第一篇:高二數學公式總結
高二數學公式總結
2009-08-15 10:43:27|分類:|標簽: |字號大中小 訂閱
向量公式:
1.單位向量:單位向量a0=向量a/|向量a|
2.P(x,y)那么 向量OP=x向量i+y向量j|向量OP|=根號(x平方+y平方)
3.P1(x1,y1)P2(x2,y2)
那么向量P1P2={x2-x1,y2-y1}
|向量P1P2|=根號[(x2-x1)平方+(y2-y1)平方]
4.向量a={x1,x2}向量b={x2,y2}
向量a*向量b=|向量a|*|向量b|*Cosα=x1x2+y1y2
Cosα=向量a*向量b/|向量a|*|向量b|
(x1x2+y1y2)
= ————————————————————根號(x1平方+y1平方)*根號(x2平方+y2平方)
5.空間向量:同上推論
(提示:向量a={x,y,z})
6.充要條件:
如果向量a⊥向量b
那么向量a*向量b=0
如果向量a//向量b
那么向量a*向量b=±|向量a|*|向量b|
或者x1/x2=y1/y2
7.|向量a±向量b|平方
=|向量a|平方+|向量b|平方±2向量a*向量b
=(向量a±向量b)平方
三角函數公式:
1.萬能公式
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)
2.輔助角公式
asint+bcost=(a^2+b^2)^(1/2)sin(t+r)
cosr=a/[(a^2+b^2)^(1/2)]
sinr=b/[(a^2+b^2)^(1/2)]
tanr=b/a
3.三倍角公式
sin(3a)=3sina-4(sina)^3
cos(3a)=4(cosa)^3-3cosa
tan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]
4.積化和差
sina*cosb=[sin(a+b)+sin(a-b)]/2cosa*sinb=[sin(a+b)-sin(a-b)]/2cosa*cosb=[cos(a+b)+cos(a-b)]/2sina*sinb=-[cos(a+b)-cos(a-b)]/2
5.積化和差
sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]
第二篇:高二數學公式總結
銳角三角函數公式
sin α=∠α的對邊 / 斜邊
cos α=∠α的鄰邊 / 斜邊
tan α=∠α的對邊 / ∠α的鄰邊
cot α=∠α的鄰邊 / ∠α的對邊
倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=(2tanA)/(1-tanA^2)
(注:SinA^2 是sinA的平方 sin2(A))
三倍角公式
sin3α=4sinα2sin(π/3+α)sin(π/3-α)
cos3α=4cosα2cos(π/3+α)cos(π/3-α)
tan3a = tan a 2 tan(π/3+a)2 tan(π/3-a)三倍角公式推導
sin3a
=sin(2a+a)
=sin2acosa+cos2asina
輔助角公式
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
降冪公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
推導公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=(sinα/2+cosα/2)^2
=2sina(1-sin²a)+(1-2sin²a)sina
=3sina-4sin³a
cos3a
=cos(2a+a)
=cos2acosa-sin2asina
=(2cos²a-1)cosa-2(1-sin²a)cosa
=4cos³a-3cosa
sin3a=3sina-4sin³a
=4sina(3/4-sin²a)
=4sina[(√3/2)²-sin²a]
=4sina(sin²60°-sin²a)
=4sina(sin60°+sina)(sin60°-sina)
=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]
=4sinasin(60°+a)sin(60°-a)
cos3a=4cos³a-3cosa
=4cosa(cos²a-3/4)
=4cosa[cos²a-(√3/2)²]
=4cosa(cos²a-cos²30°)
=4cosa(cosa+cos30°)(cosa-cos30°)
=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}
=-4cosasin(a+30°)sin(a-30°)
=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
=-4cosacos(60°-a)[-cos(60°+a)]
=4cosacos(60°-a)cos(60°+a)
上述兩式相比可得
tan3a=tanatan(60°-a)tan(60°+a)
半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2
cos^2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))學習方法網[]
三角和
sin(α+β+γ)=sinα2cosβ2cosγ+cosα2sinβ2cosγ+cosα2cosβ2sinγ-sinα2sinβ2sinγ
cos(α+β+γ)=cosα2cosβ2cosγ-cosα2sinβ2sinγ-sinα2cosβ2sinγ-sinα2sinβ2cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα2tanβ2tanγ)/(1-tanα
-tanβ2tanγ-tanγ2tanα)
兩角和差
cos(α+β)=cosα2cosβ-sinα2sinβ
cos(α-β)=cosα2cosβ+sinα2sinβ
sin(α±β)=sinα2cosβ±cosα2sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα2tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα2tanβ)
