第一篇:寧波中考壓軸題四個解題技巧
寧波中考壓軸題四個解題技巧,力爭140以上
各類題型的中考數學壓軸題在近幾年的中考中慢慢涌現出來,比如設計新穎、富有創意的,還有以平移、旋轉、翻折等圖形變換為解題思路的。中考數學壓軸題,解題需找好四大切入點。
切入點一:做不出、找相似,有相似、用相似
壓軸題牽涉到的知識點較多,知識轉化的難度較高。學生往往不知道該怎樣入手,這時往往應根據題意去尋找相似三角形。
切入點二:構造定理所需的圖形或基本圖形
在解決問題的過程中,有時添加輔助線是必不可少的。對于北京中考來說,只有一道很簡單的證明題是可以不用添加輔助線的,其余的全都涉及到輔助線的添加問題。中考對學生添線的要求還是挺高的,但添輔助線幾乎都遵循這樣一個原則:構造定理所需的圖形或構造一些常見的基本圖形。
切入點三:緊扣不變量,并善于使用前題所采用的方法或結論
在圖形運動變化時,圖形的位置、大小、方向可能都有所改變,但在此過程中,往往有某兩條線段,或某兩個角或某兩個三角形所對應的位置或數量關系不發生改變。切入點四:在題目中尋找多解的信息
圖形在運動變化,可能滿足條件的情形不止一種,也就是通常所說的兩解或多解,如何避免漏解也是一個令考生頭痛的問題,其實多解的信息在題目中就可以找到,這就需要我們深度的挖掘題干,實際上就是反復認真的審題。
總之,中考數學壓軸題的切入點有很多,考試時并不是一定要找到那么多,往往只需找到一兩個就行了,關鍵是找到以后一定要敢于去做。有些同學往往想想覺得不行就放棄了,其實絕大多數的題目只要想到上述切入點,認真做下去,問題基本都可以得到解決。
第二篇:2013中考數學壓軸題四個解題技巧
2013中考數學壓軸題四個解題技巧
各類題型的中考數學壓軸題在近幾年的中考中慢慢涌現出來,比如設計新穎、富有創意的,還有以平移、旋轉、翻折等圖形變換為解題思路的。中考數學壓軸題,解題需找好四大切入點。
切入點一:做不出、找相似,有相似、用相似
壓軸題牽涉到的知識點較多,知識轉化的難度較高。學生往往不知道該怎樣入手,這時往往應根據題意去尋找相似三角形。【查看:歷年中考數學試題】
切入點二:構造定理所需的圖形或基本圖形
在解決問題的過程中,有時添加輔助線是必不可少的。對于北京中考來說,只有一道很簡單的證明題是可以不用添加輔助線的,其余的全都涉及到輔助線的添加問題。中考對學生添線的要求還是挺高的,但添輔助線幾乎都遵循這樣一個原則:構造定理所需的圖形或構造一些常見的基本圖形。
切入點三:緊扣不變量,并善于使用前題所采用的方法或結論》》》2012中考數學知識點
在圖形運動變化時,圖形的位置、大小、方向可能都有所改變,但在此過程中,往往有某兩條線段,或某兩個角或某兩個三角形所對應的位置或數量關系不發生改變。
切入點四:在題目中尋找多解的信息
圖形在運動變化,可能滿足條件的情形不止一種,也就是通常所說的兩解或多解,如何避免漏解也是一個令考生頭痛的問題,其實多解的信息在題目中就可以找到,這就需要我們深度的挖掘題干,實際上就是反復認真的審題。
總之,中考數學壓軸題的切入點有很多,考試時并不是一定要找到那么多,往往只需找到一兩個就行了,關鍵是找到以后一定要敢于去做。有些同學往往想想覺得不行就放棄了,其實絕大多數的題目只要想到上述切入點,認真做下去,問題基本都可以得到解決。
第三篇:中考數學壓軸題四個解題技巧
中考數學壓軸題四個解題技巧
各類題型的中考數學壓軸題在近幾年的中考中慢慢涌現出來,比如設計新穎、富有創意的,還有以平移、旋轉、翻折等圖形變換為解題思路的。中考數學壓軸題,解題需找好四大切入點。
切入點一:做不出、找相似,有相似、用相似
壓軸題牽涉到的知識點較多,知識轉化的難度較高。學生往往不知道該怎樣入手,這時往往應根據題意去尋找相似三角形。【查看:歷年中考數學試題】
切入點二:構造定理所需的圖形或基本圖形
在解決問題的過程中,有時添加輔助線是必不可少的。對于北京中考來說,只有一道很簡單的證明題是可以不用添加輔助線的,其余的全都涉及到輔助線的添加問題。中考對學生添線的要求還是挺高的,但添輔助線幾乎都遵循這樣一個原則:構造定理所需的圖形或構造一些常見的基本圖形。
切入點三:緊扣不變量,并善于使用前題所采用的方法或結論
在圖形運動變化時,圖形的位置、大小、方向可能都有所改變,但在此過程中,往往有某兩條線段,或某兩個角或某兩個三角形所對應的位置或數量關系不發生改變。
切入點四:在題目中尋找多解的信息
圖形在運動變化,可能滿足條件的情形不止一種,也就是通常所說的兩解或多解,如何避免漏解也是一個令考生頭痛的問題,其實多解的信息在題目中就可以找到,這就需要我們深度的挖掘題干,實際上就是反復認真的審題。
總之,中考數學壓軸題的切入點有很多,考試時并不是一定要找到那么多,往往只需找到一兩個就行了,關鍵是找到以后一定要敢于去做。有些同學往往想想覺得不行就放棄了,其實絕大多數的題目只要想到上述切入點,認真做下去,問題基本都可以得到解決。
