久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

高一函數知識點總結范文

時間:2019-05-15 13:01:17下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關的《高一函數知識點總結范文》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《高一函數知識點總結范文》。

第一篇:高一函數知識點總結范文

(一)、映射、函數、反函數

1、對應、映射、函數三個概念既有共性又有區別,映射是一種特殊的對應,而函數又是一種特殊的映射。

2、對于函數的概念,應注意如下幾點:

(1)掌握構成函數的三要素,會判斷兩個函數是否為同一函數。

(2)掌握三種表示法——列表法、解析法、圖象法,能根實際問題尋求變量間的函數關系式,特別是會求分段函數的解析式。

(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復合函數,其中g(x)為內函數,f(u)為外函數。

3、求函數y=f(x)的反函數的一般步驟:

(1)確定原函數的值域,也就是反函數的定義域;

(2)由y=f(x)的解析式求出x=f—1(y);

(3)將x,y對換,得反函數的習慣表達式y=f—1(x),并注明定義域。

注意①:對于分段函數的反函數,先分別求出在各段上的反函數,然后再合并到一起。

②熟悉的應用,求f—1(x0)的值,合理利用這個結論,可以避免求反函數的過程,從而簡化運算。

(二)、函數的解析式與定義域

1、函數及其定義域是不可分割的整體,沒有定義域的函數是不存在的,因此,要正確地寫出函數的解析式,必須是在求出變量間的對應法則的同時,求出函數的定義域。求函數的定義域一般有三種類型:

(1)有時一個函數來自于一個實際問題,這時自變量x有實際意義,求定義域要結合實際意義考慮;

(2)已知一個函數的解析式求其定義域,只要使解析式有意義即可。如:

①分式的分母不得為零;

②偶次方根的被開方數不小于零;

③對數函數的真數必須大于零;

④指數函數和對數函數的底數必須大于零且不等于1;

⑤三角函數中的正切函數y=tanx(x∈R,且k∈Z),余切函數y=cotx(x∈R,x≠kπ,k∈Z)等。

應注意,一個函數的解析式由幾部分組成時,定義域為各部分有意義的自變量取值的公共部分(即交集)。

(3)已知一個函數的定義域,求另一個函數的定義域,主要考慮定義域的深刻含義即可。

已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時f(x)的定義域,即g(x)的值域。

2、求函數的解析式一般有四種情況

(1)根據某實際問題需建立一種函數關系時,必須引入合適的變量,根據數學的有關知識尋求函數的解析式。

(2)有時題設給出函數特征,求函數的解析式,可采用待定系數法。比如函數是一次函數,可設f(x)=ax+b(a≠0),其中a,b為待定系數,根據題設條件,列出方程組,求出a,b即可。

(3)若題設給出復合函數f[g(x)]的表達式時,可用換元法求函數f(x)的表達式,這時必須求出g(x)的值域,這相當于求函數的定義域。

(4)若已知f(x)滿足某個等式,這個等式除f(x)是未知量外,還出現其他未知量(如f(—x),等),必須根據已知等式,再構造其他等式組成方程組,利用解方程組法求出f(x)的表達式。

(三)、函數的值域與最值

1、函數的值域取決于定義域和對應法則,不論采用何種方法求函數值域都應先考慮其定義域,求函數值域常用方法如下:

(1)直接法:亦稱觀察法,對于結構較為簡單的函數,可由函數的解析式應用不等式的性質,直接觀察得出函數的值域。

(2)換元法:運用代數式或三角換元將所給的復雜函數轉化成另一種簡單函數再求值域,若函數解析式中含有根式,當根式里一次式時用代數換元,當根式里是二次式時,用三角換元。

(3)反函數法:利用函數f(x)與其反函數f—1(x)的定義域和值域間的關系,通過求反函數的定義域而得到原函數的值域,形如(a≠0)的函數值域可采用此法求得。

(4)配方法:對于二次函數或二次函數有關的函數的值域問題可考慮用配方法。

(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數的值域,不過應注意條件“一正二定三相等”有時需用到平方等技巧。

(6)判別式法:把y=f(x)變形為關于x的一元二次方程,利用“△≥0”求值域。其題型特征是解析式中含有根式或分式。

(7)利用函數的單調性求值域:當能確定函數在其定義域上(或某個定義域的子集上)的單調性,可采用單調性法求出函數的值域。

(8)數形結合法求函數的值域:利用函數所表示的幾何意義,借助于幾何方法或圖象,求出函數的值域,即以數形結合求函數的值域。

2、求函數的最值與值域的區別和聯系

求函數最值的常用方法和求函數值域的方法基本上是相同的,事實上,如果在函數的值域中存在一個最小(大)數,這個數就是函數的最小(大)值。因此求函數的最值與值域,其實質是相同的,只是提問的角度不同,因而答題的方式就有所相異。

