第一篇:六年上冊《按比分配解決問題》教學設計
按比分配解決問題
教學內容:第54頁例2及相關練習。教學目標:
1.能在實例的分析中理解按比分配的實際意義。
2.初步掌握按比分配的解題方法,運用所學知識解決按比分配的實際問題。3.通過貼近學生生活的實例學習,在觀察、研討、交流中讓學生感受到數學學習和活動的樂趣。
教學重點:理解按比分配的意義,能運用比的意義解決按比分配的實際問題。教學難點:自主探索解決按比分配實際問題的策略,能運用不同的方法多角度解決按比分配的實際問題。
教學過程:
一、情境導入
課件出示:女生與男生的人數比是5:7。
師:“女生和男生的人數比是5:7”,從這句話中,你得到了哪些信息?
二、實例探究
(一)自主探索
1.出示:六(2)班一共有48人,女生與男生的人數比是5:7。
師:根據這兩條信息,你能求出什么?男生、女生各有多少人呢?你會算嗎? 2.學生獨立嘗試。3.同桌交流。
師:與同桌交流一下你的想法和做法,有不同的方法都可以寫下來。(教師巡視指導)
4.匯報:
請不同做法的學生上臺板演,交流匯報。預設(1):48÷(5+7)=4(人); 女生:4×5=20(人); 男生:4×7=28(人)。
師:介紹一下你的想法吧。第一步求的是什么?第二步和第三步分別是什么意思?這種方法是先求什么?再算什么?
師:還有不同的解決方法嗎?
/ 4
預設(2):女生:男生:師:這種方法中,(人)。
(人);
是什么意思?呢?
5.小結:剛才同學們用不同的方法解決了同一個問題,我們再一起來看看(配合課件演示)。
方法一是根據比的意義,看看一共分成幾份,先求出一份的數量,再算幾份的數量;方法二是根據比與分數的關系,看看男生、女生各占總人數的幾分之幾,再用分數的知識來解決。這兩種方法都不失為好方法,你更喜歡哪種方法?為什么?
(二)揭示課題
師:像上題這樣,把數量按一定的比來進行分配的方法叫做按比分配。今天我們就一起學習按比分配。(板書課題:按比分配)
(三)實踐嘗試
出示例2:這是某種清潔劑濃縮液的稀釋瓶,瓶子上標明的比表示濃縮液和水的體積之比。按照這些比,可以配制出不同濃度的稀釋液。
1.閱讀與理解。
濃縮液和稀釋液指的是什么?(濃縮液是純清潔劑,稀釋液是加水之后的清潔劑。)
師:你能用剛才的方法解決這一問題嗎?(學生獨立解題,交流匯報。)2.分析與解答。
預設(1):每份是500÷5=100(mL),濃縮液有100×1=100(mL),水有100×4=400(mL)。
/ 4
師:這里的5表示什么?(把總體積平均分成5份。)
預設(2):濃縮液有師:
(mL),水有
;)
(mL)。
表示什么?(濃縮液占總體積的呢?(水占總體積的。)
3.回顧與反思。
師:可以用怎樣的方法對結果進行驗證? 預設:看濃縮液與水的比是不是等于1:4。
小結:體現在問題解決的過程中,要看清楚1:4到底是哪兩個量之間的比。
三、實踐應用
(一)基本練習
1.師:打開教材第55頁,看第一題。
(1)師:用自己喜歡的方法獨立算一算,看誰算得又快又對。(2)交流:說說你的方法。
2.出示:李伯伯家里的菜地共800平方米,他準備種黃瓜和茄子。師:請你來設計一下,可以怎么分配? 預設一:1:1。
師:如果按1:1分配,那么種黃瓜和茄子的面積分別是多少平方米?(學生自主計算)
師:通過計算,發現按1:1分配其實就是我們以前學過的“平均分”。是的,平均分就是按1:1分配,是按比分配中的特例。
對于其余各種分配方法,都讓學生快速算一算再交流。
(二)發展提高
1.師:增加點難度行不行?我把這一題變一下。
出示教材第56頁第7題:李伯伯家里的菜地共800平方米,他準備用
種西紅柿,剩下的按2:1的面積比種黃瓜和茄子。三種蔬菜的面積分別是多少平方米?
