第一篇:重點中學全等三角形證明及方法總結
全等三角形的證明及做幾何題的方法總結
1、如圖△ABC中,F是BC上的一點,且CF2那么△ABF與△ACF的面積比是_____
O2、如圖17所示,在∠AOB的兩邊上截取AO=BO,OC=OD,連接
D CAD、BC交于點P,連接OP,則下列結論正確的是
()
AB
①△APC≌△BPD②△ADO≌△BCO③△AOP≌△BOP④
△OCP≌△ODP
A.①②③④B.①②③C.②③④D.①③④
3、如圖,CE平分∠ACB,且CE⊥DB,∠DAB=∠DBA,AC=18cm,A
B
C
△CBD的周長為28 cm,則DB=。
4、如圖在△ABC中,AB=AC,點D為AB的中點,DE⊥AB,交AC于E,已知△BCE的周長為10cm,且AC-BC=2cm ,求△ABC的周長。
5、已知:如圖,四邊形ABCD中,AC平分?BAD,CE?AB 于E,且?B+?D=180?,求證:AE=AD+BE
A
D
E B
C6、在△ABC中, AB = AC, AD和CE是高,它們所在的直線相交于H.⑴若∠BAC = 45°(如圖①),求證:AH = 2BD;⑵若∠BAC = 135°(如圖②),⑴中的結論是否依然成立?請在圖②中畫出圖形并證明你的結論.B
H D
圖①
圖②
7、在△ABC中,AC=BC,∠C=90°,將一塊三角板的直角頂點放在斜邊AB的中點P處,將三角板繞P點旋轉,三角板的兩直角邊分別交AC、CB于D、E兩點,如圖(1)、(2)所示。
ADC
B
A
D
C
(2)
B
C
(3)
E(1)
問PD與PE有何大小關系?在旋轉過程中,還會存在與圖⑴、⑵不同的情形嗎?若存在,請在圖⑶中畫出,并選擇圖⑵或圖⑶為例加以證明,若不存在請選擇圖⑵加以證明.
8、如圖已知: △ABC中,∠ABC的平分線與∠ACB的外角平分線交于D,DE∥BC交AB于E,交AC于F。求證:BE=EF+CF9、在△ABC中∠BAC是銳角,AB=AC,AD和BE是高,它們交于點H,且AE=BE;(1)求證:AH=2BD;
(2)若將∠BAC改為鈍角,其余條件不變,上述的結論還成立?若成立,請證明;若不成立,請說明理由;
10、已知:在直角三角形ABC中,∠BAC=90°,BD平分∠ABC,CE垂直于BD交BD的1延長線于E,求證:CE= BD.總結:如何做幾何證明題
知識歸納:
1.幾何證明是平面幾何中的一個重要問題,它對培養學生邏輯思維能力有著很大作用。幾何證明有兩種基本類型:一是平面圖形的數量關系;二是有關平面圖形的位置關系。這兩類問題常常可以相互轉化,如證明平行關系可轉化為證明角等或角互補的問題。2.掌握分析、證明幾何問題的常用方法:(1)綜合法(由因導果),從已知條件出發,通過有關定義、定理、公理的應用,逐步向前推進,直到問題的解決;
(2)分析法(執果索因)從命題的結論考慮,推敲使其成立需要具備的條件,然后再把所需的條件看成要證的結論繼續推敲,如此逐步往上逆求,直到已知事實為止;
(3)兩頭湊法:將分析與綜合法合并使用,比較起來,分析法利于思考,綜合法易于表達,因此,在實際思考問題時,可合并使用,靈活處理,以利于縮短題設與結論的距離,最后達到證明目的。
3.掌握構造基本圖形的方法:復雜的圖形都是由基本圖形組成的,因此要善于將復雜圖形分解成基本圖形。在更多時候需要構造基本圖形,在構造基本圖形時往往需要添加輔助線,以達到集中條件、轉化問題的目的。
一、證明線段相等或角相等
