久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

方程的根與函數(shù)的零點(diǎn) 教學(xué)反思(區(qū)級(jí)公開課 )

時(shí)間:2019-05-15 04:46:04下載本文作者:會(huì)員上傳
簡(jiǎn)介:寫寫幫文庫小編為你整理了多篇相關(guān)的《方程的根與函數(shù)的零點(diǎn) 教學(xué)反思(區(qū)級(jí)公開課 )》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《方程的根與函數(shù)的零點(diǎn) 教學(xué)反思(區(qū)級(jí)公開課 )》。

第一篇:方程的根與函數(shù)的零點(diǎn) 教學(xué)反思(區(qū)級(jí)公開課 )

2011年10月19日光明新區(qū)高一數(shù)學(xué)公開課 “方程的根與函數(shù)的零點(diǎn)”教學(xué)反思

“方程的根與函數(shù)的零點(diǎn)”教學(xué)反思

光明中學(xué) 王國(guó)學(xué)

一、關(guān)于課題的引入

備課時(shí)我曾經(jīng)想到用“方程lnx+2x-6=0是否有實(shí)根?為什么?”來引入課題,在學(xué)生對(duì)上述問題一籌莫展時(shí),再回到一元二次方程上,引導(dǎo)學(xué)生利用函數(shù)的圖象和性質(zhì)來研究方程的根,一開始就讓學(xué)生認(rèn)識(shí)到學(xué)習(xí)函數(shù)的零點(diǎn)的必要性。

但后來考慮到上課地點(diǎn)不再是學(xué)生熟悉的課室,而是換了地點(diǎn),學(xué)生難免緊張,拿“方程lnx+2x-6=0是否有實(shí)根?為什么?”這個(gè)他們沒辦法解決的問題,可能會(huì)加劇他們的緊張,對(duì)后面的教學(xué)不利。而且利用學(xué)生提前到的時(shí)間解他們熟悉的方程,既能緩解學(xué)生的緊張情緒,又為新課做好了準(zhǔn)備。課后看來這一點(diǎn)調(diào)整還是有必要也是很好的。

二、關(guān)于“圖象在[a,b]上連續(xù)不斷”

“函數(shù)y=f(x)的圖象在[a,b]上連續(xù)不斷”是零點(diǎn)定理的 2011年10月19日光明新區(qū)高一數(shù)學(xué)公開課 “方程的根與函數(shù)的零點(diǎn)”教學(xué)反思

其定義域的一個(gè)子區(qū)間[a,b]上,圖象顯然是連續(xù)不間斷的。所以有老師提到淡化處理 2011年10月19日光明新區(qū)高一數(shù)學(xué)公開課 “方程的根與函數(shù)的零點(diǎn)”教學(xué)反思

現(xiàn)有兩組鏡頭(如圖),哪一組能說明他的行程一定曾渡過河?

問題: 將河流抽象成x軸,將前后的兩個(gè)位置視為A、B兩點(diǎn)。請(qǐng)問當(dāng)A、B與x軸怎樣的位置關(guān)系時(shí),AB間的一段連續(xù)不斷的函數(shù)圖象與x軸一定會(huì)有交點(diǎn)?

問題: A、B與x軸的位置關(guān)系,如何用數(shù)學(xué)符號(hào)(式子)來表示?

問題:滿足條件的函數(shù)圖象在(a,b)內(nèi)與x軸一定有交點(diǎn)嗎?即函數(shù)在(a,b)內(nèi)一定有零點(diǎn)嗎?

通過這樣一個(gè)問題串由直觀過渡到抽象,更符合學(xué)生的認(rèn)知過程。在評(píng)課的時(shí)候,這一點(diǎn)也獲得了聽課老師的一致好評(píng)。當(dāng)然,除了這一些比較大的地方引起了我的反思之外,還有一些細(xì)節(jié)還做得不夠盡善盡美,也是我今后要提升的地方。

第二篇:“方程的根與函數(shù)的零點(diǎn)”教學(xué)反思

《方程的根與函數(shù)的零點(diǎn)》教學(xué)反思

巴里坤縣第三中學(xué)教師 李曉瑩

本節(jié)是在學(xué)習(xí)了前兩章函數(shù)性質(zhì)的基礎(chǔ)上,利用函數(shù)的圖象和性質(zhì)來判斷方程的根的存在性及根的個(gè)數(shù),從而了解函數(shù)的零點(diǎn)與對(duì)應(yīng)方程的根的關(guān)系以及掌握函數(shù)在某個(gè)區(qū)間上存在零點(diǎn)的判定方法;為下節(jié)“二分法求方程的近似解”和后續(xù)學(xué)習(xí)的算法提供基礎(chǔ)。因此本節(jié)內(nèi)容具有承上啟下的作用,非常重要。表面上看,這一內(nèi)容的教學(xué)并不困難,但要讓學(xué)生真正理解,在教學(xué)設(shè)計(jì)和難點(diǎn)突破上需要下足夠的功夫,教學(xué)過程中還需要妥善處理其中的一些問題。所以,我在教法上,以問題為紐帶,用問題引出內(nèi)容,激發(fā)學(xué)生積極主動(dòng)地進(jìn)行探索;同時(shí)向?qū)W生滲透數(shù)學(xué)思想方法;滲透問題意識(shí),培養(yǎng)學(xué)生發(fā)現(xiàn)問題、解決問題的能力以及采用“提出問題——引導(dǎo)探究——得出結(jié)論——講練結(jié)合”的教與學(xué)模式。本節(jié)課借助多媒體手段創(chuàng)設(shè)問題情境,指導(dǎo)學(xué)生研究式學(xué)習(xí)和體驗(yàn)式學(xué)習(xí).如,函數(shù)零點(diǎn)與方程根之間的聯(lián)系是這節(jié)課的一個(gè)重點(diǎn),為了突破這一重點(diǎn),在教學(xué)中利用多媒體教學(xué),調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性,準(zhǔn)確、直觀、易于學(xué)生理解,符合學(xué)生的認(rèn)知特點(diǎn),調(diào)動(dòng)了學(xué)生主動(dòng)參與教學(xué)的積極性,使他們進(jìn)行自主探究與合作交流,親身體驗(yàn)知識(shí)的形成過程,變靜態(tài)教學(xué)為動(dòng)態(tài)教學(xué)。