和差化積
sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]
sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]
cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]
cosθ-cosφ =-2 sin[(θ+φ)/2] sin[(θ-φ)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
積化和差
sinαsinβ = [cos(α-β)-cos(α+β)] /2
cosαcosβ = [cos(α+β)+cos(α-β)]/2
sinαcosβ = [sin(α+β)+sin(α-β)]/2
β2tan
cosαsinβ = [sin(α+β)-sin(α-β)]/2
誘導公式
sin(-α)=-sinα
cos(-α)= cosα
tan(—a)=-tanα
sin(π/2-α)= cosα
cos(π/2-α)= sinα
sin(π/2+α)= cosα
cos(π/2+α)=-sinα
sin(π-α)= sinα
cos(π-α)=-cosα
sin(π+α)=-sinα
cos(π+α)=-cosα
tanA= sinA/cosA
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
tan(π-α)=-tanα
tan(π+α)=tanα
誘導公式記背訣竅:奇變偶不變,符號看象限
萬能公式
sinα=2tan(α/2)/[1+tan^(α/2)]
cosα=[1-tan^(α/2)]/1+tan^(α/2)]
tanα=2tan(α/2)/[1-tan^(α/2)]
其它公式
(1)(sinα)^2+(cosα)^2=1
(2)1+(tanα)^2=(secα)^2
(3)1+(cotα)^2=(cscα)^2
證明下面兩式,只需將一式,左右同除(sinα)^2,第二個除(cosα)^2即可
(4)對于任意非直角三角形,總有
tanA+tanB+tanC=tanAtanBtanC
證:
A+B=π-C
tan(A+B)=tan(π-C)
(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
整理可得
tanA+tanB+tanC=tanAtanBtanC
得證
同樣可以得證,當x+y+z=nπ(n∈Z)時,該關系式也成立
由tanA+tanB+tanC=tanAtanBtanC可得出以下結論
(5)cotAcotB+cotAcotC+cotBcotC=1
(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC
(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC
(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
第三篇:考研數學公式總結
上次就數學科目中的邊角線、三角形、對稱以及四邊形的定理及公式做了總結,今天是關于圓這一部分的定理總結。由于圓這一部分涉及到的公式定理比較多,小優就單獨做以總結。
圓
1.圓的內部可以看作是圓心的距離小于半徑的點的集合。2.圓是到定點的距離等于定長的點的集合。
3.圓的外部可以看作是圓心的距離大于半徑的點的集合。4.同圓或等圓的半徑相等。
5.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。6.和已知線段兩個端點的距離相等的點的軌跡,是這條線段的垂直平分線。7.到已知角的兩邊距離相等的點的軌跡,是這個角的平分線。
8.到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線。9.不在同一直線上的三點確定一個圓。
10.垂徑定理: 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧。11.推論1: ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。
②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧。
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧。12.推論2 :圓的兩條平行弦所夾的弧相等。13.圓是以圓心為對稱中心的中心對稱圖形。
14.在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等所對的弦的弦心距相等。15.推論 :在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。
16.定理 :一條弧所對的圓周角等于它所對的圓心角的一半。
17.推論1: 同弧或等弧所對的圓周角相等;同圓或等圓中相等的圓周角所對的弧也相等。18.推論2 :半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑。19.推論3 :如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。20.定理: 圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角。21.直線與圓的位置關系①直線l和⊙o相交 d;②直線l和⊙o相切 d=r;③直線l和⊙o相離 d>r。
22.切線的判定定理 經過半徑的外端并且垂直于這條半徑的直線是圓的切線。23.切線的性質定理 圓的切線垂直于經過切點的半徑。24.推論1: 經過圓心且垂直于切線的直線必經過切點。25.推論2 :經過切點且垂直于切線的直線必經過圓心。26.切線長定理 :從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角。
27.圓的外切四邊形的兩組對邊的和相等。
28.弦切角定理 :弦切角等于它所夾的弧對的圓周角。
