第一篇:初二數學公式
1、單獨的一個數或一個字母也是單向式。
2、單向式中的數字因數叫做這個單向式的系數。
3、一個單向式中,所有字母的指數的和叫做這個單向式的次數。
4、幾個單項式的和叫做多項式。在多項式中,每個單項式叫做多項式的項,其中,不含字母的項叫做常數項。
5、一般地,多項式里次數最高的項的次數,就是這個多項式的次數。
例如(X2+3X3)這是一個多項式 里面的3X3中的3就是這個多項式的次數
6、單項式和多項式統稱整式。
7、所含字母相同,并且相同字母的指數也相同的項叫做同類項。幾個常數項也是同類項。
8、吧多項式中的同類項合并成一項,即把它們的系數相加作為新的系數,而字母部分不變,叫做合并同類項。
9、幾個整式相加減,通常用括號吧每個整式括起來,再用加減號連接:然后去括號,合并同類項。
10、冪的乘方,底數不變,指數相同。
11、同底數冪相乘,底數不變,指數相加。
12、冪的乘方,底數不變,指數相乘。
13、積的乘方,等于把積的每一個因式分別乘方,再把所得的冪相乘。
14、單向式與單向式相乘,把它們的系數、相同字母分別相乘,對于只在一個單向式里含有的字母,則連同它的指數作為積的因式。
15、單向式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。
16、多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。
17、兩個數的和與這兩個數的差的積=這兩個數的平方差。這個公式叫做(乘法的)平方差公式。
18、兩數和(或差)的平方=它們的平方和,加(或減)它們積的2倍。這兩個公式叫做(乘法的)完全平方公式。
19、添括號時,如果括號前面是正號,括到括號里的各項都不變符號;如果括號前面是負號,括到括號里的各項都改變符號。
20、同底數冪相加,底數不變,指數相減。
21、任何不等于0的數的0次冪都等于1.22、單向式相除,把系數與同底數冪分別相除作為商的因式,對于只在被除式里含有的字母,則連同它的指數作為商的一個因式。
23、多項式除以單向式,先把這個多項式的每一項除以這個單項式,再把所得的商相加。
24、吧一個多項式化成了幾個整式的積的形式,像這樣的式子變形叫做把這個多項式因式分解,也叫做把這個多項式分解因式。
25、ma+mb+mc,它的各項都有一個公共的因式m,我們把因式M叫做這個多項式各項的公因式。
由m(a+b+c)=ma+mb+mc,可得ma+mb+mc=m(a+b+c)這樣就把ma+mb+mc分解成兩個因式乘積的形式,其中一個因式是各項的公因式m,另一個因式(a+b+c)是ma+mb+mc除以m所得的商,像這種分解因式的方法叫做提公因式法。
26、兩個數的平方,等于這兩個數的和與這兩個數差的積。
27、兩個數的平方和加上(或減去)這兩個數的積的2倍,等于這兩個數的和(或差)的平方。
十字交叉雙乘法沒有公式,一定要說的話
那就是利用x^2+(p+q)x+pq=(x+q)(x+p)其中PQ為常數。x^2是X的平方
1.因式分解
即和差化積,其最后結果要分解到不能再分為止。而且可以肯定一個多項式要能分解因式,則結果唯一,因為:數域F上的次數大于零的多項式f(x),如果不計零次因式的差異,那么f(x)可以唯一的分解為以下形式:
f(x)=aP1k1(x)P2k2(x)…Piki(x)*,其中α是f(x)的最高次項的系數,P1(x),P2(x)……Pi(x)是首1互不相等的不可約多項式,并且Pi(x)(I=1,2…,t)是f(x)的Ki重因式。
(*)或叫做多項式f(x)的典型分解式。證明:可參見《高代》P52-53
初等數學中,把多項式的分解叫因式分解,其一般步驟為:一提二套三分組等
要求為:要分到不能再分為止。
2.方法介紹
2.1提公因式法:
如果多項式各項都有公共因式,則可先考慮把公因式提出來,進行因式分解,注意要每項都必須有公因式。
例15x3+10x2+5x