一、新課的引入

本堂課是用對(duì)實(shí)際問題的探討來引入函數(shù)的零點(diǎn),通過這樣一個(gè)問題激發(fā)學(xué)生的學(xué)習(xí)興趣,由直觀過渡到抽象,更符合學(xué)生的認(rèn)知過程,在評(píng)課的時(shí)候,這一點(diǎn)也獲得了聽課老師的一致好評(píng)。再?gòu)?fù)習(xí)鞏固一元一次方程和一元二次方程的解法,由學(xué)生已掌握的知識(shí)入手,創(chuàng)設(shè)熟悉環(huán)境,引導(dǎo)進(jìn)入本課狀態(tài)。接著讓學(xué)生在原有二次函數(shù)的認(rèn)知基礎(chǔ)上,使其知識(shí)得到自然的發(fā)生發(fā)展。理解了像二次函數(shù)這樣簡(jiǎn)單的函數(shù)的零點(diǎn),再來理解其他復(fù)雜的函數(shù)的零點(diǎn)就會(huì)容易一些。圍繞怎樣判斷所給方程是否有實(shí)根來提出問題,并且,利用了教材中的方程提出了下列問題:方程x2-2x-3=0是否有實(shí)根?你是怎樣判斷的?結(jié)果,大家對(duì)如何解一元二次方程早就熟練了,快速解決了問題。由此看來,這堂課一開始引入熟悉的例子,最能激發(fā)學(xué)生的學(xué)習(xí)積極性,并讓其認(rèn)識(shí)到學(xué)習(xí)函數(shù)的零點(diǎn)的必要性。

二、重難點(diǎn)的突破

零點(diǎn)存在性定理是本節(jié)課的難點(diǎn)和重點(diǎn),教學(xué)設(shè)計(jì)的好壞直接關(guān)系到學(xué)生對(duì)本節(jié)課的學(xué)習(xí)效果。因此,從“一個(gè)函數(shù)是否有零點(diǎn),就是看它的圖象與x軸是否有交點(diǎn)。那么,我們又如何判定一個(gè)函數(shù)的圖象與x軸是否有交點(diǎn)呢?”的提問入手,引出零點(diǎn)存在條件的探究。給出6個(gè)問題:?jiǎn)栴} 1、2是學(xué)生熟悉的一元一次方程和一元二次方程求根,問題3、4是方程的根和函數(shù)圖象與x軸的交點(diǎn)之間有何聯(lián)系與區(qū)別,問題5、6上升到抽象連續(xù)函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)一定有零點(diǎn)的條件。引導(dǎo)學(xué)生一邊畫草圖,一邊思考,總結(jié)規(guī)律:函數(shù)圖象穿過x軸時(shí),圖象就與x軸產(chǎn)生了交點(diǎn)。要判斷函數(shù)f(x)在(a,b)內(nèi)是否有零點(diǎn)(教材對(duì)于函數(shù)f(x)在(a,b)內(nèi)有零點(diǎn),只研究函數(shù)f(x)的圖象穿過x軸的情況),應(yīng)該先觀察函數(shù)f(x)的圖象在(a,b)內(nèi)是否與x軸有交點(diǎn),再證明是否有f(a)f(b)<0。從課后了解到,學(xué)生都以為只要觀察到圖象與x軸是否有交點(diǎn),就可以判斷函數(shù)f(x)在(a,b)內(nèi)是否有零點(diǎn),教學(xué)卻沒有對(duì)證明的必要性展開討論。忽略了在研究函數(shù)f(x)在(a,b)內(nèi)有幾個(gè)零點(diǎn)時(shí),應(yīng)該先觀察函數(shù)f(x)的圖象在(a,b)內(nèi)有幾個(gè)交點(diǎn),再進(jìn)行證明。所以,在課后向?qū)W生提出如何判斷函數(shù)f(x)在(a,b)內(nèi)有幾個(gè)零點(diǎn)時(shí),就有學(xué)生認(rèn)為,只需看函數(shù)f(x)的圖象在(a,b)內(nèi)有幾個(gè)交點(diǎn)即可。這樣看來,教師有必要引導(dǎo)學(xué)生認(rèn)識(shí)證明的必要性。我們也可以作出一些特殊函數(shù)在不同區(qū)間范圍的圖象,讓學(xué)生通過觀察對(duì)比得到認(rèn)識(shí)。這6個(gè)問題設(shè)計(jì)精巧,層層遞進(jìn),引發(fā)了學(xué)生積極思考、探索與交流,將教學(xué)推向高潮。如此尋求函數(shù)零點(diǎn)存在的條件,符合學(xué)生的認(rèn)知規(guī)律:從簡(jiǎn)單到復(fù)雜,從具體到抽象,讓學(xué)生在具體的例題中概括出共同的本質(zhì)特征,得出一般性的結(jié)論,使學(xué)生思維發(fā)生碰撞,既弄懂了問題又使數(shù)學(xué)方法得到提升。

三、教學(xué)內(nèi)容結(jié)構(gòu),突出思想方法

首先要通過把握教材內(nèi)容結(jié)構(gòu)來設(shè)計(jì)教學(xué)框架,然后根據(jù)教學(xué)框架來考慮需要突出的思想方法。本節(jié)課按照下列主線來展開教學(xué):

(一)如何引導(dǎo)學(xué)生將復(fù)雜的問題簡(jiǎn)單化,并學(xué)會(huì)從已有認(rèn)知結(jié)構(gòu)出發(fā)由特殊到一般地思考問題。

教材設(shè)置函數(shù)的零點(diǎn)這一內(nèi)容的目的,就是為了體現(xiàn)函數(shù)的應(yīng)用,為用二分法求方程的近似解奠定基礎(chǔ)。所以,教學(xué)一開始就從學(xué)生熟悉的知識(shí)點(diǎn)入手,用方程的求解出發(fā)展開討論,然后引導(dǎo)學(xué)生體會(huì)其中的思想方法。例當(dāng)學(xué)生陷入困境時(shí),再逐步提出下面的問題進(jìn)行引導(dǎo):

1.當(dāng)遇到一個(gè)復(fù)雜的問題,我們一般應(yīng)該怎么辦?

以此來引導(dǎo)學(xué)生將復(fù)雜的問題簡(jiǎn)單化,尋找類似的簡(jiǎn)單問題的解決方法。2.以前我們?nèi)绾闻袛嘁粋€(gè)方程是否有實(shí)根,這對(duì)研究這個(gè)方程是否有幫助?

以此來引導(dǎo)學(xué)生從已有認(rèn)知結(jié)構(gòu)出發(fā),將解決簡(jiǎn)單方程的方法遷移到不能求解的方程中去,學(xué)會(huì)從特殊到一般的思維方法。

3.除了用判別式可以判斷一元二次方程根的情況,還有其他的方法嗎?