兩條線段或兩個角相等是平面幾何證明中最基本也是最重要的一種相等關系。很多其它問題最后都可化歸為此類問題來證。證明兩條線段或兩角相等最常用的方法是利用全等三角形的性質,其它如線段中垂線的性質、角平分線的性質、等腰三角形的判定與性質等也經常用到。
二、證明直線平行或垂直
在兩條直線的位置關系中,平行與垂直是兩種特殊的位置。證兩直線平行,可用同位角、內錯角或同旁內角的關系來證,也可通過邊對應成比例、三角形中位線定理證明。證兩條直線垂直,可轉化為證一個角等于90°,或利用兩個銳角互余,或等腰三角形“三線合一”來證。
三、證明一線段和的問題
1、在較長線段上截取一線段等一較短線段,證明其余部分等于另一較短線段。(截長法)
2、延長一較短線段,使延長部分等于另一較短線段,則兩較短線段成為一條線段,證明該線段等于較長線段。(補短法)
初中幾何證明技巧(分類)
證明兩線段相等
1.兩全等三角形中對應邊相等。2.同一三角形中等角對等邊。
3.等腰三角形頂角的平分線或底邊的高平分底邊。4.平行四邊形的對邊或對角線被交點分成的兩段相等。5.直角三角形斜邊的中點到三頂點距離相等。
6.線段垂直平分線上任意一點到線段兩段距離相等。7.角平分線上任一點到角的兩邊距離相等。
8.過三角形一邊的中點且平行于第三邊的直線分第二邊所成的線段相等。
*9.同圓(或等圓)中等弧所對的弦或與圓心等距的兩弦或等圓心角、圓周角所對的弦相等。*10.圓外一點引圓的兩條切線的切線長相等或圓內垂直于直徑的弦被直徑分成的兩段相等 11.兩前項(或兩后項)相等的比例式中的兩后項(或兩前項)相等。*12.兩圓的內(外)公切線的長相等。13.等于同一線段的兩條線段相等。
證明兩個角相等
1.兩全等三角形的對應角相等。2.同一三角形中等邊對等角。
3.等腰三角形中,底邊上的中線(或高)平分頂角。
4.兩條平行線的同位角、內錯角或平行四邊形的對角相等。5.同角(或等角)的余角(或補角)相等。
*6.同圓(或圓)中,等弦(或弧)所對的圓心角相等,圓周角相等,弦切角等于它所夾的弧對的圓周角。
*7.圓外一點引圓的兩條切線,圓心和這一點的連線平分兩條切線的夾角。8.相似三角形的對應角相等。
*9.圓的內接四邊形的外角等于內對角。10.等于同一角的兩個角相等。
證明兩條直線互相垂直
1.等腰三角形的頂角平分線或底邊的中線垂直于底邊。
2.三角形中一邊的中線若等于這邊一半,則這一邊所對的角是直角。3.在一個三角形中,若有兩個角互余,則第三個角是直角。4.鄰補角的平分線互相垂直。
5.一條直線垂直于平行線中的一條,則必垂直于另一條。6.兩條直線相交成直角則兩直線垂直。
7.利用到一線段兩端的距離相等的點在線段的垂直平分線上。8.利用勾股定理的逆定理。9.利用菱形的對角線互相垂直。
*10.在圓中平分弦(或弧)的直徑垂直于弦。*11.利用半圓上的圓周角是直角。
證明兩直線平行
1.垂直于同一直線的各直線平行。
2.同位角相等,內錯角相等或同旁內角互補的兩直線平行。3.平行四邊形的對邊平行。
4.三角形的中位線平行于第三邊。5.梯形的中位線平行于兩底。6.平行于同一直線的兩直線平行。7.一條直線截三角形的兩邊(或延長線)所得的線段對應成比例,則這條直線平行于第三邊。證明線段的和差倍分
1.作兩條線段的和,證明與第三條線段相等。
2.在第三條線段上截取一段等于第一條線段,證明余下部分等于第二條線段。3.延長短線段為其二倍,再證明它與較長的線段相等。4.取長線段的中點,再證其一半等于短線段。