解析顯然每項均含有公因式5x故可考慮提取公因式5x,接下來剩下x2+2x+1仍可繼續分解。
解:原式=5x(x2+2x+1)
=5x(x+1)2 2.2公式法
即多項式如果滿足特殊公式的結構特征,即可采用套公式法,進行多項式的因式分解,故對于一些常用的公式要求熟悉,除教材的基本公式外,數學競賽中常出現的一些基本公式現整理歸納如下:
a2-b2=(a+b)(a-b)
a2±2ab+b2=(a±b)2
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b)(a2+ab+b2)
a3±3a2b+3ab2±b2=(a±b)3
a2+b2+c2+2ab+2bc+2ac=(a+b+c)2
a12+a22+…+an2+2a1a2+…+2an-1an=(a1+a2+…+an)2
a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-ac-bc)
an+bn=(a+b)(an-1-an-2b+…+bn-1)(n為奇數)
說明由因式定理,即對一元多項式f(x),若f(b)=0,則一定含有一次因式x-b。可判斷當n為偶數時,當a=b,a=-b時,均有an-bn=0故an-bn中一定含有a+b,a-b因式。
例2分解因式:①64x6-y12②1+x+x2+…+x15
解析各小題均可套用公式
解①64x6-y12=(8x3-y6)(8x3+y6)
=(2x-y2)(4x2+2xy2+y4)(2x+y2)(4x2-2xy2+y4)
②1+x+x2+…+x15=
=(1+x)(1+x2)(1+x4)(1+x8)
注多項式分解時,先構造公式再分解。
2.3分組分解法
當多項式的項數較多時,可將多項式進行合理分組,達到順利分解的目的。當然可能要綜合其他分法,且分組方法也不一定唯一。
例1分解因式:x15+m12+m9+m6+m3+1
解原式=(x15+m12)+(m9+m6)+(m3+1)
=m12(m3+1)+m6(m3+1)+(m3+1)
=(m3+1)(m12+m6++1)
=(m3+1)[(m6+1)2-m6]
=(m+1)(m2-m+1)(m6+1+m3)(m6+1-m3)
例2分解因式:x4+5x3+15x-9
解析可根據系數特征進行分組
解原式=(x4-9)+5x3+15x
=(x2+3)(x2-3)+5x(x2+3)
=(x2+3)(x2+5x-3)
2.4十字相乘法
對于形如ax2+bx+c結構特征的二次三項式可以考慮用十字相乘法,即x2+(b+c)x+bc=(x+b)(x+c)當x2項系數不為1時,同樣也可用十字相乘進行操作。
例3分解因式:①x2-x-6②6x2-x-12
解①1x2
1x-3
原式=(x+2)(x-3)②2x-3
3x4
原式=(2x-3)(3x+4)
注:“ax4+bx2+c”型也可考慮此種方法。
2.5雙十字相乘法
在分解二次三項式時,十字相乘法是常用的基本方法,對于比較復雜的多項式,尤其是某些二次六項式,如4x2-4xy-3y2-4x+10y-3,也可以運用十字相乘法分解因式,其具體步驟為:
(1)用十字相乘法分解由前三次組成的二次三項式,得到一個十字相乘圖
(2)把常數項分解成兩個因式填在第二個十字的右邊且使這兩個因式在第二個十字中交叉之積的和等于原式中含y的一次項,同時還必須與第一個十字中左端的兩個因式交叉之積的和等于原式中含x的一次項
例5分解因式
①4x2-4xy-3y2-4x+10y-3②x2-3xy-10y2+x+9y-2
③ab+b2+a-b-2④6x2-7xy-3y2-xz+7yz-2z2
解①原式=(2x-3y+1)(2x+y-3)
2x-3y1
2xy-3
②原式=(x-5y+2)(x+2y-1)
x-5y2
x2y-1
③原式=(b+1)(a+b-2)
0ab1 ab-2
④原式=(2x-3y+z)(3x+y-2z)
2x-3yz
3x-y-2z
說明:③式補上oa2,可用雙十字相乘法,當然此題也可用分組分解法。