(1)比較:這一題和前幾題相比,有什么不同?
/ 4
(2)分析:這一題是把哪個數量進行分配,按怎樣的比來分配?這個數量直接告訴我們了嗎?所以我們應該先算什么?那你會算嗎?
(3)學生嘗試。(4)交流算法。
師:你是怎么算的?(展示學生作業)還有同學用其他方法做嗎?介紹一下你們的方法。
師:這幾位同學的方法有什么共同點?有什么不同點?
2.出示:學校把栽70棵樹的任務按照六年級三個班的人數分配給各班。一班有46人,二班有44人,三班有50人。三個班各應栽多少棵樹?
(1)比較分析:
師:這一題又有什么不一樣?沒有直接給出“比”,不能直接按比分配了,那怎么辦?
師:我們可以先求出比,再按比進行分配。(2)學生獨立嘗試,交流算法。
(三)小結
師:通過上面兩個問題的解答,你覺得在解答按比分配的問題時應注意什么?
師:說得對,在解答這類問題時,我們要認真審題,看清楚是對哪個數量進行分配,是按什么比分配的;如果題目沒有直接給出比,我們要先根據題目信息求出比,再按比分配。
四、課堂總結
1.師:學到這里,誰能告訴我們,今天這節課我們主要研究了什么?說說你的收獲和感受。(指名回答)
2.課外延伸。
師:比在生活中應用非常廣泛,請你課后搜集生活中的實例,編一道按比分配的題目,在下一節課中進行交流學習。
/ 4
第二篇:《按比分配解決問題》教學設計
《按比分配解決問題》教學設計
教學內容:人教版小學數學教材六年級上冊第54頁例2及相關練習。
教學目標:
1.能在實例的分析中理解按比分配的實際意義。
2.初步掌握按比分配的解題方法,運用所學知識解決按比分配的實際問題。
3.通過貼近學生生活的實例學習,在觀察、研討、交流中讓學生感受到數學學習和活動的樂趣。
教學重點:理解按比分配的意義,能運用比的意義解決按比分配的實際問題。
教學難點:自主探索解決按比分配實際問題的策略,能運用不同的方法多角度解決按比分配的實際問題。
教學準備:課件。
教學過程:
一、情境導入
課件出示:女生與男生的人數比是5:7。
師:“女生和男生的人數比是5:7”,從這句話中,你得到了哪些信息?
【設計意圖】一條簡單的現實生活信息,不但使學生體會到數學與生活的聯系,激發了學生的學習興趣,而且培養了學生分析問題、解決問題的能力。
二、實例探究
(一)自主探索
1.出示:六(2)班一共有48人,女生與男生的人數比是5:7。
師:根據這兩條信息,你能求出什么?男生、女生各有多少人呢?你會算嗎?
2.學生獨立嘗試。
3.同桌交流。
師:與同桌交流一下你的想法和做法,有不同的方法都可以寫下來。(教師巡視指導)
4.匯報:
請不同做法的學生上臺板演,交流匯報。
預設(1):48÷(5+7)=4(人);
女生:4×5=20(人);
男生:4×7=28(人)。
師:介紹一下你的想法吧。第一步求的是什么?第二步和第三步分別是什么意思?這種方法是先求什么?再算什么?
師:還有不同的解決方法嗎?
預設(2):女生:(人);
男生:(人)。
師:這種方法中,是什么意思?呢?
5.小結:剛才同學們用不同的方法解決了同一個問題,我們再一起來看看(配合課件演示)。
方法一是根據比的意義,看看一共分成幾份,先求出一份的數量,再算幾份的數量;方法二是根據比與分數的關系,看看男生、女生各占總人數的幾分之幾,再用分數的知識來解決。這兩種方法都不失為好方法,你更喜歡哪種方法?為什么?
