遠窄、近高遠低。
引導:我們在繪畫時,畫出的物體常常沒有立體感,原因是透視錯誤造成的,所以我們需要了解透視,運用透視規律來畫,糾正畫面中不符合透視規律的方法。你想知道什么是透視嗎?
二.學習透視與練習
教師向學生傳授知識點、了解透視術語。1.視點:觀察者眼睛的位置。
2.視平線:目光平視前方,在假想畫面上與視點等高的一條水平線。在開闊的野外,視平線是與地平線重合的。
3.主點:由視點向正前方延伸一條視中線,與視平線相交的一個點(亦稱“心點”)。4.余點:方形物體的兩組水平平行線向左右兩邊分別聚集并在視平線上消失的兩個點。請兩名學生,一站一坐,觀察石膏立方體和講桌對自己所處位置的視點、心點、視平線,并用取景框畫出來。
學生用取景框練習,教師巡視指導。[使學生了解透視現象,掌握透視規律,拓寬審美視野,引導學生的繪畫思路] 教師小結:在日常生活活中,我們看同樣大小的物體,近處的大,遠處的小;同樣高的物體,近處的高,遠處的低。這種現象就是透視變化,而“近大遠小”就是透視變化中最基本的規律。
三.探究與表現
1.觀看石膏正方體、長方體線描圖,在不同的位置、角度所呈現出的透視變化。(多媒體展示分析,引導學生觀察)
[師生討論、觀察透視現象,強化學生空間思維的形成] 2.平行透視;把物體放平,正面面對學生。小組討論:選舉學生代表回答問題。
生:上下線和視平線保持著平行關系,平行透視有1個消失點。
生:兩邊的豎線與視平線垂直,兩側的邊線呈傾斜狀,慢慢延長向心點集中,消失于心點。
教師小結:兩位同學回答都正確;方形物體的一組邊,如果與我們成平行狀,那么它的另一組邊則逐漸消失于心點,離我們近的線段就長,離我們遠的線段就短,這種現象就是平行透視。
用投影儀放出一幅正確的平行透視線描圖,請一同學上臺,驗證透視是否正確。學生學習興趣濃厚,爭先恐后地上臺驗證,學生上臺將斜線延長,延長線集中于心點,線描圖正確。
3.成角透視;物體的一角對著學生。
生:上下邊和左右邊的線變的傾斜了,延長線分別向視平線左右兩點集中,成角透視有2個消失點。
生:沒有平行線,都垂直于水平面。
教師小結:回答的很正確;物體的一角與我們正對,傾斜線延長并向視平線上的左右兩點消失,這種透視現象叫成角透視。
請一同學上臺驗證一幅成角透視線描圖,是否正確。四.知識擴展與小組競賽:
1.你熱愛我們的校園嗎?我們的校園美嗎?(播放建筑錄像,渲染氣氛)學習興趣高漲,表現欲望強烈。
2.帶著取景框,走,我們到校園一起去看看!分成四小組做透視練習。[把學生帶入校園環境中,了解場景構圖的特點] 3.學生作業,教師輔導。(通過學習透視,思路清晰,學生躍躍欲試。此時安排作業恰到好處)
教師:要求同學參照學校建筑,畫出一幅平行透視、成角透視的線描圖。教師輔導:針對有繪畫困難的學生,提醒他們透視要正確,重點輔導。
[學生自己動手練習,創造能力得到發揮,有利于學生個性的發展,鞏固了所學知識] 五.課堂小結:
把自己畫好的作品同學之間相互評論,每個小組找一幅有代表性的透視作品拿到前面展示,講一下透視步驟。
教學反思
在美術教學中,我們不僅要教會學生一些必要的知識和技能,更重要的是要提高學生的審美能力和調動學生的學習積極性。學生學習主動、積極,內在自我與外在環境實現了有效溝通,創新能力在評價交流過程中得到充分的肯定,并從中得到了自信心。為使每個學生都能參與到活動中來,學生的積極性被充分調動起來,凸顯了學生的主體性;而在學生發表意見時老師認真傾聽,在學生產生困惑時,老師適時點撥、指導,實現了教學相長和共同發展。在這堂課當中我運用邊講邊問、啟發思考、集中注意、師生共同參與,強化了師生互動教學過程;精心組織訓練,小步快進,當堂反饋,力爭把問題解決在課內。