如(ab+a)+(b2-b-2)=a(b+1)+(b+1)(b-2)=(b+1)(a+b-2)
④式三個字母滿足二次六項式,把-2z2看作常數分解即可:
2.6拆法、添項法
對于一些多項式,如果不能直接因式分解時,可以將其中的某項拆成二項之差或之和。再應用分組法,公式法等進行分解因式,其中拆項、添項方法不是唯一,可解有許多不同途徑,對題目一定要具體分析,選擇簡捷的分解方法。
例6分解因式:x3+3x2-4
解析法一:可將-4拆成-1,-3即(x3-1)+(3x2-3)
法二:添x4,再減x4,.即(x4+3x2-4)+(x3-x4)
法三:添4x,再減4x即,(x3+3x2-4x)+(4x-4)
法四:把3x2拆成4x2-x2,即(x3-x2)+(4x2-4)
法五:把x3拆為,4x2-3x3即(4x3-4)-(3x3-3x2)等
解(選擇法四)原式=x3-x2+4x2-4
=x2(x-1)+4(x-1)(x+1)
=(x-1)(x2+4x+4)
=(x-1)(x+2)2
2.7換元法
換元法就是引入新的字母變量,將原式中的字母變量換掉化簡式子。運用此
種方法對于某些特殊的多項式因式分解可以起到簡化的效果。
例7分解因式:
(x+1)(x+2)(x+3)(x+4)-120
解析若將此展開,將十分繁瑣,但我們注意到
(x+1)(x+4)=x2+5x+4
(x+2)(x+3)=x2+5x+6
故可用換元法分解此題
解原式=(x2+5x+4)(x2+5x+6)-120
令y=x2+5x+5則原式=(y-1)(y+1)-120
=y2-121
=(y+11)(y-11)
=(x2+5x+16)(x2+5x-6)
=(x+6)(x-1)(x2+5x+16)
注在此也可令x2+5x+4=y或x2+5x+6=y或x2+5x=y請認真比較體會哪種換法更簡單?
2.8待定系數法
待定系數法是解決代數式恒等變形中的重要方法,如果能確定代數式變形后的字母框架,只是字母的系數高不能確定,則可先用未知數表示字母系數,然后根據多項式的恒等性質列出n個含有特殊確定系數的方程(組),解出這個方程(組)求出待定系數。待定系數法應用廣泛,在此只研究它的因式分解中的一些應用。
例7分解因式:2a2+3ab-9b2+14a+3b+20
分析屬于二次六項式,也可考慮用雙十字相乘法,在此我們用待定系數法
先分解2a2+3ab+9b2=(2a-3b)(a+3b)
解設可設原式=(2a-3b+m)(a+3b+n)
=2a2+3ab-9b2+(m+2n)a+(3m-3n)b+mn……………
比較兩個多項式(即原式與*式)的系數
m+2n=14(1)m=4
3m-3n=-3(2)=>
mn=20(3)n=5
∴原式=(2x-3b+4)(a+3b+5)
注對于(*)式因為對a,b取任何值等式都成立,也可用令特殊值法,求m,n
令a=1,b=0,m+2n=14m=4
=>
令a=0,b=1,m=n=-1n=5
2.9因式定理、綜合除法分解因式
對于整系數一元多項式f(x)=anxn+an-1xn-1+…+a1x+a0
由因式定理可先判斷它是否含有一次因式(x-)(其中p,q互質),p為首項系數an的約數,q為末項系數a0的約數
若f()=0,則一定會有(x-)再用綜合除法,將多項式分解
例8分解因式x3-4x2+6x-4
解這是一個整系數一元多項式,因為4的正約數為1、2、4
∴可能出現的因式為x±1,x±2,x±4,∵f(1)≠0,f(1)≠0
但f(2)=0,故(x-2)是這個多項式的因式,再用綜合除法
21-46-4
2-44
1-220
所以原式=(x-2)(x2-2x+2)
當然此題也可拆項分解,如x3-4x2+4x+2x-4
=x(x-2)2+(x-2)
=(x-2)(x2-2x+2)
分解因式的方法是多樣的,且其方法之間相互聯系,一道題很可能要同時運用多種方法才可能完成,故在知曉這些方法之后,一定要注意各種方法靈活運用,牢固掌握!