29.推論: 如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等。30.相交弦定理 :圓內的兩條相交弦,被交點分成的兩條線段長的積相等。
31.推論: 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項。
32.切割線定理 :從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項。
33.推論 :從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等。
34.如果兩個圓相切,那么切點一定在連心線上。
35.兩圓之間的位置關系:①兩圓外離 d>R+r ;②兩圓外切 d=R+r;③兩圓相交d
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形;
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形。
38.圓的標準方程 :(x-a)^2+(y-b)^2=r^2 注:(a,b)是圓心坐標。
圓的一般方程: x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0。39.圓:體積=4π/3(r^3)面積=π(r^2)周長=2πr 40.弧長公式 l=a*r,a是圓心角的弧度數,r >0 扇形面積公式 s=1/2*l*r。以上就是關于圓的一些定理公式的總結,如有遺漏敬請諒解。
預告:下次數學定理內容為:拋物線、圖形的周長面積以及體積公式、三角函數公式、公式表達式。
第四篇:常用gmat數學公式總結
常用gmat數學公式總結
以下為大家總結了gmat考試中gmat數學公式,當然,我們總結的不夠全面,只是一些比較常用的gmat數學公式,同時也適用于GRE考試,希望能夠幫助大家備考。(a+b)(a-b)=a2-b2(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2
(a+b)3=a3+3a2b+3ab2+b3(a-b)3=a3-3a2b+3ab2-b3
一元二次方程ax2+bx+c=0的解x?,?=(-b±√b2-4ac)/2a
利率Rate。?時間Time?*Simple Interest:利息Interest=本金Principal
*Compound Interest:A=(1+R)n;A為本利和,P為本金,R為利率,n為期數。
Time?Rate of Discount *Distance=Speed?*Discount=Cost
*Pythagorean Theorem(勾股定理):直角三角形(right triangle)兩直角邊(legs)的平方和等于斜邊(hypotenuse)的平方。
*多變形的內角和:(n-2)×180°,總對角線數為n(n-3)/2條,從每一個頂點引出的對角線數為(n-3)條;式中:n為多邊形的邊數
*平面直角坐標系中,A(x1,y1)和B(x2,y2)是任意兩點,C(x,y)是線段AB的中點,則x=(x1+x2)/2,y=(y1+y2)/2,線段AB兩端點間的距離=
*平面圖形的周長和面積:
Perimeter Area
Triangle 三邊之和(底×高)/2
Square 邊長×4 邊長的平方
Rectangle(長+寬)×2 長×寬
Parallelogram(長+寬)×2 底×高
Trapezoid 四邊之和(上底+下底)×高/2
Rhombus 邊長×4 兩條對角線之積的1/2
Circle 2πr=πd πr2
*立體圖形的表面積和體積:
Volume Surface Area
Rectangular Prism 長×寬×高 2(長×寬+長×高+寬×高)
Cube 棱長的立方 6×棱長×棱長
Right Circular Cylinder πr2h 2πr h(側)+2πr2(底)
Sphere 4πr3/3 4πr2
Right Circular Cone πr2h/3 lr/2(l為母線)
第五篇:總結小學數學公式
小學數學公式大全
1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑 ?=πr
11、長方體的表面積=(長×寬+長×高+寬×高)×2
12、長方體的體積 =長×寬×高 V =abh
13、正方體的表面積=棱長×棱長×6 S =6a
14、正方體的體積=棱長×棱長×棱長 V=a.a.a= a
15、圓柱的側面積=底面圓的周長×高 S=ch
16、圓柱的表面積=上下底面面積+側面積 S=2πr +2πrh=2π(d÷2)+2π(d÷2)h=2π(C÷2÷π)+Ch
17、圓柱的體積=底面積×高 V=Sh V=πr h=π(d÷2)h=π(C÷2÷π)h
18、圓錐的體積=底面積×高÷3 V=Sh÷3=πr h÷3=π(d÷2)h÷3=π(C÷2÷π)h÷3
19、長方體(正方體、圓柱體)的體
1、每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數2、1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3、速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6、加數+加數=和 和-一個加數=另一個加數
7、被減數-減數=差 被減數-差=減數 差+減數=被減數
8、因數×因數=積 積÷一個因數=另一個因數
9、被除數÷除數=商 被除數÷商=除數 商×除數=被除數 小學數學圖形計算公式、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a 2、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a、長方形
C周長 S面積 a邊長 周長=(長+寬)×2 C=2(a+b)面積=長×寬 S=ab 4、長方體
V:體積 s:面積 a:長 b: 寬 h:高(1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh)(2)體積=長×寬×高 V=abh 5 三角形 s面積 a底 h高 面積=底×高÷2 s=ah÷2
三角形高=面積 ×2÷底 三角形底=面積 ×2÷高 6平行四邊形 s面積 a底 h高 面積=底×高 s=ah 7 梯形