【設計意圖】在引導學生探究時,沒有直接用書本上的例題,而是用了班級男生、女生人數比這一實際情況。因為是學生非常熟悉的事例,所以學生很樂意去探索、交流、實踐。這樣的設計不僅降低了學習的難度,而且激發了學生的學習興趣。
(二)揭示課題
師:像上題這樣,把數量按一定的比來進行分配的方法叫做按比分配。今天我們就一起學習按比分配。(板書課題:按比分配)
(三)實踐嘗試
出示例2:這是某種清潔劑濃縮液的稀釋瓶,瓶子上標明的比表示濃縮液和水的體積之比。按照這些比,可以配制出不同濃度的稀釋液。
1.閱讀與理解。
濃縮液和稀釋液指的是什么?(濃縮液是純清潔劑,稀釋液是加水之后的清潔劑。)
師:你能用剛才的方法解決這一問題嗎?(學生獨立解題,交流匯報。)
2.分析與解答。
預設(1):每份是500÷5=100(mL),濃縮液有100×1=100(mL),水有100×4=400(mL)。
師:這里的5表示什么?(把總體積平均分成5份。)
預設(2):濃縮液有(mL),水有(mL)。
師:表示什么?(濃縮液占總體積的;)
呢?(水占總體積的
3.回顧與反思。
。)
師:可以用怎樣的方法對結果進行驗證?
預設:看濃縮液與水的比是不是等于1:4。
小結:體現在問題解決的過程中,要看清楚1:4到底是哪兩個量之間的比。
【設計意圖】把書上的例2作為嘗試題,讓學生獨立嘗試、交流,最后進行小結。這樣不但培養了學生獨立審題、分析的能力,而且進一步加深對兩種方法的理解,讓學生初嘗成功的樂趣。
三、實踐應用
(一)基本練習
1.師:打開教材第55頁,看第一題。
(1)師:用自己喜歡的方法獨立算一算,看誰算得又快又對。
(2)交流:說說你的方法。
2.出示:李伯伯家里的菜地共800平方米,他準備種黃瓜和茄子。
師:請你來設計一下,可以怎么分配?
預設一:1:1。
師:如果按1:1分配,那么種黃瓜和茄子的面積分別是多少平方米?(學生自主計算)
師:通過計算,發現按1:1分配其實就是我們以前學過的“平均分”。是的,平均分就是按1:1分配,是按比分配中的特例。
對于其余各種分配方法,都讓學生快速算一算再交流。
(二)發展提高
1.師:增加點難度行不行?我把這一題變一下。
出示教材第56頁第7題:李伯伯家里的菜地共800平方米,他準備用剩下的按2:1的面積比種黃瓜和茄子。三種蔬菜的面積分別是多少平方米?
(1)比較:這一題和前幾題相比,有什么不同?
種西紅柿,(2)分析:這一題是把哪個數量進行分配,按怎樣的比來分配?這個數量直接告訴我們了嗎?所以我們應該先算什么?那你會算嗎?
(3)學生嘗試。
(4)交流算法。
師:你是怎么算的?(展示學生作業)還有同學用其他方法做嗎?介紹一下你們的方法。
師:這幾位同學的方法有什么共同點?有什么不同點?
2.出示:學校把栽70棵樹的任務按照六年級三個班的人數分配給各班。一班有46人,二班有44人,三班有50人。三個班各應栽多少棵樹?
(1)比較分析:
師:這一題又有什么不一樣?沒有直接給出“比”,不能直接按比分配了,那怎么辦?
師:我們可以先求出比,再按比進行分配。
(2)學生獨立嘗試,交流算法。
(三)小結
師:通過上面兩個問題的解答,你覺得在解答按比分配的問題時應注意什么?