——摘自人教網
第四篇:透視教案
教案
教學內容:平行透視
教學目的:掌握平行透視的透視規律,并熟練運用該規律制作室內透視效果圖。教學方法:講授與輔導
教學重點:
1、平行透視的透視規律
2、正方體的畫法
3、室內平行透視效果圖的制作 教學難點:室內平行透視效果圖的制作
教學內容
一、平行透視概述
平行透視又叫“一點透視”。我們在60°視域中觀察正方體,不論正方體在什么位置,只要有一個面與可視畫面平行,其他與畫面垂直的平行線必然只有一個主向滅點——心點。這種情況下,立方體和畫面所構成的透視關系就叫平行透視(圖1。
正方體的平行透視最少能看見一個面,最多可以看見三個面;只要有一個面距離觀察者最近,肯定有一對豎直面與畫面平行。
以立方體為例將平行透視的透視規律總結如下(圖2-
2、圖2-3):
(1)如果心點正處在立方體正面上或正面的邊上,只能看到一個面。
(2)如果立方體的位置在視中線上、下移動或在視中線上左右移動,就可看到正面和另一個直立面兩個面。
(3)如果立方體離開視中線和視平線就可看見正面、側面和頂面三個面。(4)立方體的頂面、底面和側面,離視平線和視中線越近越窄,越遠越寬。
1(5)立方體的頂面、底面和側面,正處在視平線和視中線上,這面就成了一條直線。(6)立方體如果處在視平線以下,遠高近低,不能見到底面。如果處于視平線以上,遠低近高,不能見到頂面。
(7)方形平面的透視形有兩邊是平行畫面的直線,另兩邊在心點消失。
(8)方形平面上下位置移動時,越靠近視平線越扁平。如果與視平線重疊,透視形就成了一條水平直線。
(9)方形平面左右位置移動時,正對視中線時,近處兩角成小于90°的銳角。一側邊與視中線重疊時,這一邊就成了與視平線垂直的直線。在左右兩側時,靠近視平線的兩角偏斜于心點。
(10)方形平面離視平線越近就越小。
在繪畫與設計中,平行透視表現的范圍非常廣泛。一是因為它只有一個滅點,形成一個視覺中心,所以能較突出地表現主題形象;二是因為它能使畫面產生平衡穩定之感,對稱感和縱深感強,通常適于表現莊重、嚴肅的大場景或大場面題材,并為題材主題配景。但需要注意的是,如果視心點位置選擇不好,容易使畫面顯得呆板。
圖2-2平行透視規律
(一)第二節平行透視中正方體的畫法
平行透視中正方體有一個由原線組成的可視的平行面,其透視形狀不變;只有一種水平變線,而視域中心是它的滅點,并且位置永遠不變,作圖原理較為簡單。作透視圖的實質就 2 是如何表現各種線段在縱深關系中的距離和長度變化。在透視的縱深關系中,不同透視方向的線段有兩類:一類是與畫面成垂直關系的線段;另一類是與畫面成傾斜關系的線段。平行透視圖中,測定與畫面垂直的線段透視長度可采用距點法。
所謂距點法,就是運用距點來測量的方法,即利用45°直角三角形原理,在平行透視圖上來測量垂直于畫面線段長度的畫法。距點法又稱測點法。距點用“D”表示,它到心點的距離和視點到心點的距離相等,位于視平線上心點的左側和右側。正方體的作圖步驟(圖2-4):
(1)定視點E,視平線HL,心點CV。畫與畫面平行的正方形ABCD。從ABCD四點分別引消失線至心點CV。
(2)延長CD線得E點,CD=DE?。由E?點引線至距點D得F點(即D點CV點的連線與ED線的交點),DF的長度就是正方形伸向遠方的透視長(深)度。
(3)由F點分別連接作垂直、水平線與B點CV點、C點CV點、A點CV點連線相交,各點連接形成圖形,即正方體的平行透視圖。