----------------
不知道你是什么教材的初中的都給你好了
----------------過兩點有且只有一條直線兩點之間線段最短 同角或等角的補角相等同角或等角的余角相等 過一點有且只有一條直線和已知直線垂直 直線外一點與直線上各點連接的所有線段中,垂線段最短 平行公理 經過直線外一點,有且只有一條直線與這條直線平行如果兩條直線都和第三條直線平行,這兩條直線也互相平行同位角相等,兩直線平行內錯角相等,兩直線平行同旁內角互補,兩直線平行
12兩直線平行,同位角相等兩直線平行,內錯角相等兩直線平行,同旁內角互補 定理 三角形兩邊的和大于第三邊推論 三角形兩邊的差小于第三邊 三角形內角和定理 三角形三個內角的和等于180° 18 推論1 直角三角形的兩個銳角互余 推論2 三角形的一個外角等于和它不相鄰的兩個內角的和推論3 三角形的一個外角大于任何一個和它不相鄰的內角全等三角形的對應邊、對應角相等
22邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等定理1 在角的平分線上的點到這個角的兩邊的距離相等 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上角的平分線是到角的兩邊距離相等的所有點的集合 等腰三角形的性質定理 等腰三角形的兩個底角相等(即等邊對等角)
推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊
等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33 推論3 等邊三角形的各角都相等,并且每一個角都等于60°
等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
推論1 三個角都相等的三角形是等邊三角形
推論 2 有一個角等于60°的等腰三角形是等邊三角形
在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
直角三角形斜邊上的中線等于斜邊上的一半
定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42 定理1 關于某條直線對稱的兩個圖形是全等形
定理 2 如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2,那么這個三角形是直角三角形
48定理 四邊形的內角和等于360°
49四邊形的外角和等于360°
50多邊形內角和定理 n邊形的內角的和等于(n-2)×180°
51推論 任意多邊的外角和等于360°
52平行四邊形性質定理1平行四邊形的對角相等 53平行四邊形性質定理2平行四邊形的對邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1 矩形的四個角都是直角
61矩形性質定理2 矩形的對角線相等
62矩形判定定理1 有三個角是直角的四邊形是矩形
63矩形判定定理2 對角線相等的平行四邊形是矩形
64菱形性質定理1 菱形的四條邊都相等
65菱形性質定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即S=(a×b)÷2 67菱形判定定理1 四邊都相等的四邊形是菱形
68菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
71定理1 關于中心對稱的兩個圖形是全等的
72定理2 關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分
73逆定理 如果兩個圖形的對應點連線都經過某一點,并且被這一 點平分,那么這兩個圖形關于這一點對稱
74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
77對角線相等的梯形是等腰梯形
78平行線等分線段定理 如果一組平行線在一條直線上截得的線段
相等,那么在其他直線上截得的線段也相等
推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第 三邊
三角形中位線定理 三角形的中位線平行于第三邊,并且等于它 的一半
梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的 一半 L=(a+b)÷2 S=L×h
83(1)比例的基本性質 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d wc呁/S∕ ?
84(2)合比性質 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85(3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
平行線分線段成比例定理 三條平行線截兩條直線,所得的對應 線段成比例 87 推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊
平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
判定定理3 三邊對應成比例,兩三角形相似(SSS)
定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三 角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似
性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比
性質定理2 相似三角形周長的比等于相似比
性質定理3 相似三角形面積的比等于相似比的平方
任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等 于它的余角的正弦值
100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等 于它的余角的正切值
101圓是定點的距離等于定長的點的集合
102圓的內部可以看作是圓心的距離小于半徑的點的集合103圓的外部可以看作是圓心的距離大于半徑的點的集合104同圓或等圓的半徑相等
105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半 徑的圓
106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距 離相等的一條直線
109定理 不在同一直線上的三點確定一個圓。
110垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
112推論2 圓的兩條平行弦所夾的弧相等
113圓是以圓心為對稱中心的中心對稱圖形
114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等
115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等 116定理 一條弧所對的圓周角等于它所對的圓心角的一半
117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑
119推論3 如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形
120定理 圓的內接四邊形的對角互補,并且任何一個外角都等于它 的內對角
121①直線L和⊙O相交 d<r ②直線L和⊙O相切 d=r ③直線L和⊙O相離 d>r ?