如函數的值域是(0,16],最大值是16,無最小值。再如函數的值域是(—∞,—2]∪[2,+∞),但此函數無最大值和最小值,只有在改變函數定義域后,如x>0時,函數的最小值為2。可見定義域對函數的值域或最值的影響。

3、函數的最值在實際問題中的應用

函數的最值的應用主要體現在用函數知識求解實際問題上,從文字表述上常常表現為“工程造價最低”,“利潤最大”或“面積(體積)最大(最小)”等諸多現實問題上,求解時要特別關注實際意義對自變量的制約,以便能正確求得最值。

(四)、函數的奇偶性

1、函數的奇偶性的定義:對于函數f(x),如果對于函數定義域內的任意一個x,都有f(—x)=—f(x)(或f(—x)=f(x)),那么函數f(x)就叫做奇函數(或偶函數)。

正確理解奇函數和偶函數的定義,要注意兩點:(1)定義域在數軸上關于原點對稱是函數f(x)為奇函數或偶函數的必要不充分條件;(2)f(x)=—f(x)或f(—x)=f(x)是定義域上的恒等式。(奇偶性是函數定義域上的整體性質)。

2、奇偶函數的定義是判斷函數奇偶性的主要依據。為了便于判斷函數的奇偶性,有時需要將函數化簡或應用定義的等價形式:

注意如下結論的運用:

(1)不論f(x)是奇函數還是偶函數,f(|x|)總是偶函數;

(2)f(x)、g(x)分別是定義域D1、D2上的奇函數,那么在D1∩D2上,f(x)+g(x)是奇函數,f(x)·g(x)是偶函數,類似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

(3)奇偶函數的復合函數的奇偶性通常是偶函數;

(4)奇函數的導函數是偶函數,偶函數的導函數是奇函數。

3、有關奇偶性的幾個性質及結論

(1)一個函數為奇函數的充要條件是它的圖象關于原點對稱;一個函數為偶函數的充要條件是它的圖象關于y軸對稱。

(2)如要函數的定義域關于原點對稱且函數值恒為零,那么它既是奇函數又是偶函數。

(3)若奇函數f(x)在x=0處有意義,則f(0)=0成立。

(4)若f(x)是具有奇偶性的區間單調函數,則奇(偶)函數在正負對稱區間上的單調性是相同(反)的。

(5)若f(x)的定義域關于原點對稱,則F(x)=f(x)+f(—x)是偶函數,G(x)=f(x)—f(—x)是奇函數。

(6)奇偶性的推廣

函數y=f(x)對定義域內的任一x都有f(a+x)=f(a—x),則y=f(x)的圖象關于直線x=a對稱,即y=f(a+x)為偶函數。函數y=f(x)對定義域內的任—x都有f(a+x)=—f(a—x),則y=f(x)的圖象關于點(a,0)成中心對稱圖形,即y=f(a+x)為奇函數。

(五)、函數的單調性

1、單調函數

對于函數f(x)定義在某區間[a,b]上任意兩點x1,x2,當x1>x2時,都有不等式f(x1)>(或<)f(x2)成立,稱f(x)在[a,b]上單調遞增(或遞減);增函數或減函數統稱為單調函數。

對于函數單調性的定義的理解,要注意以下三點:

(1)單調性是與“區間”緊密相關的概念。一個函數在不同的區間上可以有不同的單調性。

(2)單調性是函數在某一區間上的“整體”性質,因此定義中的x1,x2具有任意性,不能用特殊值代替。

(3)單調區間是定義域的子集,討論單調性必須在定義域范圍內。

(4)注意定義的兩種等價形式:

設x1、x2∈[a,b],那么:

①在[a、b]上是增函數;

在[a、b]上是減函數。

②在[a、b]上是增函數。

在[a、b]上是減函數。

需要指出的是:①的幾何意義是:增(減)函數圖象上任意兩點(x1,f(x1))、(x2,f(x2))連線的斜率都大于(或小于)零。

(5)由于定義都是充要性命題,因此由f(x)是增(減)函數,且(或x1>x2),這說明單調性使得自變量間的不等關系和函數值之間的不等關系可以“正逆互推”。

5、復合函數y=f[g(x)]的單調性

若u=g(x)在區間[a,b]上的單調性,與y=f(u)在[g(a),g(b)](或g(b),g(a))上的單調性相同,則復合函數y=f[g(x)]在[a,b]上單調遞增;否則,單調遞減。簡稱“同增、異減”。

在研究函數的單調性時,常需要先將函數化簡,轉化為討論一些熟知函數的單調性。因此,掌握并熟記一次函數、二次函數、指數函數、對數函數的單調性,將大大縮短我們的判斷過程。