s面積 a上底 b下底 h高 面積=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圓形 S面積 C周長 ∏ d=直徑 r=半徑(1)周長=直徑×∏=2×∏×半徑 C=∏d=2∏r
(2)面積=半徑×半徑×∏ 9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長(1)側面積=底面周長×高(2)表面積=側面積+底面積×2(3)體積=底面積×高(4)體積=側面積÷2×半徑 10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑 體積=底面積×高÷3 總數÷總份數=平均數 和差問題(和+差)÷2=大數(和-差)÷2=小數 和倍問題
和÷(倍數-1)=小數 小數×倍數=大數(或者 和-小數=大數)差倍問題
差÷(倍數-1)=小數 小數×倍數=大數(或 小數+差=大數)植樹問題 非封閉線路上的植樹問題主要可分為以下三種情形: ⑴如果在非封閉線路的兩端都要植樹,那么: 株數=段數+1=全長÷株距-1 全長=株距×(株數-1)株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那么: 株數=段數=全長÷株距 全長=株距×株數 株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那么: 株數=段數-1=全長÷株距-1 全長=株距×(株數+1)株距=全長÷(株數+1)封閉線路上的植樹問題的數量關系如下 株數=段數=全長÷株距 全長=株距×株數 株距=全長÷株數 盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數(大盈-小盈)÷兩次分配量之差=參加分配的份數(大虧-小虧)÷兩次分配量之差=參加分配的份數 相遇問題
相遇路程=速度和×相遇時間 相遇時間=相遇路程÷速度和 速度和=相遇路程÷相遇時間 追及問題
追及距離=速度差×追及時間 追及時間=追及距離÷速度差 速度差=追及距離÷追及時間 流水問題
順流速度=靜水速度+水流速度 逆流速度=靜水速度-水流速度 靜水速度=(順流速度+逆流速度)÷2 水流速度=(順流速度-逆流速度)÷2 濃度問題
溶質的重量+溶劑的重量=溶液的重量 溶質的重量÷溶液的重量×100%=濃度 溶液的重量×濃度=溶質的重量 溶質的重量÷濃度=溶液的重量 利潤與折扣問題 利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100% 漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)利息=本金×利率×時間
稅后利息=本金×利率×時間×(1-20%)時間單位換算
1世紀=100年 1年=12月 大月(31天)有:135781012月 小月(30天)的有:46911月平年2月28天, 閏年2月29天平年全年365天, 閏年全年366天 1日=24小時 1時=60分
1分=60秒 1時=3600秒積=底面積×高 V=Sh
第一部分: 概念
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把后兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把后兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
如:(2+4)×5=2×5+4×5
6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。
O除以任何不是O的數都得O。
簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7、什么叫等式?等號左邊的數值與等號右邊的數值相等的式子叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8、什么叫方程式?答:含有未知數的等式叫方程式。
9、什么叫一元一次方程式?答:含有一個未知數,并且未知數的次
數是一次的等式叫做一元一次方程式。學會一元一次方程式的例法及計算。即例出代有χ的算式并計算。
10、分數:把單位“1”平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然后再加減。
12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然后再比較;若分子相同,分母大的反而小。
13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15、分數除以整數(0除外),等于分數乘以這個整數的倒數。
16、真分數:分子比分母小的分數叫做真分數。
17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大于或等于1。
18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數
(0除外),分數的大小不變。
20、一個數除以分數,等于這個數乘以分數的倒數。
21、甲數除以乙數(0除外),等于甲數乘以乙數的倒數。
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然后再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
22、什么叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3
比的前項和后項同時乘以或除以一個相同的數(0除外),比值不變。
23、什么叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
24、比例的基本性質:在比例里,兩外項之積等于兩內項之積。
25、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
26、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k(k一定)或kx=y