122切線的判定定理 經過半徑的外端并且垂直于這條半徑的直線是圓的切線
123切線的性質定理 圓的切線垂直于經過切點的半徑
124推論1 經過圓心且垂直于切線的直線必經過切點
125推論2 經過切點且垂直于切線的直線必經過圓心
126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對邊的和相等
128弦切角定理 弦切角等于它所夾的弧對的圓周角
129推論 如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等
130相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積 相等
131推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的 兩條線段的比例中項
132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割 線與圓交點的兩條線段長的比例中項
133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134如果兩個圓相切,那么切點一定在連心線上
135①兩圓外離 d>R+r ②兩圓外切 d=R+r ③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r)⑤兩圓內含d<R-r(R>r)136定理 相交兩圓的連心線垂直平分兩圓的公*弦
137定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139正n邊形的每個內角都等于(n-2)×180°/n
140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
142正三角形面積√3a/4 a表示邊長 143如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4 144弧長撲愎劍篖=n兀R/180
145扇形面積公式:S扇形=n兀R^2/360=LR/2 146內公切線長= d-(R-r)外公切線長= d-(R+r)(還有一些,大家幫補充吧)
實用工具:常用數學公式
公式分類 公式表達式
乘法與因式分解
a^2-b^2=(a+b)(a-b)
a^3+b^3=(a+b)(a^2-ab+b^2)?
a^3-b^3=(a-b(a^2+ab+b^2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b^2-4ac)/2a-b-√(b^2-4ac)/2a 根與系數的關系 X1+X2=-b/a X1*X2=c/a 注:韋達定理
判別式
b^2-4ac=0 注:方程有兩個相等的實根
b^2-4ac>0 注:方程有兩個不等的實根 b^2-4ac<0 注:方程沒有實根,有*軛復數根
三角函數公式
兩角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)
第二篇:初二數學公式:三角函數萬能公式
初二數學公式:三角函數萬能公式
學習可以這樣來看,它是一個潛移默化、厚積薄發的過程。查字典數學網編輯了初二數學公式:三角函數萬能公式,希望對您有所幫助!
(1)(sin)^2+(cos)^2=1
(2)1+(tan)^2=(sec)^2
(3)1+(cot)^2=(csc)^2
證明下面兩式,只需將一式,左右同除(sin)^2,第二個除(cos)^2即可
(4)對于任意非直角三角形,總有
tanA+tanB+tanC=tanAtanBtanC 證: A+B=-C
tan(A+B)=tan(-C)
(tanA+tanB)/(1-tanAtanB)=(tan-tanC)/(1+tantanC)
整理可得
tanA+tanB+tanC=tanAtanBtanC 得證
同樣可以得證,當x+y+z=nZ)時,該關系式也成立
由tanA+tanB+tanC=tanAtanBtanC可得出以下結論
(5)cotAcotB+cotAcotC+cotBcotC=1
(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC
三角函數萬能公式為什么萬能
萬能公式為:
設tan(A/2)=t
sinA=2t/(1+t^2)(A+,kZ)
tanA=2t/(1-t^2)(A+,kZ)
cosA=(1-t^2)/(1+t^2)(A+,且A+(/2)kZ)
就是說sinA.tanA.cosA都可以用tan(A/2)來表示,當要求一串函數式最值的時候,就可以用萬能公式,推導成只含有一個變量的函數,最值就很好求了.小編為大家整理的初二數學公式:三角函數萬能公式就先到這里,希望大家學習的時候每天都有進步。
第三篇:高等數學公式
高等數學公式
導數公式:
基本積分表:
三角函數的有理式積分:
一些初等函數:
兩個重要極限:
三角函數公式:
·誘導公式:
函數
角A
sin
cos
tg
ctg
-α
-sinα
cosα
-tgα
-ctgα
90°-α
cosα
sinα
ctgα
tgα
90°+α
cosα
-sinα
-ctgα
-tgα
180°-α
sinα
-cosα
-tgα
-ctgα
180°+α
-sinα
-cosα
tgα
ctgα
270°-α
-cosα
-sinα
ctgα
tgα
270°+α
-cosα
sinα
-ctgα
-tgα
360°-α
-sinα
cosα
-tgα
-ctgα
360°+α
sinα
cosα
tgα
ctgα
·和差角公式:
·和差化積公式:
·倍角公式:
·半角公式:
·正弦定理:
·余弦定理:
·反三角函數性質:
高階導數公式——萊布尼茲(Leibniz)公式:
中值定理與導數應用:
曲率:
定積分的近似計算:
定積分應用相關公式:
空間解析幾何和向量代數:
多元函數微分法及應用
微分法在幾何上的應用:
方向導數與梯度:
多元函數的極值及其求法:
重積分及其應用:
柱面坐標和球面坐標:
曲線積分:
曲面積分:
高斯公式:
斯托克斯公式——曲線積分與曲面積分的關系:
常數項級數:
級數審斂法:
絕對收斂與條件收斂:
冪級數:
函數展開成冪級數:
一些函數展開成冪級數:
歐拉公式:
三角級數:
傅立葉級數:
周期為的周期函數的傅立葉級數:
微分方程的相關概念:
一階線性微分方程:
全微分方程:
二階微分方程:
二階常系數齊次線性微分方程及其解法:
(*)式的通解
兩個不相等實根
兩個相等實根
一對共軛復根
二階常系數非齊次線性微分方程
第四篇:高一下數學公式
高一下數學公式一、三角 ·平方關系:sin^2α+cos^2α=11+tan^2α=sec^2α1+cot^2α=csc^2α·積的關系:sinα=tanα×cosαcosα=cotα×sinαtanα=sinα×secαcotα=cosα×cscαsecα=tanα×cscαcscα=secα×cotα·倒數關系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的關系:
sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα直角三角形ABC中,角A的正弦值就等于角A的對邊比斜邊,余弦等于角A的鄰邊比斜邊正切等于對邊比鄰邊,·[1]三角函數恒等變形公式·兩角和與差的三角函數:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·輔助角公式:
Asinα+Bcosα=(A2+B2)^(1/2)sin(α+t),其中sint=B/(A2+B2)^(1/2)cost=A/(A2+B2)^(1/2)tant=B/A
Asinα-Bcosα=(A2+B2)^(1/2)cos(α-t),tant=A/B ·倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)cos(π-α)=-cosα
tan(-α)=-tanα
cot(-α)=-cotα
sin(π-α)=sinα
公式四:
利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α與α的三角函數值之間的關系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α與α的三角函數值之間的關系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
正弦定理是指在三角形中,各邊和它所對的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .(其中R為外接圓的半徑)
余弦定理是指三角形中任何一邊的平方等于其它兩邊的平方和減去這兩邊與它們夾角的余弦的積的2倍,即a^2=b^2+c^2-2bc cosA
角A的對邊于斜邊的比叫做角A的正弦,記作sinA,即sinA=角A的對邊/斜邊
斜邊與鄰邊夾角a
sin=y/r
無論y>x或y≤x
無論a多大多小可以任意大小
正弦的最大值為1 最小值為-
1三角恒等式
對于任意非直角三角形中,如三角形ABC,總有tanA+tanB+tanC=tanAtanBtanC
證明:
已知(A+B)=(π-C)
所以tan(A+B)=tan(π-C)
則(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
整理可得
tanA+tanB+tanC=tanAtanBtanC
類似地,我們同樣也可以求證:當α+β+γ=nπ(n∈Z)時,總有tanα+tanβ+tanγ=tanαtanβtanγ
向量計算
設a=(x,y),b=(x',y')。
1、向量的加法
向量的加法滿足平行四邊形法則和三角形法則。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的運算律:
交換律:a+b=b+a;
結合律:(a+b)+c=a+(b+c)。
2、向量的減法
如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0.0的反向量為0
AB-AC=CB.即“共同起點,指向被減”
a=(x,y)b=(x',y')則 a-b=(x-x',y-y').4、數乘向量
實數λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣·∣a∣。
當λ>0時,λa與a同方向;
當λ<0時,λa與a反方向;
當λ=0時,λa=0,方向任意。
當a=0時,對于任意實數λ,都有λa=0。
注:按定義知,如果λa=0,那么λ=0或a=0。
實數λ叫做向量a的系數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。
當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。數與向量的乘法滿足下面的運算律
結合律:(λa)·b=λ(a·b)=(a·λb)。
向量對于數的分配律(第一分配律):(λ+μ)a=λa+μa.數對于向量的分配律(第二分配律):λ(a+b)=λa+λb.數乘向量的消去律:① 如果實數λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。
3、向量的的數量積
定義:兩個非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。
定義:兩個向量的數量積(內積、點積)是一個數量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。
向量的數量積的坐標表示:a·b=x·x'+y·y'。
向量的數量積的運算率
a·b=b·a(交換率);
(a+b)·c=a·c+b·c(分配率);
向量的數量積的性質
a·a=|a|的平方。
a⊥b 〈=〉a·b=0。
|a·b|≤|a|·|b|。
向量的數量積與實數運算的主要不同點
1、向量的數量積不滿足結合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。
2、向量的數量積不滿足消去律,即:由 a·b=a·c(a≠0),推不出 b=c。
3、|a·b|≠|a|·|b|
4、由 |a|=|b|,推不出 a=b或a=-b。
第五篇:初等數學公式
初等數學常用公式
一
代數
1.絕對值
(1)定義
(2)性質,,.2.指數
(1).(2).(3).(4).(5).(6).(7)
(8)
算術根
3.對數
(1)定義
.(2)性質
.(3)運算法則,.(4)換底公式
.4.排列、組合與二項式定理
(1)排列數公式,.(2)組合數公式,.(3)二項式定理
.5.數列
(1)等差數列
通項公式
.求和公式
.(2)等比數列
通項公式
.求和公式
.(3)常見數列的和,,.二
幾何
在下面的公式中,S表示面積,表示側面積,表示全面積,V表示體積.1.多邊形的面積
(1)三角形的面積
(a為底,h為高);
(a,b,c為三邊,);
(a,b為兩邊,夾角是C).(2)平行四邊形的面積
(a為一邊,h是a邊上的高);
(a,b為兩鄰邊,為這兩邊的夾角).(3)梯形的面積
(a,b為兩底邊,h為高).(4)正n邊形的面積
(a為邊長,n邊數);
(r為外接圓的半徑).2.圓、扇形的面積
(1)圓的面積
(r為半徑).(2)扇形面積
(r為半徑,n為圓心角的度數);
(r為半徑,L為弧長).3.柱、錐、臺、球的面積和體積
(1)直棱柱
(P為底面周長,H為高).(2)正棱錐
(P為底面周長,h為斜高,H為高).(3)正棱臺,(為上、下底面周長,h為斜高,為上、下底面面積,H為高).(4)圓柱
(r為底面半徑,H為高).(5)圓錐
(r為底面半徑,l為母線長,H為高).(6)圓臺
(為上、下底面半徑,l為母線長,H為高).(7)球
(R為球的半徑).三
三角
1.度與弧度的關系
.2.三角函數的符號
3.常用特殊角的三角函數值
0
0
0
0
0
0
不存在0
不存在不存在1
0
不存在0
4.同角三角函數的關系
(1)平方和關系
.(2)倒數關系
.(3)商數關系
.5.和差公式,.6.二倍角公式,.7.半角公式,.8.和差化積公式,,.9.積化和差公式,,.10.正弦、余弦定理
(1)正弦定理
.(2)余弦定理,.四
平面解析幾何
1.兩點間的距離
已知兩點,則.2.直線方程
(1)直線的斜率
已知直線的傾斜角,則;
已知直線過兩點,則.(2)直線方程的幾種形式
點斜式;
斜截式;
兩點式;
截距式;
參數式
.3.兩直線的夾角
.4.點到直線的距離
點到直線的距離.5.二次曲線的方程
(1)圓,為圓心,為半徑.(2)橢圓,焦點在x軸上.(3)雙曲線,焦點在x軸上.(4)拋物線,焦點為,準線為;,焦點為,準線為;,頂點,對稱軸.