師:說得對,在解答這類問題時,我們要認真審題,看清楚是對哪個數量進行分配,是按什么比分配的;如果題目沒有直接給出比,我們要先根據題目信息求出比,再按比分配。
【設計意圖】創設問題情境,從基本練習到綜合性較強的問題,再到沒有直接給出比的題目,層層深入,讓學生在解決實際問題的過程中感受學習的樂趣和價值,不僅培養了學生獨立解題的能力,而且還可以讓學生在實踐的探索中驗證、品嘗自己的學習成果,再次感受成功帶來的樂趣。
四、課堂總結
1.師:學到這里,誰能告訴我們,今天這節課我們主要研究了什么?說說你的收獲和感受。(指名回答)
2.課外延伸。
師:比在生活中應用非常廣泛,請你課后搜集生活中的實例,編一道按比分配的題目,在下一節課中進行交流學習。
【設計意圖】讓學生自己抓住“收獲”、“感受”來進行課堂總結,可以再次讓學生對所學知識進行梳理,培養評價、反思的能力,讓學生更加深切地感受到數學的魅力。
第三篇:《按比分配》教學設計
《按比分配》教學設計
教學內容:教材第54頁比的應用。教學目標:
1、在自主探索中理解按比例分配的意義。
2、掌握按比例分配問題的結構特點以及解題方法,能正確解答按比例分配問題。
3、培養優化意識和平合作精神。教學重難點:
理解按一定比例來分配一個數量的意義,根據題中所給的比,掌握各部分量占總數量的幾分之幾,能熟練地求出各部分量。教學過程:
一、創設情景,導入新課 1.口頭列式并解答。
(1)200 kg的 是多少千克?[200× =50(kg)](2)某班有男生18人,女生14人,男生和女生人數的比是多少?(18∶14=9∶7)(3)學校體育組買來了三種球,其中籃球5個,足球4個,排球8個。①買來的籃球、足球和排球的比是多少?(5∶4∶8)②籃球的個數占三種球總數的幾分之幾? ③足球的個數占三種球總數的幾分之幾? ④排球的個數占三種球總數的幾分之幾?
⑤如果不知道買來的球的總數,只知道買來的籃球、足球和排球的個數比,你能求出這三種球的個數各占球總數的幾分之幾嗎?(引導學生根據份數思考問題)2.引入新課。
比的應用十分廣泛,這節課我們就來學習比在生活中的應用。(板書課題)設計意圖:跳出學生原有的知識結構,把連比轉化成總數的幾分之幾。分散解決問題的難點,激發學生探究新知的欲望。
二、探索交流,解決問題 1.教學教材54頁例2。
(1)PPT課件出示教材54頁例2:如果按1∶4的比配制了一瓶500 mL的稀釋液,其中濃縮液和水的體積分別是多少?
(2)閱讀與理解。
①題目中要配制什么?(配制500 mL的稀釋液)②是按什么進行配制的?(濃縮液和水的體積按1∶4的比進行配制)③“濃縮液和水的體積比是1∶4”是什么意思?(就是說在500 mL的稀釋液中,濃縮液的體積占1份,水的體積占4份,一共是5份,濃縮液的體積占稀釋液體積的幾分之幾,水的體積占稀釋液體積的幾分之幾)(3)分析與解答。
討論:你能求出濃縮液和水的體積各是多少毫升嗎?(引導學生小組討論解 交流匯報。(結合學生回答,板書解法)思路一 先把比化成分數,用分數乘法來解答。稀釋液平均分成的份數:1+4=5(份)濃縮液的體積:500× =100(mL)水的體積:500× =400(mL)思路二 把比看作分得的份數,先求一份數,再求幾份數。A.稀釋液平均分成的份數:1+4=5(份)B.濃縮液的體積:500÷5×1=100(mL)C.水的體積:500÷5×4=400(mL)答:濃縮液有100 mL,水有400 mL。(4)驗證所求問題。
方法一 把求得的濃縮液和水的體積相加,看是不是等于稀釋液的體積。
方法二 把求得的濃縮液和水的體積寫成比的形式,看化簡后是不是等于1∶4。2.明確按比例分配的意義。
在日常生活中,我們常常需要把一個數按照一定的比來進行分配。這種分配的方法通常叫做按比例分配。(板書:按比例分配)3.整理解題思路。
(1)按比例分配的問題可以轉化成整數的歸一問題,即先用除法求出每份數,再用乘法求出幾份數。(板書:整數的歸一問題)(2)按比例分配的問題也可以轉化成分數問題,先把比轉化成,再用總數×。設計意圖:在原有知識的基礎上構建新知,重點是把幾個量的比轉化成這幾個量分別占總量的幾分之幾。通過讀題、釋疑、討論等幫助學生弄清按比例分配問題的常用解題思路,培養學生分析問題、解決問題的能力。
三、鞏固應用,內化提高 1.教材55頁1、2題。
2.教材56頁11題。(注意引導學生先求出一個長、一個寬、一個高的長度和,再求解)
四、回顧整理,反思提升
1、通過本節課的學習,你有什么收獲?