6、證明函數的單調性的方法

(1)依定義進行證明。其步驟為:①任取x1、x2∈M且x1(或<)f(x2);③根據定義,得出結論。

(2)設函數y=f(x)在某區間內可導。

如果f′(x)>0,則f(x)為增函數;如果f′(x)<0,則f(x)為減函數。

(六)、函數的圖象

函數的圖象是函數的直觀體現,應加強對作圖、識圖、用圖能力的培養,培養用數形結合的思想方法解決問題的意識。

求作圖象的函數表達式

與f(x)的關系

由f(x)的圖象需經過的變換

y=f(x)±b(b>0)

沿y軸向平移b個單位

y=f(x±a)(a>0)

沿x軸向平移a個單位

y=—f(x)

作關于x軸的對稱圖形

y=f(|x|)

右不動、左右關于y軸對稱

y=|f(x)|

上不動、下沿x軸翻折

y=f—1(x)

作關于直線y=x的對稱圖形

y=f(ax)(a>0)

橫坐標縮短到原來的,縱坐標不變

y=af(x)

縱坐標伸長到原來的|a|倍,橫坐標不變

y=f(—x)

作關于y軸對稱的圖形

【例】定義在實數集上的函數f(x),對任意x,y∈R,有f(x+y)+f(x—y)=2f(x)·f(y),且f(0)≠0。

①求證:f(0)=1;

②求證:y=f(x)是偶函數;

③若存在常數c,使求證對任意x∈R,有f(x+c)=—f(x)成立;試問函數f(x)是不是周期函數,如果是,找出它的一個周期;如果不是,請說明理由。

思路分析:我們把沒有給出解析式的函數稱之為抽象函數,解決這類問題一般采用賦值法。

解答:①令x=y=0,則有2f(0)=2f2(0),因為f(0)≠0,所以f(0)=1。

②令x=0,則有f(x)+f(—y)=2f(0)·f(y)=2f(y),所以f(—y)=f(y),這說明f(x)為偶函數。

③分別用(c>0)替換x、y,有f(x+c)+f(x)=

所以,所以f(x+c)=—f(x)。

兩邊應用中的結論,得f(x+2c)=—f(x+c)=—[—f(x)]=f(x),所以f(x)是周期函數,2c就是它的一個周期。

[高一函數知識點總結]相關文章:

第二篇:初中函數知識點總結

千承培訓學校

函數知識點總結(掌握函數的定義、性質和圖像)

(一)平面直角坐標系

1、定義:平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系

2、各個象限內點的特征: 第一象限:(+,+)點P(x,y),則x>0,y>0; 第二象限:(-,+)點P(x,y),則x<0,y>0; 第三象限:(-,-)點P(x,y),則x<0,y<0; 第四象限:(+,-)點P(x,y),則x>0,y<0;

3、坐標軸上點的坐標特征:

x軸上的點,縱坐標為零;y軸上的點,橫坐標為零;原點的坐標為(0 , 0)。兩坐標軸的點不屬于任何象限。

4、點的對稱特征:已知點P(m,n), 關于x軸的對稱點坐標是(m,-n), 橫坐標相同,縱坐標反號 關于y軸的對稱點坐標是(-m,n)縱坐標相同,橫坐標反號 關于原點的對稱點坐標是(-m,-n)橫,縱坐標都反號

5、平行于坐標軸的直線上的點的坐標特征:平行于x軸的直線上的任意兩點:縱坐標相等;平行于y軸的直線上的任意兩點:橫坐標相等。

6、各象限角平分線上的點的坐標特征:

第一、三象限角平分線上的點橫、縱坐標相等。

第二、四象限角平分線上的點橫、縱坐標互為相反數。

7、點P(x,y)的幾何意義: 點P(x,y)到x軸的距離為 |y|,點P(x,y)到y軸的距離為 |x|。點P(x,y)到坐標原點的距離為

8、兩點之間的距離:

X軸上兩點為A(x1,0)、B(x2,0)|AB|?|x2?x1|

x2?y2 Y軸上兩點為C(0,y1)、D(0,y2)|CD|已知A(x1,y1)、B(x2,y2)AB|=

?|y2?y1|

(x2?x1)2?(y2?y1)

29、中點坐標公式:已知A(x1,y1)、B(x2,y2)M為AB的中點

則:M=(x2?x1y?y1 , 2)2210、點的平移特征: 在平面直角坐標系中,將點(x,y)向右平移a個單位長度,可以得到對應點(x-a,y); 將點(x,y)向左平移a個單位長度,可以得到對應點(x+a,y); 將點(x,y)向上平移b個單位長度,可以得到對應點(x,y+b); 將點(x,y)向下平移b個單位長度,可以得到對應點(x,y-b)。