以此來引導(dǎo)學(xué)生建立方程與函數(shù)的聯(lián)系,滲透函數(shù)與方程的思想方法,并培養(yǎng)其從不同角度思考問題的習(xí)慣。

(二)怎樣突出數(shù)形結(jié)合的思想方法

數(shù)形結(jié)合的思想方法幾乎貫穿于“基本初等函數(shù)”一章的始終,學(xué)生通過前面的學(xué)習(xí),已基本形成數(shù)形結(jié)合的思想方法,所以本節(jié)教學(xué)以培養(yǎng)學(xué)生主動(dòng)運(yùn)用數(shù)形結(jié)合的思想方法去分析問題為目的。在建立方程的根與函數(shù)的零點(diǎn)的關(guān)系時(shí),函數(shù)圖象起到了關(guān)鍵的橋梁作用,充分體現(xiàn)了它與方程的根以及函數(shù)零點(diǎn)之間的數(shù)形結(jié)合的關(guān)系。由學(xué)生作出函數(shù)圖象,讓學(xué)生回答方程的根與函數(shù)圖象和x軸的交點(diǎn)有何關(guān)系,然后學(xué)生自己總結(jié)出方程的根、函數(shù)圖象和x軸的交點(diǎn)、函數(shù)的零點(diǎn)之間的關(guān)系。這樣的教學(xué),在一定程度上也能體現(xiàn)數(shù)形結(jié)合的思想方法。在這種能夠體現(xiàn)思想方法的關(guān)鍵地方,教師要舍得花時(shí)間,要讓學(xué)生由方程自覺地聯(lián)想到相應(yīng)的函數(shù),主動(dòng)地建立方程的根與函數(shù)圖象間的關(guān)系,提升數(shù)形結(jié)合思想方法的層次,增強(qiáng)函數(shù)應(yīng)用的意識(shí)。

(三)如何從直觀到抽象

教材是通過由直觀到抽象的過程,才得到判斷函數(shù)f(x)在(a,b)內(nèi)有零點(diǎn)的一種條件。如何讓學(xué)生從直觀自然地到抽象,有下面幾個(gè)教學(xué)難點(diǎn)需要處理:

1.如何引導(dǎo)學(xué)生用f(a)f(b)<0來說明函數(shù)f(x)在(a,b)內(nèi)有零點(diǎn)?

教材是先從函數(shù)圖象出發(fā),讓學(xué)生通過觀察函數(shù)f(x)的圖象在(a,b)內(nèi)是否與x軸有交點(diǎn),來認(rèn)識(shí)函數(shù)f(x)在(a,b)內(nèi)是否有零點(diǎn)。這是一個(gè)直觀認(rèn)識(shí)的過程,對(duì)學(xué)生來說并不困難。然后再讓學(xué)生認(rèn)識(shí),f(a)f(b)<0則函數(shù)f(x)的圖象在(a,b)內(nèi)與x軸有交點(diǎn)。不過,這卻是一個(gè)由直觀到抽象的飛躍,對(duì)學(xué)生來說是有困難的。教學(xué)的關(guān)鍵在于,如何引導(dǎo)學(xué)生由函數(shù)f(x)的圖象穿過x軸在(a,b)的部分,聯(lián)想到f(a)f(b)<0。

2.如何引導(dǎo)學(xué)生判斷函數(shù)f(x)在(a,b)內(nèi)的零點(diǎn)個(gè)數(shù)?

(1)要判斷函數(shù)f(x)在(a,b)內(nèi)的零點(diǎn)個(gè)數(shù),可先觀察函數(shù)f(x)的圖象在(a,b)內(nèi)與x軸有幾個(gè)交點(diǎn),再進(jìn)行證明。

當(dāng)觀察到函數(shù)f(x)的圖象在(a,b)內(nèi)與x軸的交點(diǎn)個(gè)數(shù)后,可以在(a,b)內(nèi)分別選取每個(gè)交點(diǎn)周圍的一個(gè)區(qū)間,然后說明函數(shù)分別在各個(gè)區(qū)間只有一個(gè)零點(diǎn)。這樣,就將判斷函數(shù)f(x)在(a,b)內(nèi)的零點(diǎn)個(gè)數(shù)轉(zhuǎn)化為判斷函數(shù)在各個(gè)區(qū)間內(nèi)分別只有一個(gè)零點(diǎn)。由于f(a)f(b)<0只能說明函數(shù)f(x)在(a,b)內(nèi)有零點(diǎn),而不能說明f(x)在(a,b)內(nèi)有幾個(gè)零點(diǎn),這就要求函數(shù)在每個(gè)交點(diǎn)周圍所選取的區(qū)間上的圖象在直觀上要單調(diào),并且要證明函數(shù)f(x)在該區(qū)間上單調(diào)。

(2)要證明函數(shù)在某個(gè)區(qū)間內(nèi)只有一個(gè)零點(diǎn)需要一個(gè)循序漸進(jìn)的過程

證明函數(shù)在某個(gè)區(qū)間內(nèi)只有一個(gè)零點(diǎn),是一個(gè)從圖象的直觀到抽象的代數(shù)證明的理性思維過程。從學(xué)生現(xiàn)有的知識(shí)積累來看,目前教學(xué)應(yīng)立足從圖象直觀來認(rèn)識(shí),對(duì)于易于用函數(shù)單調(diào)性定義證明函數(shù)單調(diào)性的函數(shù),可要求學(xué)生進(jìn)行代數(shù)證明。待學(xué)生學(xué)習(xí)了函數(shù)的導(dǎo)數(shù)之后,再統(tǒng)一要求學(xué)生對(duì)所有的函數(shù)都進(jìn)行代數(shù)證明。所以,學(xué)生對(duì)這一問題的認(rèn)識(shí)有一個(gè)循序漸進(jìn)的過程,教師對(duì)這一問題的教學(xué)需要分階段提出不同層次的要求,關(guān)鍵是把握好教學(xué)的度。

本課的實(shí)際教學(xué)中還存在著不足: 1.在探究新知識(shí)時(shí)試圖給學(xué)生講授一點(diǎn)關(guān)于方程的解的數(shù)學(xué)史知識(shí),但時(shí)間問題,最終舍棄了;

2.想自在的調(diào)控課堂而不盡得。我所期望的課堂是學(xué)生既自主又合作,既數(shù)學(xué)又生活的。這需要對(duì)數(shù)學(xué)史與知識(shí)點(diǎn)較透徹的理解,這需要語言表達(dá)的精確,這些都是我的不足。3.在課件制作方面還是存在不足,水平不夠高,有待提高。4.在板書方面,板塊意識(shí)有了,也算工整,但是字跡不夠美觀。

本節(jié)課零點(diǎn)的引入部分可以簡(jiǎn)化改進(jìn),使之更趨合理,零點(diǎn)存在性定理引入部分略顯生硬,應(yīng)該有更藝術(shù)的方式。高一學(xué)生在函數(shù)的學(xué)習(xí)中,常表現(xiàn)出不適,主要是數(shù)形結(jié)合與抽象思維尚不能勝任。具體表現(xiàn)為將函數(shù)孤立起來,認(rèn)識(shí)不到函數(shù)在高中數(shù)學(xué)中的核心地位。函數(shù)與方程相聯(lián)系的觀點(diǎn)的建立,函數(shù)應(yīng)用的意識(shí)的初步樹立,應(yīng)該是本節(jié)課必須承載的重要任務(wù)。在這一任務(wù)的達(dá)成度方面,本課還需更突出。另外,課堂上教師怎樣引導(dǎo)學(xué)生也是值得我深思的一個(gè)問題,還有少講多引方面也是我今后教學(xué)中努力的方向。