圖2-4 正方體平行透視畫法
第三節 室內空間平行透視圖的畫法
以一個寬4米、高3米、深5米的房間為例,室內空間透視圖的作圖步驟如下:設定畫面中的比例為4∶3∶5。
(1)定出視平線HL,心點CV,按比例定出寬度尺寸AB,AB線段為基線,過CV作A、B及各點的連線,確定距點D,D點CV點連線的距離等于視距(圖2-5)。
圖2-5 室內空間平行透視作圖步驟
(一)(2)按比例作AB兩點的垂直線,AC、BD即房間的真高線,連接D點CV點、C點CV點。在AB延長線上確定O點,BO線等于一個刻度。連線OD,與視心CV的各透視線形成交點,作各交點的水平線與A點CV點、B點CV點連線相交(圖2-6)。
(3)接著作垂直線、水平線,完成房間室內空間透視結構圖(圖2-7)。
圖2-6 室內空間平行透視作圖步驟
(二)圖2-7 室內空間平行透視作圖步驟
(三)第四節 等距離平行景物透視圖的畫法
等距離平行景物透視圖作圖步驟:
先畫最近第一根燈桿,從頂端和底端對心點CV點作消失線,確定燈桿的高低范圍。從燈桿二分之一處對CV點作消失線。根據需要(或按實際比例)畫第二根燈桿,過第一根桿頂端經第二根桿中點畫直線,相交于桿底端消失線的點就是第三根桿的位置。依此類推,畫出第四、五、六根燈桿(圖2-8)。圖2-8 等距離平行景物透視畫法
第五節 地板方格平行透視圖的畫法
在作平行透視圖中,可根據成45°對角變線必然消失于距點的原理,在原線上按原比例等分若干份,在直線上就可以形成透視的深度分割。平行透視的地板磚,就是實際應用中最好的例子。在圖2-9中,我們會發現所有方格的對角線都與距點和視點的連接線平行,也就是說,在透視圖中方格的對角線延伸后交于距點。另外,我們還會發現圖中所有方格垂直邊與心點和視點的連接線平行,這也說明,在透視圖中方格垂直邊的延長線交于心點。根據這一原理我們就可以輕松地繪制出地板方 格的平行透視圖了。
作圖步驟:
(1)在原線上,即方形的最近邊,根據作畫需要分成若干份。
(2)在原線的上方繪制一條平行線作為視平線,并在視平線上取一點作為心點。從各等分點向預定心點連線。這些線即為方格垂直邊的延長線。
(3)確定視距后,以心點為圓心,視距為半徑在視平線上作出距點。從原線的各等分點向距點連線。每條連接線與第2步做好的方格垂直邊延長線的交點,即為方格 水平方向的頂點。
(4)過這些交點畫水平線,就會出現近寬遠窄,漸漸消失的地板磚(圖2-10)。圖2-9 地板方格平行透視原理 圖2-10 地板方格平行透視作圖步驟
第七節平行透視圖中的常見錯誤平行透視圖中的常見錯誤主要有:
(1)距點過近,正方形圖像失真(圖2-17)。
(2)平行透視中各消失點不統一,或不在一條視平線上(圖2-
18、圖2-19)。
(3)線和面應有透視變化的沒有,不應有的透視變化反而有了;物體未畫平,后方或側方高于另一方(圖2-20)。
圖2-17 距點過近
圖2-18 各消失點不統一 圖2-19 消失點不在一條視平線上
圖2-20 物體未畫平
思考與練習
1.什么是平行透視?平行透視的特點有哪些? 2.從平常見到的圖片和繪畫作品中挑選出屬于平行透視的范例,并分析其透視規律。
3.用平行透視的畫法繪制一幅自己臥室的室內透視圖。要求:按透視規律和步驟進行,布局合理。
第五篇:透視教案
透視教案