注意:對一個圖形進行平移,這個圖形上所有點的坐標都要發生相應的變化;反過來,從圖形上點的坐標的加減變化,我們也可以看出對這個圖形進行了怎樣的平移。

(二)函數的基本知識: 基本概念

1、變量:在一個變化過程中可以取不同數值的量。

常量:在一個變化過程中只能取同一數值的量。

2、函數:一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應,那么我們就把x稱為自變量,把y稱為因變量,y是x的函數。*判斷A是否為B的函數,只要看B取值確定的時候,A是否有唯一確定的值與之對應

3、定義域:一般的,一個函數的自變量允許取值的范圍,叫做這個函數的定義域。

4、確定函數定義域的方法:

(1)關系式為整式時,函數定義域為全體實數;

(2)關系式含有分式時,分式的分母不等于零;

(3)關系式含有二次根式時,被開放方數大于等于零;

(4)關系式中含有指數為零的式子時,底數不等于零;

(5)實際問題中,函數定義域還要和實際情況相符合,使之有意義。

5、函數的圖像 一般來說,對于一個函數,如果把自變量與函數的每對對應值分別作為點的橫、縱坐標,那么坐標平面內由這些點組成的圖形,就是這個函數的圖象.

6、函數解析式:用含有表示自變量的字母的代數式表示因變量的式子叫做解析式。

7、描點法畫函數圖形的一般步驟

第一步:列表(表中給出一些自變量的值及其對應的函數值);

第二步:描點(在直角坐標系中,以自變量的值為橫坐標,相應的函數值為縱坐標,描出表格中數值對應的各點);

第三步:連線(按照橫坐標由小到大的順序把所描出的各點用平滑曲線連接起來)。

8、函數的表示方法

列表法:一目了然,使用起來方便,但列出的對應值是有限的,不易看出自變量與函數之間的對應規律。

解析式法:簡單明了,能夠準確地反映整個變化過程中自變量與函數之間的相依關系,但有些實際問題中的函數關系,不能用解析式表示。

圖象法:形象直觀,但只能近似地表達兩個變量之間的函數關系。

(三)正比例函數和一次函數

1、正比例函數及性質

一般地,形如y=kx(k是常數,k≠0)的函數叫做正比例函數,其中k叫做比例系數.注:正比例函數一般形式 y=kx(k不為零)① k不為零 ② x指數為1 ③ b取零 當k>0時,直線y=kx經過三、一象限,從左向右上升,即隨x的增大y也增大;當k<0時,?直線y=kx經過二、四象限,從左向右下降,即隨x增大y反而減小.(1)解析式:y=kx(k是常數,k≠0)(2)必過點:(0,0)、(1,k)

(3)走向:k>0時,圖像經過一、三象限;k<0時,?圖像經過二、四象限(4)增減性:k>0,y隨x的增大而增大;k<0,y隨x增大而減小(5)傾斜度:|k|越大,越接近y軸;|k|越小,越接近x軸

2、一次函數及性質

一般地,形如y=kx+b(k,b是常數,k≠0),那么y叫做x的一次函數.當b=0時,y=kx+b即y=kx,所以說正比例函數是一種特殊的一次函數.注:一次函數一般形式 y=kx+b(k不為零)① k不為零 ②x指數為1 ③ b取任意實數

一次函數y=kx+b的圖象是經過(0,b)和(-

b,0)兩點的一條直線,我們稱它為直k線y=kx+b,它可以看作由直線y=kx平移|b|個單位長度得到.(當b>0時,向上平移;當b<0時,向下平移)

(1)解析式:y=kx+b(k、b是常數,k?0)(2)必過點:(0,b)和(-

b,0)k(3)走向: k>0,圖象經過第一、三象限;k<0,圖象經過第二、四象限 b>0,圖象經過第一、二象限;b<0,圖象經過第三、四象限

?k?0?k?0直線經過第一、二、三象限 ??直線經過第一、三、四象限 ???b?0?b?0?k?0?k?0?直線經過第一、二、四象限 ??直線經過第二、三、四象限 ?b?0b?0??注:y=kx+b中的k,b的作用:

1、k決定著直線的變化趨勢

① k>0 直線從左向右是向上的 ② k<0 直線從左向右是向下的

2、b決定著直線與y軸的交點位置

① b>0 直線與y軸的正半軸相交 ② b<0 直線與y軸的負半軸相交

(4)增減性: k>0,y隨x的增大而增大;k<0,y隨x增大而減小.(5)傾斜度:|k|越大,圖象越接近于y軸;|k|越小,圖象越接近于x軸.(6)圖像的平移: 當b>0時,將直線y=kx的圖象向上平移b個單位;

當b<0時,將直線y=kx的圖象向下平移b個單位.3、一次函數y=kx+b的圖象的畫法.根據幾何知識:經過兩點能畫出一條直線,并且只能畫出一條直線,即兩點確定一條直線,所以畫一次函數的圖象時,只要先描出兩點,再連成直線即可.一般情況下:是先選取它與兩坐標軸的交點:(0,b),.即橫坐標或縱坐標為0的點.注:對于y=kx+b 而言,圖象共有以下四種情況:

1、k>0,b>0

2、k>0,b<0

3、k<0,b<0

4、k<0,b>0

4、直線y=kx+b(k≠0)與坐標軸的交點.