《方程的根與函數(shù)的零點(diǎn)》教學(xué)反思

巴里坤縣第三中學(xué)教師

李曉瑩

第三篇:“方程的根與函數(shù)的零點(diǎn)”教學(xué)反思

“方程的根與函數(shù)的零點(diǎn)”教學(xué)反思

王巧香

方程的根與函數(shù)的零點(diǎn)是高中課程標(biāo)準(zhǔn)新增的內(nèi)容,表面上看,這一內(nèi)容的教學(xué)并不困難,但要讓學(xué)生能夠真正理解,教學(xué)還需要妥善處理其中的一些問題。最近,在浙江紹興聽了這一內(nèi)容的兩堂新授課,使用教材都是人民教育出版社《普通高中課程標(biāo)準(zhǔn)試驗(yàn)教科書·數(shù)學(xué)1(必修)》,課后又與部分學(xué)生進(jìn)行了交流。總的來說,教學(xué)效果都不甚理想,暴露出了一些共同的問題,看來具有一定的代表性。下面就兩堂課共同存在的問題,談一點(diǎn)看法。

一、首先要讓學(xué)生認(rèn)識(shí)到學(xué)習(xí)函數(shù)的零點(diǎn)的必要性

教材是利用一元二次方程的例子來引入函數(shù)的零點(diǎn)。這樣處理,主要是想讓學(xué)生在原有二次函數(shù)的認(rèn)知基礎(chǔ)上,使其知識(shí)得到自然的發(fā)生發(fā)展。理解了像二次函數(shù)這樣簡(jiǎn)單的函數(shù)的零點(diǎn),再來理解其他復(fù)雜的函數(shù)的零點(diǎn)就會(huì)容易一些。但在教學(xué)時(shí),就不能照本宣科。

這兩堂課的教學(xué)都和教材一樣,也是利用一個(gè)一元二次方程來引入,圍繞怎樣判斷所給方程是否有實(shí)根來提出問題。并且,兩位教師都利用了教材中的方程提出了下列問題:

方程x2-2x-3=0是否有實(shí)根?你是怎樣判斷的?

結(jié)果,學(xué)生的反應(yīng)都很平淡,大多數(shù)人對(duì)這個(gè)問題都不感興趣。課后學(xué)生認(rèn)為,大家對(duì)如何解一元二次方程早就熟練了,老師沒必要再問那么簡(jiǎn)單的問題了。由此看來,這堂課一開始就應(yīng)該讓學(xué)生認(rèn)識(shí)到學(xué)習(xí)函數(shù)的零點(diǎn)的必要性。教師所選擇的例子,最好是學(xué)生用已學(xué)方法不能求解的方程,這樣才能激發(fā)學(xué)生的學(xué)習(xí)積極性,并讓其認(rèn)識(shí)到學(xué)習(xí)函數(shù)的零點(diǎn)的必要性。例如,可以把教材后面的例子先提出來,讓學(xué)生思考:

方程lnx+2x-6=0是否有實(shí)根?為什么?

在學(xué)生對(duì)上述問題一籌莫展時(shí),再回到一元二次方程上,引導(dǎo)學(xué)生利用函數(shù)的圖象和性質(zhì)來研究方程的根。這堂課的頭開好了,整堂課就活了。二、一元二次方程根的存在是否由其判別式?jīng)Q定

當(dāng)教師問到一元二次方程x2-2x-3=0是否有實(shí)根時(shí),兩個(gè)班的學(xué)生很快就用根的判別式作出了判斷,沒有一位學(xué)生用方程相應(yīng)的函數(shù)圖象進(jìn)行分析。于是,教師又引導(dǎo)學(xué)生作出一元二次方程相應(yīng)的函數(shù)的圖象,并建立方程的根與函數(shù)圖象和x軸交點(diǎn)的聯(lián)系。值得注意的是,在上述活動(dòng)中,學(xué)生認(rèn)為,因?yàn)橐辉畏匠谈呐袆e式的大小有三種情況,所以一元二次方程相應(yīng)的函數(shù)圖象和x軸的交點(diǎn)就有三種情況。教師不僅對(duì)此默認(rèn),還在研究了一元二次方程與其函數(shù)圖象的關(guān)系后總結(jié)到,雖然我們可以用判別式來判斷一元二次方程根的存在,但對(duì)于沒有判別式的其他方程就可以根據(jù)相應(yīng)的函數(shù)圖象來判斷了。

看來,師生們對(duì)一元二次方程根存在的本質(zhì)原因都不清楚,都誤以為是其判別式的大小。如果通過建立一元二次方程與其相應(yīng)函數(shù)圖象的關(guān)系,沒有揭露出方程根存在的本質(zhì)原因是相應(yīng)函數(shù)的零點(diǎn)的存在,那么就會(huì)導(dǎo)致學(xué)生對(duì)引入函數(shù)零點(diǎn)的必要性缺乏深刻的認(rèn)識(shí),以為結(jié)合函數(shù)圖象并利用f(a)?f(b)的值與0的關(guān)系判斷方程根的存在只是其中的一種方法或技巧,而認(rèn)識(shí)不到其一般性和本質(zhì)性。所以,教學(xué)在研究一元二次方程與其相應(yīng)函數(shù)圖象的關(guān)系時(shí),關(guān)鍵要以函數(shù)圖象為紐帶,建立一元二次方程的根與相應(yīng)函數(shù)零點(diǎn)之間的關(guān)系,讓學(xué)生理解方程根存在的本質(zhì)以及判斷方程根存在的一般方法。這樣,才能將所得到的判斷方程根存在的方法推廣到一般情況,并使學(xué)生對(duì)方程根存在的認(rèn)識(shí)不僅僅停留在判別式或函數(shù)圖象上。

三、根據(jù)圖象能否判斷函數(shù)是否有零點(diǎn)以及零點(diǎn)的個(gè)數(shù) 盡管兩堂課教師都談到,要判斷函數(shù)f(x)在(a,b)內(nèi)是否有零點(diǎn)(教材對(duì)于函數(shù)f(x)在(a,b)內(nèi)有零點(diǎn),只研究函數(shù)f(x)的圖象穿過x軸的情況),應(yīng)該先觀察函數(shù)f(x)的圖象在(a,b)內(nèi)是否與x軸有交點(diǎn),再證明是否有f(a)?f(b)<0。但是,教學(xué)卻沒有對(duì)證明的必要性展開討論。結(jié)果,從課后了解到,學(xué)生都以為只要觀察到圖象與x軸是否有交點(diǎn),就可以判斷函數(shù)f(x)在(a,b)內(nèi)是否有零點(diǎn),至于證明只是數(shù)學(xué)上的嚴(yán)格要求而已。同樣,兩堂課在研究函數(shù)f(x)在(a,b)內(nèi)有幾個(gè)零點(diǎn)時(shí),教師也是這樣告訴學(xué)生,應(yīng)該先觀察函數(shù)f(x)的圖象在(a,b)內(nèi)有幾個(gè)交點(diǎn),再進(jìn)行證明,依然沒有說明證明的必要性。所以,在課后向?qū)W生提出如何判斷函數(shù)f(x)在(a,b)內(nèi)有幾個(gè)零點(diǎn)時(shí),就有學(xué)生認(rèn)為,只需看函數(shù)f(x)的圖象在(a,b)內(nèi)有幾個(gè)交點(diǎn)即可。