2、布置作業
1.教材55頁3、4、5、6題。2.教材56頁7題。
第四篇:《按比分配》教學設計
教學目標:
使學生理解按比分配的意義,掌握按比分配問題的解答方法。培養學生探究知識的能力和良好的思維品質,以及解決簡單實際問題的能力,滲透轉化的數學思想。
教學要求:
通過解決生活中的按比分配問題對學生進行德育教育。
教學重點:
理解按比分配的意義,掌握按比分配問題的解答方法。
教學難點:
把比轉化成分數。
教學用具:
計算機、幻燈片等。
教學過程:
一、創設情境,引出新課。
兩個人共同出錢買了幾張彩票,結果有一張中獎。能平均分配獎金的數目嗎?從而引出課題:按比分配(板書)
二、設疑架橋,解決問題。
1、出示例5:請同學們仔細閱讀題目,理解題意,說一說自己得到了哪些信息。你們怎樣理解3:2的含義,先在小組里交流。
交流的結果可能會有三種:
(1)紅色方格數是黃色方格數的3/2,黃色方格數是紅色方格數的2/3。
(2)把30個方格平均分成5份,其中3份涂紅色,2份涂黃色。
(3)紅色方格數占總數的3/5;黃色方格數占總數的2/5。
按3:2分配涂色,你們估計哪種顏色的格子會多一些?在自己的本子上算一算?
老師說:誰愿意把自己的算法說給大家聽?
a:學生的第一種方法:3+2=5(份)30÷5=6(格)6×3=18(格)6×2=12(格)老師說:這樣的做法可以嗎?(他的方法很正確。)
b:學生的第二種方法:3+ 2=5,紅色:30×3/5=18(格)
黃色:30×2/5=12(格)
老師說:這種算法也不錯,說說你的想法。(學生說:3+2=5份,總共有5份,紅色方格數就占總數的3/5,黃色方格數數就占總數的2/5,拿總共的30格去乘對應的分數就得到了對應的量)
老師說:誰再來說一說這里的3/5和2/5別表示什么?怎么得到的?
老師說:求兩種顏色各分得多少,為什么都要拿30去乘這兩個分數?(學生說:實際上就求30的3/5和2/5是多少?所以用30去乘這兩個分數)
老師說:比較這兩種算法,想一想有什么不同?
(第一種算法是先算1份量,再算幾份量,第二種算法是先找出部分量占總量的幾分之幾,再用總量去乘這些分數。)
老師說:說得太好了,第一種算法實際上是把比轉化成了份數,先算出1份數,再分別算出幾份數,第二種算法實際上是把比轉化成了分數,先找出各部分量分別占總量的幾分之幾,再用求一個數的幾分之幾是多少的方法進行計算。
2、學校把栽280棵樹的任務,按照六年級三個班的人數,分配給各班。一班有47人,二班有45人,三班有48人。三個班各應栽樹多少棵?
3、修校門路用了20噸的混凝土,水泥、沙子和石子的比是2:3:5,需要水泥、沙子和石子各多少噸?
三、練習
1、一個長方形周長60厘米,長與寬的比為3 :2,這個長方形的面積是多少平方厘米?
2、有一個長方體,長、寬、高的比為3 :2:1,這個長方體的體積是多少?