(1)直線y=kx與x軸、y軸的交點都是(0,0);

(2)直線y=kx+b與x軸交點坐標為

5、用待定系數法確定函數解析式的一般步驟:

與 y軸交點坐標為(0,b).

(1)根據已知條件寫出含有待定系數的函數關系式;

(2)將x、y的幾對值或圖象上的幾個點的坐標代入上述函數關系式中得到以待定系數為未知數的方程;

(3)解方程得出未知系數的值;

(4)將求出的待定系數代回所求的函數關系式中得出所求函數的解析式.6、兩條直線交點坐標的求法:

方法:聯立方程組求x、y 例題:已知兩直線y=x+6 與y=2x-4交于點P,求P點的坐標?

7、直線y=k1x+b1與y=k2x+b2的位置關系(1)兩條直線平行:k1=k2且b1?b2(2)兩直線相交:k1?k2(3)兩直線重合:k1=k2且b1=b2平行于軸(或重合)的直線記作

.特別地,軸記作直線

8、正比例函數與一次函數圖象之間的關系

一次函數y=kx+b的圖象是一條直線,它可以看作是由直線y=kx平移|b|個單位長度而得到(當b>0時,向上平移;當b<0時,向下平移).9、一元一次方程與一次函數的關系

任何一元一次方程到可以轉化為ax+b=0(a,b為常數,a≠0)的形式,所以解一元一次方程可以轉化為:當某個一次函數的值為0時,求相應的自變量的值.從圖象上看,相當于已知直線y=ax+b確定它與x軸的交點的橫坐標的值.10、一次函數與一元一次不等式的關系

任何一個一元一次不等式都可以轉化為ax+b>0或ax+b<0(a,b為常數,a≠0)的形式,所以解一元一次不等式可以看作:當一次函數值大(小)于0時,求自變量的取值范圍.11、一次函數與二元一次方程組

(1)以二元一次方程ax+by=c的解為坐標的點組成的圖象與一次函數y=?acx?的bb圖象相同.(2)二元一次方程組??a1x?b1y?c1ac的解可以看作是兩個一次函數y=?1x?1和

b1b1?a2x?b2y?c2y=?a2cx?2的圖象交點.b2b212、函數應用問題(理論應用 實際應用)

(1)利用圖象解題 通過函數圖象獲取信息,并利用所獲取的信息解決簡單的實際問題.(2)經營決策問題 函數建模的關鍵是將實際問題數學化,從而解決最佳方案,最佳策略等問題.建立一次函數模型解決實際問題,就是要從實際問題中抽象出兩個變量,再尋求出兩個變量之間的關系,構建函數模型,從而利用數學知題.(四)反比例函數

一般地,如果兩個變量x、y之間的關系可以表示成y=k/x(k為常數,k≠0)的形式,那么稱y是x的反比例函數。

取值范圍: ① k ≠ 0;②在一般的情況下 , 自變量 x 的取值范圍可以是 不等于0的任意實數;③函數 y 的取值范圍也是任意非零實數。反比例函數的圖像屬于以原點為對稱中心的中心對稱的雙曲線

反比例函數圖像中每一象限的每一支曲線會無限接近X軸Y軸但不會與坐標軸相交(K≠0)。

反比例函數的性質:

1.當k>0時,圖象分別位于第一、三象限,同一個象限內,y隨x的增大而減小;當k<0時,圖象分別位于二、四象限,同一個象限內,y隨x的增大而增大。

2.k>0時,函數在x<0和 x>0上同為減函數;k<0時,函數在x<0和x>0上同為增函數。

定義域為x≠0;值域為y≠0。

3.因為在y=k/x(k≠0)中,x不能為0,y也不能為0,所以反比例函數的圖象不可能與x軸相交,也不可能與y軸相交。

4.在一個反比例函數圖象上任取兩點P,Q,過點P,Q分別作x軸,y軸的平行線,與坐標軸圍成的矩形面積為S1,S2,則S1=S2=|K| 5.反比例函數的圖象既是軸對稱圖形,又是中心對稱圖形,它有兩條對稱軸

y=x y=-x(即第一三,二四象限角平分線),對稱中心是坐標原點。

6.若設正比例函數y=mx與反比例函數y=n/x交于A、B兩點(m、n同號),那么A B兩點關于原點對稱。

7.設在平面內有反比例函數y=k/x和一次函數y=mx+n,要使它們有公共交點,則n2 +4k·m≥(不小于)0。(k/x=mx+n,即mx^2+nx-k=0)