看來,教師有必要引導(dǎo)學(xué)生認(rèn)識(shí)證明的必要性。例如,我們可以作出一些特殊函數(shù)在不同區(qū)間范圍的圖象,讓學(xué)生通過觀察對(duì)比得到認(rèn)識(shí)。

如圖1,是計(jì)算機(jī)所作的某個(gè)函數(shù)的圖象。可以讓學(xué)生根據(jù)圖象思考,該函數(shù)是否有零點(diǎn)?

在學(xué)生作出判斷后,再逐步將原點(diǎn)附近的圖象放大,得到該函數(shù)在其他較小區(qū)間范圍的多個(gè)圖象(圖2(1)、(2))。然后再問學(xué)生,該函數(shù)究竟有沒有零點(diǎn)?

如圖3,是計(jì)算機(jī)所作的又一個(gè)函數(shù)的圖象。可以讓學(xué)生根據(jù)圖象思考,該函數(shù)有幾個(gè)零點(diǎn)?

在學(xué)生作出判斷后,再逐步將原點(diǎn)附近的圖象放大,得到該函數(shù)在其他較小區(qū)間范圍的多個(gè)圖象(圖4(1)、(2))。此時(shí)再問學(xué)生,該函數(shù)究竟有幾個(gè)零點(diǎn)?

結(jié)合上述例子,要讓學(xué)生知道,我們所作的函數(shù)圖象只能反映函數(shù)一個(gè)局部的情況,如果根據(jù)一個(gè)圖象就作出判斷可能就會(huì)片面。這樣,學(xué)生自然就會(huì)認(rèn)識(shí)到證明的必要性了。

四、教學(xué)要把握內(nèi)容結(jié)構(gòu),突出思想方法

教師首先要通過把握教材內(nèi)容結(jié)構(gòu)來設(shè)計(jì)教學(xué)框架,然后根據(jù)教學(xué)框架來考慮需要突出的思想方法。本節(jié)課可以按照下列主線來展開教學(xué):

兩位教師對(duì)教材內(nèi)容結(jié)構(gòu)的把握還不到位,課堂教學(xué)比較凌亂,對(duì)上述三塊內(nèi)容所蘊(yùn)含的思想方法也沒能抓住,主要表現(xiàn)在以下幾個(gè)方面。

(一)如何引導(dǎo)學(xué)生將復(fù)雜的問題簡(jiǎn)單化,并學(xué)會(huì)從已有認(rèn)知結(jié)構(gòu)出發(fā)由特殊到一般地思考問題 教材設(shè)置函數(shù)的零點(diǎn)這一內(nèi)容的目的,就是為了體現(xiàn)函數(shù)的應(yīng)用,為用二分法求方程的近似解奠定基礎(chǔ)。所以,教學(xué)一開始就應(yīng)該從學(xué)生用已學(xué)方法不能求解的方程出發(fā)展開討論,然后引導(dǎo)學(xué)生體會(huì)其中的思想方法。例如,可以像前面一樣先提出:方程lnx+2x-6=0是否有實(shí)根?為什么?當(dāng)學(xué)生陷入困境時(shí),教師再逐步提出下面的問題進(jìn)行引導(dǎo):

1.當(dāng)遇到一個(gè)復(fù)雜的問題,我們一般應(yīng)該怎么辦?

以此來引導(dǎo)學(xué)生將復(fù)雜的問題簡(jiǎn)單化,尋找類似的簡(jiǎn)單問題的解決方法。2.以前我們?nèi)绾闻袛嘁粋€(gè)方程是否有實(shí)根,這對(duì)研究這個(gè)方程是否有幫助? 以此來引導(dǎo)學(xué)生從已有認(rèn)知結(jié)構(gòu)出發(fā),將解決簡(jiǎn)單方程的方法遷移到不能求解的方程中去,學(xué)會(huì)從特殊到一般的思維方法。

3.除了用判別式可以判斷一元二次方程根的情況,還有其他的方法嗎?

以此來引導(dǎo)學(xué)生建立方程與函數(shù)的聯(lián)系,滲透函數(shù)與方程的思想方法,并培養(yǎng)其從不同角度思考問題的習(xí)慣。

遺憾的是,兩位老師都是直接從一元二次方程出發(fā)展開討論,學(xué)生就錯(cuò)過了上述這些思想方法的訓(xùn)練。

(二)怎樣突出數(shù)形結(jié)合的思想方法

數(shù)形結(jié)合的思想方法幾乎貫穿于“基本初等函數(shù)I”一章的始終,學(xué)生通過前面的學(xué)習(xí),已基本形成數(shù)形結(jié)合的思想方法,所以本節(jié)教學(xué)應(yīng)該以培養(yǎng)學(xué)生主動(dòng)運(yùn)用數(shù)形結(jié)合的思想方法去分析問題為目的。但是,在兩堂課中,教師卻沒有留給學(xué)生主動(dòng)運(yùn)用數(shù)形結(jié)合思想方法的空間。

在建立方程的根與函數(shù)的零點(diǎn)的關(guān)系時(shí),函數(shù)圖象起到了關(guān)鍵的橋梁作用,充分體現(xiàn)了它與方程的根以及函數(shù)零點(diǎn)之間的數(shù)形結(jié)合的關(guān)系。但是,兩位教師卻沒有留給學(xué)生足夠的時(shí)間去主動(dòng)搭建函數(shù)圖象這一橋梁,而是由教師作出函數(shù)圖象,讓學(xué)生回答方程的根與函數(shù)圖象和x軸的交點(diǎn)有何關(guān)系,然后老師再給出方程的根、函數(shù)圖象和x軸的交點(diǎn)、函數(shù)的零點(diǎn)之間的關(guān)系。這樣的教學(xué),雖然一定程度上也能體現(xiàn)數(shù)形結(jié)合的思想方法,但體現(xiàn)的思想層次卻很低。在這種能夠體現(xiàn)思想方法的關(guān)鍵地方,教師要舍得花時(shí)間,要讓學(xué)生由方程自覺地聯(lián)想到相應(yīng)的函數(shù),主動(dòng)地建立方程的根與函數(shù)圖象間的關(guān)系,提升數(shù)形結(jié)合思想方法的層次,增強(qiáng)函數(shù)應(yīng)用的意識(shí)。