四、總結
今天這節課我們學習了什么內容?(按比分配問題)
你們有什么收獲?(弄清總量,總份數,每一個占總數的多少)
還有什么不明白的地方?(同學有不明白的地方老師在解答。)
第五篇:按比分配教學設計
一、導入課題
1.同學們,要把100個蘋果分給幼兒園大班和小班的小朋友,你覺得怎么分?每個班50個蘋果,也就是兩個班分的同樣多,這種分法我們稱為平均分配。(板書:平均分)平均分配,體現了分得公平和公正。
那如果大班有30人,小班有20人,你認為這樣平均分配還公平嗎?(不公平)為什么?因為人數不一樣多,有道理,在這里,平均分配反而顯得不公平,那你們覺得怎樣分配才比較合理呢?同桌趕快商量商量。(按人數分)
大家的觀點都表明了一個心愿,就是希望按人數的多少來分配蘋果,是嗎?這里面就牽涉到了一種新的分配方法,其實,在實際生活中,當平均分配不合理時就需要一種新的分配方法,這就是今天我們要研究的,按比分配(板書)
2、前面我們已經認識了比,如果已知:數學興趣小組男生和女生的人數比是3︰2。從這個信息中你能想到什么呢?
你們能快速地把比轉化為份數,比還和什么數有關系?誰能把它轉化為分數,來表示這個興趣小組男女生人數之間的關系?你們看,我們可以把一個比轉化成份數和分率,進一步確定分數、份數、比之間確實存在著緊密聯系,并且它們還可以相互轉化。
3.這個興趣小組的總人數是幾份?老師還有一個問題:根據這個信息你能確定這個興趣小組男女生各有多少人嗎?不能,為什么?因為不知道數學興趣小組的總人數。很好,這里是把總人數平均分成5份,總人數不同得出的男女生的人數會不一樣,總人數越大每一份就會越大。
二、新授
其實,按比分配在我們的生活和生產中應用非常廣泛,比如配試劑、調果汁、做蛋糕等都需要按比分配的方法。
1、大家知道,我們家里面廚房中的油煙機上的油污用清水是不是很難清洗,那怎么辦呢?對,清洗這種很重的油污要用清潔劑,通常我們都要在清水中加入一定量的清潔劑的濃縮液來稀釋一下使用。瞧,這是某種清潔劑濃縮液的稀釋瓶,用它呢,可以稀釋清潔劑的濃縮液。仔細觀察,在這個稀釋瓶上你發現了什么?看到這幾個比,你們有什么想說的嗎?瓶子上標明的比表示濃縮液和水的體積之比。按照這些比,可以配制出不同濃度的稀釋液,用來清洗不同的東西。誰來說說看,怎樣利用這個稀釋瓶來配置1:3的稀釋液呢(先倒入一份濃縮液,再倒入3份的水就配制出幾份的稀釋液。)
2.李阿姨正在配置稀釋液,我們快去看看。課件出示例2 師:請大家認真讀題,先獨立思考下面的問題,然后再小組討論交流各自的想法。1)閱讀和理解: 500ml是什么? 1:4表示誰與誰的比? 要求的是什么?
哪個組先來展示交流?
500ml是配好的稀釋液的體積。1:4表示什么意思?你還能想到什么?
2)分析與解答 1.根據信息畫畫圖,弄清數量之間的關系。
2.然后獨立嘗試解決問題。
誰愿意來黑板上板演,方法一: ① 總份數:4+1=5 ② 每份是: 500÷5=100(mL)③ 濃縮液有:100×1=100(mL)④ 水有:100×4=400(mL)
請這個同學談談自己的思路,生:先求一份的體積,再求出一份濃縮液的體積,和4份水的體積,請同樣用這種方法解答的同學舉手??磥砟愕闹С终哌€真是不少啊。懂了嗎?我們再來回顧一下,出示課件
這些同學是把比轉化為份數來解答的,還有其他的解法嗎? 方法二: ① 總份數:4+1=5 ② 濃縮液有:500×1/5=100(mL)③ 水有:500×4/5=400(mL)
請這個同學談談他們的思路,生:在稀釋液中,濃縮液占1份,水占4份,一共5份。那么,濃縮液占總數的1/5,就是500×1/5=100(mL)水占總數的4/5就是500×4/5=400(mL)哪些同學也是這樣解答的?他們和你一樣都是英雄,因為英雄所見----略同。這兩個同學的思路都很清晰,兩種方法都出現了5,誰來說說5表示什么?就是把誰平均分成5份?