8.反比例函數y=k/x的漸近線:x軸與y軸。

9.反比例函數關于正比例函數y=x,y=-x軸對稱,并且關于原點中心對稱.(第5點的同義不同表述)

10.反比例上一點m向x、y軸分別做垂線,交于q、w,則矩形mwqo(o為原點)的面積為|k|

11.k值相等的反比例函數重合,k值不相等的反比例函數永不相交。

12.|k|越大,反比例函數的圖象離坐標軸的距離越遠。

(五)二次函數

二次函數是指未知數的最高次數為二次的多項式函數。二次函數可以表示為f(x)=ax^2+bx+c(a不為0)。其圖像是一條主軸平行于y軸的拋物線。

一般式(已知圖像上三點或三對、的值,通常選擇一般式.)

y=ax^2+bx+c(a≠0,a、b、c為常數),頂點坐標為(-b/2a,(4ac-b^2/4a);

頂點式(已知圖像的頂點或對稱軸,通常選擇頂點式.)

y=a(x+m)^2+k(a≠0,a、m、k為常數)或y=a(x-h)^2+k(a≠0,a、h、k為常數),頂點坐標為(-m,k)或(h,k)對稱軸為x=-m或x=h,有時題目會指出讓你用配方法把一般式化成頂點式;

交點式(已知圖像與軸的交點坐標、,通常選用交點式)

y=a(x-x1)(x-x2)[僅限于與x軸有交點A(x1,0)和 B(x2,0)的拋物線] ;

拋物線的三要素:開口方向、對稱軸、頂點 頂點

拋物線有一個頂點P,坐標為P(-b/2a,4ac-b^2/4a),當-b/2a=0時,P在y軸上;當Δ= b^2-4ac=0時,P在x軸上。開口

二次項系數a決定拋物線的開口方向和大小。當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。決定對稱軸位置的因素

一次項系數b和二次項系數a共同決定對稱軸的位置。

當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右。(左同右異)

c的大小決定拋物線當①時,∴拋物線,與與

軸交點的位置.與

軸有且只有一個交點(0,): ,與

軸交于負半軸.,拋物線經過原點;②軸交于正半軸;③直線與拋物線的交點(1)(2)與(,軸與拋物線軸平行的直線).得交點為(0,).與拋物線

有且只有一個交點(3)拋物線與軸的交點 二次函數程根的判別式判定:

①有兩個交點

拋物線與軸相交;

拋物線與軸相切; 的圖像與軸的兩個交點的橫坐標、,是對應一元二次方的兩個實數根.拋物線與軸的交點情況可以由對應的一元二次方程的 ②有一個交點(頂點在軸上)③沒有交點

拋物線與軸相離.(4)平行于軸的直線與拋物線的交點同(3)一樣可能有0個交點、1個交點、2個交點.當有2個交點時,兩交點的縱坐標相等,設縱坐標為,則橫坐標是個實數根.(5)一次函數的圖像與二次函數的圖像的交的兩點,由方程組

①方程組有兩組不同的解時一個交點;③方程組無解時的解的數目來確定: 與與

有兩個交點;②方程組只有一組解時沒有交點.與

只有(6)拋物線與軸兩交點之間的距離:若拋物線,由于、是方程

與軸兩交點為的兩個根,故

千承培訓學校

第三篇:初中函數知識點總結

一次函數

1、表達式:y=kx+b(k≠0)圖象呈一條直線

b2、與坐標軸交點:x軸:(?,0)k

y軸:(0,b)

3、系數k和b的意義:

① 當k>0時,y隨x的增大而增大,函數圖象成上坡趨勢且過一三象限

當k<0時,y隨x的增大而減小,函數圖象成下坡趨勢且過二四象限 ② 當b>0時,圖象與y軸交于正半軸,且圖象過一二象限

當b<0時,圖象與y軸交于負半軸,且圖象過三四象限

4、正比列函數:當一次函數b=0時,該函數為正比列函數,即表達式為: y=kx(k≠0),該函數圖象恒過原點

反比列函數

k(k?0)x2、圖象:雙曲線且與坐標軸沒有交點

3、系數k的意義:

① k>0時,圖象兩支在一三象限內,且在各個象限內y隨x的增大而減小,圖象呈下坡趨勢

② k<0時,圖象兩支在二四象限內,且在各個象限內y隨x的增大而增大,圖象呈上坡趨勢

4、圖象特點:在圖像上任意一點向坐標軸引垂線與坐標軸所圍成的矩形面積都

1、表達式:y?為k

二次函數

第四篇:高中數學函數知識點總結

高中數學函數知識點總結

(1)高中函數公式的變量:因變量,自變量。

在用圖象表示變量之間的關系時,通常用水平方向的數軸上的點自變量,用豎直方向的數軸上的點表示因變量。

(2)一次函數:①若兩個變量,間的關系式可以表示成(為常數,不等于0)的形式,則稱 是的一次函數。②當=0時,稱是的正比例函數。

(3)高中函數的一次函數的圖象及性質

①把一個函數的自變量與對應的因變量的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。

②正比例函數=的圖象是經過原點的一條直線。

③在一次函數中,當0,O,則經2、3、4象限;當0,0時,則經1、2、4象限;當0,0時,則經1、3、4象限;當0,0時,則經1、2、3象限。

④當0時,的值隨值的增大而增大,當0時,的值隨值的增大而減少。

(4)高中函數的二次函數:

①一般式:(),對稱軸是

頂點是;

②頂點式:(),對稱軸是頂點是;

③交點式:(),其中(),()是拋物線與x軸的交點

(5)高中函數的二次函數的性質

①函數的圖象關于直線對稱。

隨時,在對稱軸()左側,值隨值的增大而減少;在對稱軸()右側;的值值的增大而增大。當時,取得最小值時,在對稱軸()左側,值隨值的增大而增大;在對稱軸()右側;的值值的增大而減少。當時,取得最大值高中函數的圖形的對稱

(1)軸對稱圖形:①如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。②軸對稱圖形上關于對稱軸對稱的兩點確定的線段被對稱軸垂直平分。

(2)中心對稱圖形:①在平面內,一個圖形繞某個點旋轉180度,如果旋轉前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點叫做他的對稱中心。②中心對稱圖形上的每一對對應點所連成的線段都被對稱中心平分。

2012高中數學知識點總結:函數公式大全

9高中函數的圖形的對稱

(1)軸對稱圖形:①如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。②軸對稱圖形上關于對稱軸對稱的兩點確定的線段被對稱軸垂直平分。

(2)中心對稱圖形:①在平面內,一個圖形繞某個點旋轉180度,如果旋轉前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點叫做他的對稱中心。②中心對稱圖形上的每一對對應點所連成的線段都被對稱中心平分

第五篇:高一數學知識點歸納:指數函數、函數奇偶性

指數函數的一般形式為,從上面我們對于冪函數的討論就可以知道,要想使得x能夠取整個實數集合為定義域,則只有使得

如圖所示為a的不同大小影響函數圖形的情況。

可以看到:

(1)指數函數的定義域為所有實數的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數的定義域不存在連續的區間,因此我們不予考慮。

(2)指數函數的值域為大于0的實數集合。

(3)函數圖形都是下凹的。

(4)a大于1,則指數函數單調遞增;a小于1大于0,則為單調遞減的。

(5)可以看到一個顯然的規律,就是當a從0趨向于無窮大的過程中(當然不能等于0),函數的曲線從分別接近于Y軸與X軸的正半軸的單調遞減函數的位置,趨向分別接近于Y軸的正半軸與X軸的負半軸的單調遞增函數的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

(6)函數總是在某一個方向上無限趨向于X軸,永不相交。

(7)函數總是通過(0,1)這點。

(8)顯然指數函數無界。

奇偶性

注圖:(1)為奇函數(2)為偶函數

1.定義

一般地,對于函數f(x)

(1)如果對于函數定義域內的任意一個x,都有f(-x)=-f(x),那么函數f(x)就叫做奇函數。

(2)如果對于函數定義域內的任意一個x,都有f(-x)=f(x),那么函數f(x)就叫做偶函數。

(3)如果對于函數定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那么函數f(x)既是奇函數又是偶函數,稱為既奇又偶函數。

(4)如果對于函數定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數f(x)既不是奇函數又不是偶函數,稱為非奇非偶函數。

說明:①奇、偶性是函數的整體性質,對整個定義域而言

②奇、偶函數的定義域一定關于原點對稱,如果一個函數的定義域不關于原點對稱,則這個函數一定不是奇(或偶)函數。

(分析:判斷函數的奇偶性,首先是檢驗其定義域是否關于原點對稱,然后再嚴格按照奇、偶性的定義經過化簡、整理、再與f(x)比較得出結論)

③判斷或證明函數是否具有奇偶性的根據是定義

2.奇偶函數圖像的特征:

定理奇函數的圖像關于原點成中心對稱圖表,偶函數的圖象關于y軸或軸對稱圖形。

f(x)為奇函數《==》f(x)的圖像關于原點對稱

點(x,y)→(-x,-y)

奇函數在某一區間上單調遞增,則在它的對稱區間上也是單調遞增。

偶函數在某一區間上單調遞增,則在它的對稱區間上單調遞減。

3.奇偶函數運算

(1).兩個偶函數相加所得的和為偶函數.(2).兩個奇函數相加所得的和為奇函數.(3).一個偶函數與一個奇函數相加所得的和為非奇函數與非偶函數.(4).兩個偶函數相乘所得的積為偶函數.(5).兩個奇函數相乘所得的積為偶函數.(6).一個偶函數與一個奇函數相乘所得的積為奇函數.