5.利用一些定理(三角形的中位線、含30度的直角三角形、直角三角形斜邊上的中線、三角形的重心、相似三角形的性質等)。
證明角的和差倍分
1.與證明線段的和、差、倍、分思路相同。2.利用角平分線的定義。3.三角形的一個外角等于和它不相鄰的兩個內角的和。
證明線段不等
1.同一三角形中,大角對大邊。2.垂線段最短。
3.三角形兩邊之和大于第三邊,兩邊之差小于第三邊。
4.在兩個三角形中有兩邊分別相等而夾角不等,則夾角大的第三邊大。*5.同圓或等圓中,弧大弦大,弦心距小。6.全量大于它的任何一部分。
證明兩角的不等
1.同一三角形中,大邊對大角。
2.三角形的外角大于和它不相鄰的任一內角。
3.在兩個三角形中有兩邊分別相等,第三邊不等,第三邊大的,兩邊的夾角也大。4.同圓或等圓中,弧大則圓周角、圓心角大。5.全量大于它的任何一部分。
證明比例式或等積式
1.利用相似三角形對應線段成比例。2.利用內外角平分線定理。3.平行線截線段成比例。
4.直角三角形中的比例中項定理即射影定理。
5.與圓有關的比例定理---相交弦定理、切割線定理及其推論。6.利用比利式或等積式化得。
第二篇:全等三角形證明
全等三角形的證明
1.?翻折
如圖(1),?BOC≌?EOD,?BOC可以看成是由?EOD沿直線AO翻折180?得到的;
?旋轉
如圖(2),?COD≌?BOA,?COD可以看成是由?BOA繞著點O旋轉180?得到的;
?平移
如圖(3),?DEF≌?ACB,?DEF可以看成是由?ACB沿CB方向平行移動而得到的。
2.判定三角形全等的方法:
(1)邊角邊公理、角邊角公理、邊邊邊公理、斜邊直角邊(直角三角形中)公理
(2)推論:角角邊定理
3.注意問題:
(1)在判定兩個三角形全等時,至少有一邊對應相等;
(2)不能證明兩個三角形全等的是,a: 三個角對應相等,即AAA;b :有兩邊和其中一角對應相等,即SSA。
一、全等三角形知識的應用
(1)證明線段(或角)相等
例1:如圖,已知AD=AE,AB=AC.求證:BF=FC
(2)證明線段平行
例2:已知:如圖,DE⊥AC,BF⊥AC,垂足分別為E、F,DE=BF,AE=CF.求證:AB∥CD
(3)證明線段的倍半關系,可利用加倍法或折半法將問題轉化為證明兩條線段相等
例3:如圖,在△ ABC中,AB=AC,延長AB到D,使BD=AB,取AB的中點E,連接CD和CE.求證:CD=2CE
例4 如圖,△ABC中,∠C=2∠B,∠1=∠2。求證:AB=AC+CD.
.
例5:已知:如圖,A、D、B三點在同一條直線上,CD⊥AB,ΔADC、ΔBDO為等腰Rt三角形,AO、BC的大小關系和位置關系分別如何?證明你的結論。
例6.如圖,已知C為線段AB上的一點,?ACM和?CBN都是等邊三角形,AN和CM相交于F點,BM和CN交于E點。求證:?CEF是等邊三角形。
N
M
FE
C
A B
第三篇:全等三角形證明
全等三角形證明
1、已知CD∥AB,DF∥EB,DF=EB,問AF=CE嗎?說明理由。
CA2、已知∠E=∠F,∠1=∠2,AB=CD,問AE=DF嗎?說明理由。
F3、已知,點C是AB的中點,CD∥BE,且CD=BE,問∠D=∠E嗎?說明理由。
4、已知AB=CD,BE=DF,AE=CF,問AB∥CD嗎?
A B
C
第四篇:初一全等三角形證明
全等三角形1.三角形全等的判定一(SSS)
1.如圖,AB=AD,CB=CD.△ABC與△ADC全等嗎?為什么?
2.如圖,C是AB的中點,AD=CE,CD=BE.