師:把一個數量按一定的比來進行分配的方法,叫做按比分配。同學們用了兩種方法來解決這個問題,我們再來回顧一下這兩種方法的不同思路。
方法一先求出總份數,再求出一份是多少?最后求這樣的幾份是多少。轉化成整數除法和乘法解決問題,簡單的說就是把比轉化為份數。
方法二也是先求出總份數,然后確定各部分是總數的幾分之幾,再求總數的幾分之幾是多少。轉化成分數乘法解決問題,簡單的說就是把比轉化為分率。
這兩種方法都是應用數學上的“轉化思想”來解決問題的,我個人覺得這兩種方法各有特色,建議大家都掌握。尤其是哪種方法不習慣,我們就越要挑戰自己,多加練習,熟能生巧。3)回顧與反思 怎樣驗證你們的結論是正確的呢?(1)濃縮液+水=500mL(2)濃縮液︰水=1︰4 檢驗時可以把算出的兩個重量相加,看是不是等于總量500毫升。還可以用濃縮液除以水,看濃縮液和水的比是不是1:4。
很好,這兩種方法都是看,得出的結果是不是符合題目中的兩個條件。檢驗也是我們解決問題的重要環節,它能告訴我們自己的解答是否正確,使我們養成對自己做的每一件事情都要負責的態度。
3、練習:
師:剛才我們共同探討解決了這樣一道“按比分配”的問題,覺得有困難嗎?有信心獨自完成這樣的題目嗎?好,那下面就試一試,看看你的身手怎么樣” 出示:試一試:1
2、生活中除了調配試劑我們能用到按比分配的方法,在早餐搭配問題中也存在這樣的方法,這是亮亮某一天的早餐 亮亮的早餐表
自己讀一讀 面包 雞蛋 牛奶
100g 50g 200g 1)亮亮的早餐是按怎樣的比搭配的? 2)如果亮亮的媽媽按同樣的比準備420g早餐,算算各種食物分別需要多少g? 試著自己解決,然后再跟同伴交流一下
這道題跟剛才做的題有什么不同?剛才是兩個量的比,這道題是三個量的連比
連比可以是三個或三個以上數的比,在我們數學中還有很多,比如一個三角形三個內角度數的比是1:2:3.,連比只表示三個或三個以上同類量的倍比關系而不能理解為連除,也不能表示不同類量的比。
3、陳老師這兩天嗓子有點不舒服,醫生讓我每用淡鹽水來漱口,一般情況下,1毫升的鹽要搭配20毫升的水,我想配制一杯210毫升的淡鹽水,請你們用心幫我搭配一下,需要鹽和水各多少克? 獨立完成,生答師板演,說說比是怎么來的?很多時候,題目里并不會明明白白告訴你比是多少,需要我們用慧眼去判斷分析,找出它們是按什么比來分配的,再進行計算。
4.拓展練習:有一個長方形的花壇,周長200米,長與寬的比是3∶2。這個花壇的長和寬分別是多少米?指名匯報。這道題一定讓大家對按比分配的問題有了更深刻的認識。解題時要注意看清楚題目中的總量是不是比所要分配的總量。
你覺得平均分配是否也可以看成按比分配呢?為什么?1:1,對,平均分配可以看成是按比分配的特殊情況,即按1:1進行分配。
5、反思總結
會學習的同學總是善于總結和反思,回顧一下,這節課,我們學習了什么內容?
1、按比分配問題的題目有什么特點?(有一個比和一個的總量)
2、我們可以怎樣解答按比分配的問題?你學會了幾種方法?(方法一:把比轉化成份數,方法二:把比轉化成分率)今天的這節課,更讓我們深切的體會到數學就在我們身邊,假如我們能多用學到的數學知識去分析和解決生活中的實際問題,那么數學學習將會變得更有滋味,更有價值。