下載高一函數知識點總結范文word格式文檔
下載高一函數知識點總結范文.doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點此處下載文檔

文檔為doc格式


聲明:本文內容由互聯網用戶自發貢獻自行上傳,本網站不擁有所有權,未作人工編輯處理,也不承擔相關法律責任。如果您發現有涉嫌版權的內容,歡迎發送郵件至:645879355@qq.com 進行舉報,并提供相關證據,工作人員會在5個工作日內聯系你,一經查實,本站將立刻刪除涉嫌侵權內容。

相關范文推薦

    C語言函數知識點總結

    函數 本章重點:本章難點://函數相關內容: *語法:包括定義,聲明,調用, *語義 語句包括:表達式語句,空語句,控制語句,復合語句,函數調形參與實參的意義、作用與區別; 參數的兩種傳遞方式;......

    初中2次函數知識點總結

    導語:對初中2次函數知識點,同學們有必要進行總結。以下是初中2次函數知識點總結,供大家閱讀。I、定義與定義表達式一般地,自變量x和因變量y之間存在如下關系:y=ax^2+bx+c(a,b,c為常......

    函數的應用知識點總結

    函數的應用類型問題一直是期末數學重要題型之一,那一起來看看函數的應用的知識點吧,下面是小編為大家收集整理的函數的應用知識點總結,歡迎閱讀。函數的應用知識點總結:函數圖象......

    高一歷史知識點總結

    高一歷史知識點總結 必修一 必修一 第一單元古代中國的政治制度一、分封制 目的:鞏固國家政權 內容:①分封對象——王族、功臣、先代的貴族,②受封者義務——服從周王的命令、......

    高一英語知識點總結

    必修I--unit 1 I---1 Friendship 一、知識點 1. be good to 對??友好 be good for 對??有益;be bad to?/be bad for? I will be good to other people.我會善良的對待......

    高一生物知識點總結

    高一生物知識點總結 第一章、生命的物質基礎第一節、組成生物體的化學元素 1、微量元素:生物體必需的,含量很少的元素。如:Fe(鐵)、Mn(門)、B(碰)、Zn(醒)、Cu(銅)、Mo(母) ,巧記:鐵門碰醒銅......

    高一政治知識點總結

    第一課 神奇的貨幣1、 商品:用于交換的勞動產品。商品的基本屬性:價值和使用價值。2、 貨幣的本質是一般等價物3、 貨幣的基本職能:價值尺度、流通手段。貨幣在執行價值尺度職......

    高一數學知識點總結

    高一數學知識點總結 一 、集合與簡易邏輯 集合具有四個性質: 廣泛性:集合的元素什么都可以 確定性:集合中的元素必須是確定的,比如說是好學生就不具有這種性質,因為它的概念是模......

主站蜘蛛池模板: 免费无码黄真人影片在线| 国产亚洲欧美一区二区三区在线播放| 玖玖资源站最稳定网址| 艳妇臀荡乳欲伦69调教视频| 午夜男女爽爽影院免费视频下载| 久久久久人妻一区精品色欧美| 亚洲红杏成在人线免费视频| 野外做受又硬又粗又大视频| 天干夜啦天干天干国产免费| 免费国精产品wnw2544| 青草国产精品久久久久久| 国产免费午夜福利蜜芽无码| 久久久亚洲欧洲日产国码二区| 非洲人与性动交ccoo| 欧美成人aaa片一区国产精品| 久久av高潮av无码av喷吹| 日本无码一区二区三区不卡免费| 亚洲国产精品无码久久久动漫| 大肉大捧一进一出好爽视频| 亚洲欧美国产成人综合不卡| 伊人久久大线影院首页| 国产精成人品一区| 欧美激欧美啪啪片| 色翁荡息又大又硬又粗又爽| 国产欧美日韩一区二区三区在线| 国产亚洲精品aaaa片小说| 在线天堂中文www官网| 午夜影视啪啪免费体验区入口| 国产av电影区二区三区曰曰骚网| 国产亚洲成av人片在线观看导航| 久久久久国色av免费看| 国产乱人伦偷精品视频色欲| 久久精品免费一区二区喷潮| 亚洲精品人成网线在线播放va| 欧美与黑人午夜性猛交久久久| 日日摸日日踫夜夜爽无码| 精品无人区无码乱码毛片国产| 午夜精品久久久久成人| 精品国精品自拍自在线| 欧美两根一起进3p做受视频| 人妻无码中文字幕免费视频蜜桃|