我們面對的是三維世界,動畫畫面是二維的平面,如何在二維的平面中表現三維的世界呢?方法多種多樣,有土辦法,有洋辦法,有老辦法,有新辦法,最簡單的莫過于二維空間表現法,如兒童畫、鄉間的皮影,記得《鼴鼠的故事》嗎?都屬于這一類別。(演示范圖,學生討論,小結其特點,無縱深表現等。)
有人更喜歡在平面中再現立體三維,怎樣才能使二維的物品表現立體呢?于是我們就有了三維表現的方法,三維空間的表現方法中國、外國都有,中國人往往把縱深去的線都畫成45度角,用這種方法表現立體物。國外文藝復興時期,人們發現了一套科學的透視畫法,以正方形為例,大致分為三種情況處理:
一、平行透視——當六面體的任意一個面與畫者視線垂直時,我們按平行透視方法表現。⑴ 名詞解釋:
① 視
點:觀察者眼睛的位置。② 視平線:通過心點所做的水平線。③ 心
點:視線與畫面的垂直交點為心點。④平視、仰視、俯視的區別(看圖解說)⑵ 展示范圖,學生尋找規律。
試著尋找規律——① 與我們視線垂直的面不變;
② 往縱深延伸的線向視平線上的心點集中;
③ 以視平線為界,以上的變線前高后低,以下的 變線前低后高;
④ 西洋的焦點透視一個畫面只有一個心點,一條視平線。
總結規則:① 與我們視線垂直的面不變,縱深延伸線向視平線上的心點匯集;
② 到心點匯集線上的點高度相等,視平線上的點高度一致。
練習題:畫圓、畫六邊形、畫八邊形 思考題:為什么這兩輛車不在一個平面上?
答:視平線、心點不一致。
假定畫面B點站著一個高度為1.7m的人,那么圖中被選中的人物高度是多少?
假如在A、B點各站一個身高大約等于桌子高度3倍的人,請畫出?如果C點站了一個身高僅A/B點高度二分之一的小孩,那在畫面上要怎表示? 成角透視(平視)
適用范圍:當六面體的任意一個面與畫者視線都不垂直時,可以按成角透視處理。名詞解釋:
① 變線:物體因距離我們遠近而產生透視變化的線。
② 滅點:六面體變線的匯集點,它在視平線上,不同角度的六面體滅點也不同。③ 視覺范圍:眼睛看出去的空間范圍,形狀像圓錐體,視覺范圍一般是60度
試著尋找規律:① 六面體往縱深去的線以不同方向為組合匯集向滅點,滅點成對出現,置放方向不同的六面體有不同的成對滅點,但所有的滅點都應在是平線之上。
② 以視平線為界,以上的變線近高遠低,以下的變線近低遠高。
③ A、B、C、D點高度一致,向滅點匯集的變線上的任意點高度相等。
規則介紹:六面體往縱深方向的去線,向視平線上兩端滅點匯集,滅點距離應寬一些。(起碼視野的1.5倍)思考題:畫圓柱
在A點的位置畫同一方向行駛的汽車(示意即可),找出2個滅點并利用。
要在B點位置畫一不同方向行駛的汽車,如何畫?(找出滅點,找出視平線,畫出一對滅點的汽車。)
C、D點有一個人身高約為1.7m,轎車頂高為1.5m,請畫出示意圖,該人帶一個小孩身高僅大人的1/3,位于E點,請畫出示意圖。傾斜透視(平視)
適用范圍:平視狀態下(不論是平行透視,成角透視時),當遇到傾斜面(為屋頂、樓梯、上下坡等)時適用傾斜透視。名詞解釋: ① 天點:在地平線上的消失點。② 地點:在地平線下的消失點。
尋找規律:同一物傾斜度大,天點更高,地點更低
連接坡面上的任意點至天點或地點,這線至坡面的距離相等。
規則介紹:① 在傾斜透視的情況下,傾斜面的變線向天點、地點匯集。
② 傾斜透視中的平行透視下的天、地點在心點的y軸上,左右畫平行線。
③ 傾斜透視中的成角透視的天,地點在天點的y軸上。小貼士:利用方體繪制斜面 仰視/俯視
適用范圍:當視線高仰,或低俯時,我們把這種狀態稱為仰視、俯視。
這是動畫中常用的視覺角度,舉例。
規則介紹:仰、俯視時,原六面體的垂直線也發生變形,分別向天、地點匯集。