求證△ACD≌△CBE.
3.如圖,點B,E,C,F在一條直線上,AB=DE,AC=DF,BE=CF. 求證∠A=∠D.
4.已知,如圖,AB=AD,DC=CB.求證:∠B=∠D。
B
5.如圖, AD=BC, AB=DC, DE=BF.BE=DF.求證:∠E=∠F
A
DCBF
2.三角形全等的判定二(SAS)
1.如圖,AC和BD相交于點O,OA=OC,OB=OD.求證DC∥AB.
2.如圖,△ABC≌△A?B?C?,AD,A?D?分別是△ABC,△A?B?C?的對應邊上的中線,AD與A?D?有什么關系?證明你的結論.
3.如圖,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,試猜想線段CE與DE的大小與位置關系,并證明你的結論.
E B
4.已知:如圖,AD∥BC,AD=CB,求證:△ADC≌△CBA.
CB
5.已知:如圖AD∥BC,AD=CB,AE=CF。求證:△AFD≌△CEB.
AC
6.已知,如圖,AB=AC,AD=AE,∠1=∠2。求證:△ABD≌△ACE. AE D
3~4.三角形全等的判定三、四(ASA、AAS)
1.如圖,點B,F,C,E在一條直線上,FB=CE,AB∥ED,AC∥FD.求證AB=DE,AC=DF.
2.如圖,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2.5cm,DE=1.7cm. 求BE的長.
3.已知,D是△ABC的邊AB上的一點,DE交AC于點E,DE=FE,FC∥AB。求證:AE=CE。
E
DB
4.已知:如圖 , 四邊形ABCD中 , AB∥CD , AD∥BC.求證:△ABD≌△CDB
5.如圖, AD∥BC, AB∥DC, MN=PQ.求證:DE=BE.3 QDPA
6.如圖, 在ABC中, ∠A=90°, BD平分B, DE⊥BC于E, 且BE=EC,(1)求∠ABC與∠C的度數;
(2)求證:BC=2AB.07.如圖,四邊形ABCD中, (2)求證:E是CD的中點; (3)求證:AD+BC=AB.8.如圖, 在△ABC中, AC⊥BC, CE⊥AB于E, AF平分∠CAB交CE于點F, 過F作FD∥ BC交AB于點D.求證:AC=AD.C 3eud教育網http://50多萬教學資源,完全免費,無須注冊,天天更新! 全等三角形的證明 1、已知:(如圖)AD∥BC,AD=CB,求證:△ADC≌△CBA。 B C2、已知:如圖AD∥BC,AD=CB,AE=CF。求證:△AFD≌△CEB。AC3、已知,如圖,AB=AC,AD=AE,∠1=∠2。求證:△ABD≌△ACE。 A C ED4、已知,如圖,點B、F、C、E在同一條直線上,FB=CE,AB∥ED,AC∥FD。求證:AB=DE,AC=DF。 E B F C5、已知,D是△ABC的邊AB上的一點,DE交AC于點E,DE=FE,FC∥AB。求證:AE=CE。 E D B C 6、已知,如圖,AB=AD,DC=CB,求證:∠B=∠D。 B 3eud教育網 http://教學資源集散地。可能是最大的免費教育資源網! A 全等三角形的證明 2、已知:(如圖)AD∥BC,AD=CB,求證:△ADC≌△CBA。 B C2、已知:如圖AD∥BC,AD=CB,AE=CF。求證:△AFD≌△CEB。AC3、已知,如圖,AB=AC,AD=AE,∠1=∠2。求證:△ABD≌△ACE。 C 1 B ED4、已知,如圖,點B、F、C、E在同一條直線上,FB=CE,AB∥ED,AC∥FD。求證:AB=DE,AC=DF。 E B F C5、已知,D是△ABC的邊AB上的一點,DE交AC于點E,DE=FE,FC∥AB。求證:AE=CE。 E D B C 6、已知,如圖,AB=AD,DC=CB,求證:∠B=∠D。 B A第五篇:全等三角形的證明