27、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。
如:x×y = k(k一定)或k / x = y
28、百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
29、把小數化成百分數,只要把小數點向右移動兩位,同時在后面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
30、把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
31、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數后,再乘以100%就行了。
32、把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
33、要學會把小數化成分數和把分數化成小數的化發。
34、最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)
35、互質數:
公約數只有1的兩個數,叫做互質數。
36、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
37、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
38、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公約數)
39、最簡分數:分子、分母是互質數的分數,叫做最簡分數。40、分數計算到最后,得數必須化成最簡分數。
41、個位上是0、2、4、6、8的數,都能被2整除,即能用2進行
42、約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
43、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
44、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
45、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
46、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
47、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
48、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
49、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3.141414
50、不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。如圓周率:3.141592654
51、無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3.141592654……
52、什么叫代數? 代數就是用字母代替數。
53、什么叫代數式?用字母表示的式子叫做代數式。如:3x =ab+c
第二部分:定義定理
一、算術方面
1.加法交換律:兩數相加交換加數的位置,和不變。
2.加法結合律:三個數相加,先把前兩個數相加,或先把后兩個數相加,再同第
三個數相加,和不變。
3.乘法交換律:兩數相乘,交換因數的位置,積不變。
4.乘法結合律:三個數相乘,先把前兩個數相乘,或先把后兩個數相乘,再和第三個數相乘,它們的積不變。
5.乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5。
6.除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。0除以任何不是0的數都得0。
7.等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8.方程式:含有未知數的等式叫方程式。
9.一元一次方程式:含有一個未知數,并且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式并計算。
10.分數:把單位“1”平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11.分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然后再加減。
12.分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然后再比較;若分子相同,分母大的反而小。
13.分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14.分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15.分數除以整數(0除外),等于分數乘以這個整數的倒數。
16.真分數:分子比分母小的分數叫做真分數。
17.假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大于或等于1。
18.帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19.分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20.一個數除以分數,等于這個數乘以分數的倒數。
21.甲數除以乙數(0除外),等于甲數乘以乙數的倒數。
第三部分:幾何體 1.正方形
正方形的周長=邊長×4
公式:C=4a 正方形的面積=邊長×邊長
公式:S=a×a 正方體的體積=邊長×邊長×邊長
公式:V=a×a×a 2.正方形
長方形的周長=(長+寬)×2 公式:C=(a+b)×2 長方形的面積=長×寬
公式:S=a×b 長方體的體積=長×寬×高 公式:V=a×b×h 3.三角形
三角形的面積=底×高÷2。
公式:S= a×h÷2 4.平行四邊形
平行四邊形的面積=底×高
公式:S= a×h 5.梯形