(三)如何從直觀到抽象

教材是通過由直觀到抽象的過程,才得到判斷函數(shù)f(x)在(a,b)內(nèi)有零點(diǎn)的一種條件。如何讓學(xué)生從直觀自然地到抽象,有下面幾個(gè)教學(xué)難點(diǎn)需要處理:

1.如何引導(dǎo)學(xué)生用f(a)?f(b)<0來說明函數(shù)f(x)在(a,b)內(nèi)有零點(diǎn)

教材是先從函數(shù)圖象出發(fā),讓學(xué)生通過觀察函數(shù)f(x)的圖象在(a,b)內(nèi)是否與x軸有交點(diǎn),來認(rèn)識(shí)函數(shù)f(x)在(a,b)內(nèi)是否有零點(diǎn)。這是一個(gè)直觀認(rèn)識(shí)的過程,對(duì)學(xué)生來說并不困難。然后再讓學(xué)生認(rèn)識(shí),f(a)?f(b)<0則函數(shù)f(x)的圖象在(a,b)內(nèi)與x軸有交點(diǎn)。不過,這卻是一個(gè)由直觀到抽象的飛躍,對(duì)學(xué)生來說是有困難的。教學(xué)的關(guān)鍵在于,如何引導(dǎo)學(xué)生由函數(shù)f(x)的圖象穿過x軸在(a,b)的部分,聯(lián)想到f(a)?f(b)<0。為此,我們不妨可以通過下列問題來啟發(fā)學(xué)生:

(1)我們看到,當(dāng)函數(shù)f(x)的圖象穿過x軸時(shí),函數(shù)f(x)的圖象就與x軸產(chǎn)生了交點(diǎn)。如果不作出函數(shù)f(x)的圖象,你又如何判斷函數(shù)f(x)的圖象與x軸有交點(diǎn)?

(2)函數(shù)f(x)的圖象穿過x軸這是幾何現(xiàn)象,那么如何用代數(shù)形式來描述呢?

(3)函數(shù)f(x)的圖象穿過x軸其實(shí)就是穿過與x軸的交點(diǎn)周圍的部分,比如(a,b)。在區(qū)間(a,b)內(nèi),如何用代數(shù)形式來描述呢?

(4)如果函數(shù)f(x)的圖象與x軸的交點(diǎn)為(c,0),那么函數(shù)f(x)分別在區(qū)間(a,c)和區(qū)間(c,b)上的值各有什么特點(diǎn)?這對(duì)我們用代數(shù)形式進(jìn)行描述有何幫助?

2.如何引導(dǎo)學(xué)生判斷函數(shù)f(x)在(a,b)內(nèi)的零點(diǎn)個(gè)數(shù)

要判斷函數(shù)f(x)在(a,b)內(nèi)的零點(diǎn)個(gè)數(shù),可先觀察函數(shù)f(x)的圖象在(a,b)內(nèi)與x軸有幾個(gè)交點(diǎn),再進(jìn)行證明。這同樣是一個(gè)從直觀到抽象的過程,教學(xué)需要處理好下列兩個(gè)問題:

(1)如何引導(dǎo)學(xué)生說明函數(shù)在某個(gè)區(qū)間內(nèi)只有一個(gè)零點(diǎn) 當(dāng)觀察到函數(shù)f(x)的圖象在(a,b)內(nèi)與x軸的交點(diǎn)個(gè)數(shù)后,可以在(a,b)內(nèi)分別選取每個(gè)交點(diǎn)周圍的一個(gè)區(qū)間,然后說明函數(shù)分別在各個(gè)區(qū)間只有一個(gè)零點(diǎn)。這樣,就將判斷函數(shù)f(x)在(a,b)內(nèi)的零點(diǎn)個(gè)數(shù)轉(zhuǎn)化為判斷函數(shù)在各個(gè)區(qū)間內(nèi)分別只有一個(gè)零點(diǎn)。由于f(a)?f(b)<0只能說明函數(shù)f(x)在(a,b)內(nèi)有零點(diǎn),而不能說明f(x)在(a,b)內(nèi)有幾個(gè)零點(diǎn),這就要求函數(shù)在每個(gè)交點(diǎn)周圍所選取的區(qū)間上的圖象在直觀上要單調(diào),并且要證明函數(shù)f(x)在該區(qū)間上單調(diào)。但教學(xué)的難點(diǎn)正在于此,如何引導(dǎo)學(xué)生利用函數(shù)的單調(diào)性來說明函數(shù)在某個(gè)區(qū)間內(nèi)只有一個(gè)零點(diǎn)?我們可以設(shè)計(jì)下列教學(xué)環(huán)節(jié)來幫助學(xué)生認(rèn)識(shí):

① 可以先給出一些只有一個(gè)零點(diǎn)的函數(shù)圖象(圖5);

②讓學(xué)生通過觀察這些圖象,歸納出這些函數(shù)具有的共同性質(zhì);

③當(dāng)學(xué)生發(fā)現(xiàn)這些函數(shù)分別在交點(diǎn)周圍的一個(gè)區(qū)間上都單調(diào)后,再讓學(xué)生思考,為什么函數(shù)在某個(gè)區(qū)間上單調(diào)則函數(shù)在該區(qū)間內(nèi)就只有一個(gè)零點(diǎn)?

經(jīng)過上述從直觀到抽象的過程,學(xué)生才會(huì)真正認(rèn)識(shí)到,為什么可以利用函數(shù)的單調(diào)性來說明函數(shù)在某個(gè)區(qū)間內(nèi)只有一個(gè)零點(diǎn)。

(2)要證明函數(shù)在某個(gè)區(qū)間內(nèi)只有一個(gè)零點(diǎn)需要一個(gè)循序漸進(jìn)的過程

證明函數(shù)在某個(gè)區(qū)間內(nèi)只有一個(gè)零點(diǎn),是一個(gè)從圖象的直觀到抽象的代數(shù)證明的理性思維過程。從學(xué)生現(xiàn)有的知識(shí)積累來看,目前教學(xué)應(yīng)立足從圖象直觀來認(rèn)識(shí),對(duì)于易于用函數(shù)單調(diào)性定義證明函數(shù)單調(diào)性的函數(shù),可要求學(xué)生進(jìn)行代數(shù)證明。待學(xué)生學(xué)習(xí)了函數(shù)的導(dǎo)數(shù)之后,再統(tǒng)一要求學(xué)生對(duì)所有的函數(shù)都進(jìn)行代數(shù)證明。所以,學(xué)生對(duì)這一問題的認(rèn)識(shí)有一個(gè)循序漸進(jìn)的過程,教師對(duì)這一問題的教學(xué)需要分階段提出不同層次的要求,關(guān)鍵是把握好教學(xué)的度。