第四篇:2014中考數學壓軸題四個解題技巧
2014中考數學壓軸題四個解題技巧
各類題型的中考數學壓軸題在近幾年的中考中慢慢涌現出來,比如設計新穎、富有創意的,還有以平移、旋轉、翻折等圖形變換為解題思路的題目。不少考生在遇到這類花樣百出的題目時,往往都是一團亂麻,甚至是放棄壓軸題,其實,中考數學壓軸題解題只要找好四大切入點,一切都會迎刃而解。
切入點一:做不出、找相似,有相似、用相似
壓軸題牽涉到的知識點較多,知識轉化的難度較高。學生往往不知道該怎樣入手,這時往往應根據題意去尋找相似三角形。
切入點二:構造定理所需的圖形或基本圖形
在解決問題的過程中,有時添加輔助線是必不可少的。對于北京中考來說,只有一道很簡單的證明題是可以不用添加輔助線的,其余的全都涉及到輔助線的添加問題。中考對學生添線的要求還是挺高的,但添輔助線幾乎都遵循這樣一個原則:構造定理所需的圖形或構造一些常見的基本圖形。
切入點三:緊扣不變量,并善于使用前題所采用的方法或結論
在圖形運動變化時,圖形的位置、大小、方向可能都有所改變,但在此過程中,往往有某兩條線段,或某兩個角或某兩個三角形所對應的位置或數量關系不發生改變。切入點四:在題目中尋找多解的信息
圖形在運動變化,可能滿足條件的情形不止一種,也就是通常所說的兩解或多解,如何避免漏解也是一個令考生頭痛的問題,其實多解的信息在題目中就可以找到,這就需要我們深度的挖掘題干,實際上就是反復認真的審題。
總之,中考數學壓軸題的切入點有很多,考試時也并不是說一定要找到那么多,往往只需找到一兩個就行了,關鍵是找到以后一定要敢于去做。有些同學往往想想覺得不行就放棄了,其實絕大多數的題目只要想到上述切入點,認真做下去,問題基本都可以得到解決,希望對各位考生有所幫助。
第五篇:中考數學壓軸題解題技巧
考數學壓軸題解題技巧
各類題型的中考數學壓軸題在近幾年的中考中慢慢涌現出來,比如設計新穎、富有創意的,還有以平移、旋轉、翻折等圖形變換為解題思路的。中考數學壓軸題,解題需找好四大切入點。
切入點一:做不出、找相似,有相似、用相似
壓軸題牽涉到的知識點較多,知識轉化的難度較高。學生往往不知道該怎樣入手,這時往往應根據題意去尋找相似三角形
切入點二:構造定理所需的圖形或基本圖形
在解決問題的過程中,有時添加輔助線是必不可少的。對于北京中考來說,只有一道很簡單的證明題是可以不用添加輔助線的,其余的全都涉及到輔助線的添加問題。中考對學生添線的要求還是挺高的,但添輔助線幾乎都遵循這樣一個原則:構造定理所需的圖形或構造一些常見的基本圖形。
切入點三:緊扣不變量,并善于使用前題所采用的方法或結論
在圖形運動變化時,圖形的位置、大小、方向可能都有所改變,但在此過程中,往往有某兩條線段,或某兩個角或某兩個三角形所對應的位置或數量關系不發生改變。
切入點四:在題目中尋找多解的信息
圖形在運動變化,可能滿足條件的情形不止一種,也就是通常所說的兩解或多解,如何避免漏解也是一個令考生頭痛的問題,其實多解的信息在題目中就可以找到,這就需要我們深度的挖掘題干,實際上就是反復認真的審題。
總之,中考數學壓軸題的切入點有很多,考試時并不是一定要找到那么多,往往只需找到一兩個就行了,關鍵是找到以后一定要敢于去做。有些同學往往想想覺得不行就放棄了,其實絕大多數的題目只要想到上述切入點,認真做下去,問題基本都可以得到解決。
解析歷年中考數學試題的4大特點
(一)準確把握對數學知識與技能的考查
從知識點上看,在命題方向上,沒有太多的起伏;從內容上看,對這些知識點的考查并不放在對概念、性質的記憶上,而是對概念、性質的理解與運用上,通過現實生活來體驗數學的妙趣。
(二)著重考查學生數學思想的理解及運用
數學能力是學好數學的根本,主要表現為數學的思想方法。其中數形結合思想、方程與函數思想、分類討論思想等幾乎是歷年中考試卷考查的重點,必須引起足夠重視。
1)分類討論思想:當面臨的問題不宜用統一方法處理時,就得把問題按照一定的原則或標準分為若干類,然后逐類進行討論,再把結論匯總,得出問題的答案。
2)“化歸”是轉化和歸結的簡稱。總的指導思想是把未知問題轉化為能夠解決的問題,這就是化歸思想。
3)數形結合思想:指將數量與圖形結合起來分析、研究、解決問題的一種思維策略,具有直觀形象。
4)方程與函數思想:方程與函數思想就是分析和研究具體問題中的數量關系,經過適當的數學變化和構造,建立方程或函數關系,運用方程或函數的知識,使問題得到解決。
5)圖像的運動問題。
(三)關注數學知識解決實際問題的考查
數學來源于生活,同時也運用于生活,學數學就是為了解決生活中所碰到的問題。
(四)注重數學活動過程的考查
這幾年不僅關注對學生學習結果的評價,也關注對他們數學活動過程的評價;不僅關注數學思想方法的考查,還關注他們在一般性思維方法與創新思維能力的發展等方面的評價,尤其是注重對學生探索性思維能力和創新思維能力的考查;不僅關注知識的教學,更多的是要關注對學生數學思維潛力的開發與提高。