梯形的面積=(上底+下底)×高÷2 公式:S=(a+b)h÷2 6.圓
直徑=半徑×2 公式:d=2r 半徑=直徑÷2 公式:r= d÷2 圓的周長=圓周率×直徑
公式:c=πd =2πr 圓的面積=半徑×半徑×π
公式:S=πrr 7.圓柱
圓柱的側面積=底面的周長×高。公式:S=ch=πdh=2πrh 圓柱的表面積=底面的周長×高+兩頭的圓的面積。
公式:S=ch+2s=ch+2πr2 圓柱的總體積=底面積×高。公式:V=Sh 8.圓錐
圓錐的總體積=底面積×高×1/3 公式:V=1/3Sh
三角形內角和=180度。
平行線:同一平面內不相交的兩條直線叫做平行線 垂直:兩條直線相交成直角,像這樣的兩條直線,我們就說這兩條直線互相垂直,其中一條直線叫做另一條直線的垂線,這兩條直線的交點叫做垂足。
第四部分:計算公式
數量關系式:
1、每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數2、1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數
幾倍數÷倍數=1倍數
3、速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4、單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5、工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6、加數+加數=和
和-一個加數=另一個加數
7、被減數-減數=差
被減數-差=減數
差+減數=被減數
8、因數×因數=積
積÷一個因數=另一個因數
9、被除數÷除數=商
被除數÷商=除數
商×除數=被除數
****************************************************** 和差問題的公式(和+差)÷2=大數(和-差)÷2=小數 和倍問題
和÷(倍數-1)=小數 小數×倍數=大數(或者 和-小數=大數)差倍問題
差÷(倍數-1)=小數 小數×倍數=大數(或 小數+差=大數)****************************************************** 植樹問題: 1 非封閉線路上的植樹問題主要可分為以下三種情形: ⑴如果在非封閉線路的兩端都要植樹,那么: 株數=段數+1=全長÷株距-1 全長=株距×(株數-1)株距=全長÷(株數-1)⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那么: 株數=段數=全長÷株距 全長=株距×株數 株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那么: 株數=段數-1=全長÷株距-1 全長=株距×(株數+1)株距=全長÷(株數+1)2 封閉線路上的植樹問題的數量關系如下 株數=段數=全長÷株距 全長=株距×株數 株距=全長÷株數
****************************************************** 盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數(大盈-小盈)÷兩次分配量之差=參加分配的份數(大虧-小虧)÷兩次分配量之差=參加分配的份數 ****************************************************** 相遇問題
相遇路程=速度和×相遇時間 相遇時間=相遇路程÷速度和 速度和=相遇路程÷相遇時間 ****************************************************** 追及問題
追及距離=速度差×追及時間 追及時間=追及距離÷速度差 速度差=追及距離÷追及時間
****************************************************** 流水問題
順流速度=靜水速度+水流速度 逆流速度=靜水速度-水流速度 靜水速度=(順流速度+逆流速度)÷2 水流速度=(順流速度-逆流速度)÷2 ****************************************************** 濃度問題: 溶質的重量+溶劑的重量=溶液的重量 溶質的重量÷溶液的重量×100%=濃度 溶液的重量×濃度=溶質的重量 溶質的重量÷濃度=溶液的重量
****************************************************** 利潤與折扣問題: 利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100% 漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)利息=本金×利率×時間
稅后利息=本金×利率×時間×(1-20%)****************************************************** 面積,體積換算
(1)1公里=1千米
1千米=1000米
1米=10分米
1分米=10厘米
1厘米=10毫米
(2)1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米(3)1立方米=1000立方分米
1立方分米=1000立方厘米
1立方厘米=1000立方毫米
(4)1公頃=10000平方米
1畝=666.666平方米(5)1升=1立方分米=1000毫升 1毫升=1立方厘米 ****************************************************** 重量換算: 1噸=1000 千克 1千克=1000克 1千克=1公斤
****************************************************** 人民幣單位換算 1元=10角 1角=10分 1元=100分
****************************************************** 時間單位換算: 1世紀=100年 1年=12月 大月(31天)有:135781012月 小月(30天)的有:46911月平年2月28天, 閏年2月29天平年全年365天, 閏年全年366天 1日=24小時 1時=60分 1分=60秒 1時=3600秒