從兩堂課的教學(xué)情況來看,兩位教師都沒能抓住上述內(nèi)容所蘊(yùn)含的思想方法來設(shè)計(jì)教學(xué),而是直接將結(jié)論灌輸給學(xué)生,讓學(xué)生失去了合適的思維訓(xùn)練和思想方法提升的機(jī)會(huì)。

方程的根與函數(shù)的零點(diǎn)是高中課程標(biāo)準(zhǔn)新增的內(nèi)容,第一次教學(xué)就要取得成功的確不易。看來,像這些中學(xué)新增內(nèi)容的教學(xué),需要一個(gè)不斷實(shí)踐以及實(shí)踐后的反思的過程,在實(shí)踐與反思的過程中,不僅要妥善解決上述問題,還要不斷地發(fā)現(xiàn)和解決新的問題,這樣,教學(xué)效果才會(huì)逐步得到改善。

第四篇:方程的根與函數(shù)的零點(diǎn)教學(xué)反思

方程的根與函數(shù)的零點(diǎn)教學(xué)反思

通過本節(jié)課的教學(xué)實(shí)踐,我感覺學(xué)生對(duì)方程和函數(shù)之間的關(guān)系有了進(jìn)一步的理解,通過對(duì)具體函數(shù)與方程之間關(guān)系的分析到對(duì)一般函數(shù)和方程之間關(guān)系的分析,使學(xué)生真正理解了方程的根、函數(shù)的圖像與軸交點(diǎn)的橫坐標(biāo)和函數(shù)的零點(diǎn)是一個(gè)值在不同環(huán)境下的不同稱呼,更使學(xué)生能夠利用不同的方法判斷函數(shù)的零點(diǎn)。通過生活實(shí)例讓學(xué)生自主探究出函數(shù)零點(diǎn)存在的判定條件,突破本節(jié)課的難點(diǎn),并能利用存在定理判斷函數(shù)在區(qū)間是否有零點(diǎn)及零售的個(gè)數(shù),體現(xiàn)出數(shù)學(xué)與生活的緊密聯(lián)系,是自然的。這樣基本達(dá)到本節(jié)課的教學(xué)目標(biāo),學(xué)生在自己思考或討論或探究問題的過程中基本能得到正確的結(jié)果,對(duì)問題的解決能力有所提高。

存在的問題是,本節(jié)課因?yàn)榻虒W(xué)容量過大,時(shí)間過緊,結(jié)束部分處理的比較倉(cāng)促;在學(xué)生探究討論部分,教師干預(yù)過多,留給學(xué)生思考的空間及時(shí)間稍顯不足;在板書環(huán)節(jié)由于對(duì)黑板的不適應(yīng)導(dǎo)致板書不夠美觀,感到很遺憾。

第五篇:校內(nèi)公開課《方程的根與函數(shù)的零點(diǎn)》教學(xué)設(shè)計(jì)

校內(nèi)公開課《方程的根與函數(shù)的零點(diǎn)》

教學(xué)設(shè)計(jì)

校內(nèi)公開課《方程的根與函數(shù)的零點(diǎn)》教學(xué)設(shè)計(jì)

海口海港學(xué)校 黃于芮

一、教學(xué)目標(biāo)

(1)知識(shí)與技能:

結(jié)合二次函數(shù)的圖象,判斷一元二次方程根的存在性及個(gè)數(shù),從而了解函數(shù)的零點(diǎn)與方程的根的聯(lián)系.理解并會(huì)用零點(diǎn)存在性定理。

(2)過程與方法:

培養(yǎng)學(xué)生觀察、思考、分析、猜想,驗(yàn)證的能力,并從中體驗(yàn)從特殊到一般及函數(shù)與方程思想。

(3)情感態(tài)度與價(jià)值觀:

在引導(dǎo)學(xué)生通過自主探究,發(fā)現(xiàn)問題,解決問題的過程中,激發(fā)學(xué)生學(xué)習(xí)熱情和求知欲,體現(xiàn)學(xué)生的主體地位,提高學(xué)習(xí)數(shù)學(xué)的興趣。

二、教學(xué)重難點(diǎn)

重點(diǎn):體會(huì)函數(shù)零點(diǎn)與方程根之間的聯(lián)系,掌握零點(diǎn)的概念

難點(diǎn):函數(shù)零點(diǎn)與方程根之間的聯(lián)系

三、教法學(xué)法

以問題為載體,學(xué)生活動(dòng)為主線,以多媒體輔助教學(xué)為手段利用探究式教學(xué)法,構(gòu)建學(xué)生自主探究、合作交流的平臺(tái)

四、教學(xué)過程

1.創(chuàng)設(shè)問題情境,引入新課

問題1求下列方程的根

(1)(2)(3)

師生互動(dòng):問題1讓學(xué)生通過自主解前3小題,復(fù)習(xí)一元二次方程根三種情形。

問題2填寫下表,探究一元二次方程的根與相應(yīng)二次函數(shù)與x軸的交點(diǎn)的關(guān)系?

師生互動(dòng):讓學(xué)生自主完成表格,觀察并總結(jié)數(shù)學(xué)規(guī)律

問題3 完成表格,并觀察一元二次方程的根與相應(yīng)二函數(shù)圖象與x軸交點(diǎn)的關(guān)系?

師生互動(dòng):讓學(xué)生通過探究,歸納概括所發(fā)現(xiàn)結(jié)論,并能用相對(duì)準(zhǔn)確的數(shù)學(xué)語言表達(dá)。

2.建構(gòu)函數(shù)零點(diǎn)概念

函數(shù)零點(diǎn)的概念:對(duì)于函數(shù)y=f(x),我們把使f(x)=0的實(shí)數(shù)x叫做函數(shù)y=f(x)的零點(diǎn)。

思考:

(1)零點(diǎn)是一個(gè)點(diǎn)嗎?

(2)零點(diǎn)跟方程的根的關(guān)系?

(3)請(qǐng)你說出問題2中3個(gè)函數(shù)的零點(diǎn)及個(gè)數(shù)?(投影問題2的表格)

師生互動(dòng):教師逐一給出3個(gè)問題,讓學(xué)生思考回答,教師對(duì)回答正確學(xué)生給予表揚(yáng),不正確學(xué)生給予提示與鼓勵(lì)。

3.知識(shí)的延伸,得出等價(jià)關(guān)系

(1)方程f(x)=0有實(shí)數(shù)根(2)函數(shù)y=f(x)有零點(diǎn)(3)函數(shù)y=f(x)的圖象與x軸有交點(diǎn)

師生互動(dòng):分析等價(jià)性:(1)、(2)兩個(gè)命題的等價(jià)是從數(shù)的角度來刻畫,第(3)個(gè)命題是從形的角度來刻畫。基于此,我們就可用函數(shù)的觀點(diǎn)看待方程,方程的根即函數(shù)的零點(diǎn),可以把解方程的問題轉(zhuǎn)化為函數(shù)圖像與x軸的交點(diǎn)問題。

4.練習(xí)鞏固

練習(xí)1:函數(shù) 的零點(diǎn)是()

A.(-2,0)和(3,0)B.-2 C.3 D.-2和3

練習(xí)2:求下列函數(shù)的零點(diǎn)。

練習(xí)3:根據(jù)函數(shù)圖象判斷下列函數(shù)有幾個(gè)零點(diǎn)?

5、歸納小結(jié)

請(qǐng)你談?wù)劚竟?jié)課的收獲?

(1)、函數(shù)零點(diǎn)的概念

(2)、三個(gè)等價(jià)關(guān)系

師生互動(dòng):讓學(xué)生自己對(duì)本課進(jìn)行小結(jié),教師對(duì)學(xué)生的小結(jié)給予肯定并補(bǔ)充完善。

布置作業(yè),學(xué)以致用

必做題:

1、求函數(shù):y=-x2+6x+7的零點(diǎn)

2、方程的解所在的區(qū)間是()

A.

0,1)B.(1,2)C.2,3).(3,4)((D

下載方程的根與函數(shù)的零點(diǎn) 教學(xué)反思(區(qū)級(jí)公開課 )word格式文檔
下載方程的根與函數(shù)的零點(diǎn) 教學(xué)反思(區(qū)級(jí)公開課 ).doc
將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
點(diǎn)此處下載文檔

文檔為doc格式


聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

相關(guān)范文推薦

    方程的根與函數(shù)的零點(diǎn)教學(xué)設(shè)計(jì)

    方程的根與函數(shù)的零點(diǎn)教學(xué)設(shè)計(jì) 教學(xué)內(nèi)容與任務(wù)分析 本節(jié)課的內(nèi)容選自《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書》人教A版數(shù)學(xué)必修一第三章第一節(jié)3.1.1方程的根與函數(shù)的零點(diǎn)。本節(jié)課的主......

    方程的根與函數(shù)的零點(diǎn)教學(xué)設(shè)計(jì)

    教師的工作就不是原來的意義的教書,應(yīng)改變?yōu)閷?dǎo)書,即指導(dǎo)學(xué)生去讀書,在指導(dǎo)學(xué)生學(xué)習(xí)的同時(shí)要點(diǎn)撥給學(xué)生學(xué)習(xí)的方法,幫助學(xué)生解疑析難,指導(dǎo)學(xué)生形成知識(shí)體系與思想方法,亦即將教法向......

    “方程的根與函數(shù)的零點(diǎn)”教學(xué)設(shè)計(jì)

    一.內(nèi)容和內(nèi)容解析 本節(jié)內(nèi)容有函數(shù)零點(diǎn)概念、函數(shù)零點(diǎn)與相應(yīng)方程根的關(guān)系、函數(shù)零點(diǎn)存在性定理. 函數(shù)零點(diǎn)是研究當(dāng)函數(shù)的值為零時(shí),相應(yīng)的自變量的取值,反映在函數(shù)圖象上,......

    《方程的根與函數(shù)的零點(diǎn)》教案設(shè)計(jì)

    《方程的根與函數(shù)的零點(diǎn)》教案設(shè)計(jì) 1、教學(xué)設(shè)計(jì)的理念 本節(jié)課以提升數(shù)學(xué)核心素養(yǎng)的為目標(biāo)任務(wù),樹立學(xué)科育人的教學(xué)理念,以層層遞進(jìn)的“問題串”引導(dǎo)學(xué)生學(xué)習(xí),運(yùn)用從特殊到一般......

    《方程的根與函數(shù)的零點(diǎn)》說課稿

    3.1.1方程的根與函數(shù)的零點(diǎn)教學(xué)設(shè)計(jì)說明 各位尊敬的老師,下午好。今天我說課的題目是《方程的根與函數(shù)的零點(diǎn)》。下面我將從教材的地位與作用、學(xué)情分析,教學(xué)目標(biāo)與重難點(diǎn)分析......

    方程的根與函數(shù)零點(diǎn)的說課稿

    “方程的根與函數(shù)的零點(diǎn)”說課稿各位老師,你們好! 我說課的課題是 “方程的根與函數(shù)的零點(diǎn)” 說課內(nèi)容分為六個(gè)部分, 首先對(duì)教材進(jìn)行簡(jiǎn)要分析一、教材分析方程的根與函數(shù)的零點(diǎn)......

    關(guān)于方程的根與函數(shù)的零點(diǎn)一課的教學(xué)反思

    關(guān)于方程的根與函數(shù)的零點(diǎn)一課的教學(xué)反思 穆棱市第一中學(xué)靳春明 本節(jié)課是一節(jié)校內(nèi)公開課,回顧這節(jié)課整個(gè)過程有成功之處也有遺憾,為了更好進(jìn)行教學(xué),總結(jié)過去展望未來,對(duì)本節(jié)進(jìn)行......

    方程的根與函數(shù)的零點(diǎn)教學(xué)反思[精選5篇]

    3.1.1 方程的根與函數(shù)的零點(diǎn)”教學(xué)反思 朱河中學(xué) 李丹 “方程的根與函數(shù)的零點(diǎn)”是高中課程標(biāo)準(zhǔn)新增的內(nèi)容,教材用了三個(gè)版面(人民教育出版社《普通高中課程標(biāo)準(zhǔn)試驗(yàn)教科書·......

主站蜘蛛池模板: 欧美成人一区二免费视频软件| 久久婷婷五月综合鬼色| 天天爽夜夜爽人人爽曰| 中字幕人妻一区二区三区| 成人无码视频在线观看大全| 国产精品无码一区二区在线观一| 国产女人高潮抽搐叫床视频| 免费毛儿一区二区十八岁| 国产精品人妻一码二码尿失禁| 天天澡日日澡狠狠欧美老妇| 久久久99久久久国产自输拍| 无码中文精品视视在线观看| 韩国三级中文字幕无码| 精品人妻系列无码人妻在线不卡| 欧美人妻| 国产性色αv视频免费| 免费人妻无码不卡中文字幕18禁| 99riav国产精品视频| 国产精品沙发午睡系列| 人人做人人爽国产视| 国产欧美久久一区二区三区| 色婷婷亚洲十月十月色天| 国产成人av一区二区三区不卡| 久久久99精品免费观看| 日韩 欧美 国产 一区三| 青春草在线视频免费观看| 在线人成免费视频69国产| 天堂无码人妻精品一区二区三区| 国产成人精品综合久久久久| bt天堂新版中文在线地址| 99蜜桃臀久久久欧美精品网站| 蜜臀久久99精品久久久久久| 亚洲亚洲人成综合网站图片| 亚洲av久久无码精品九九| 亚洲一区二区三区影院| 色哟哟精品视频在线观看| 亚洲美女又黄又爽在线观看| 野外做受又硬又粗又大视频| 91精品少妇高潮一区二区三区不卡| 凹凸在线无码免费视频| 亚洲成熟女人毛毛耸耸多|