第一篇:初中定理
初中幾何證明的依據(jù)
1.兩點(diǎn)連線中線段最短.2.同角(或等角)的余角相等.同角(或等角)的補(bǔ)角相等.對(duì)頂角相等.3.平面內(nèi)經(jīng)過一點(diǎn)有且只有一條直線與已知直線垂直.直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短.4.線段垂直平分線上的點(diǎn)到線段兩端的距離相等,到線段兩端點(diǎn)距離相等的點(diǎn)在線段的垂直平分線上.
5.兩直線平行,同位角相等.同位角相等,兩直線平行.
6.兩直線平行,內(nèi)錯(cuò)角相等(同旁內(nèi)角互補(bǔ)).內(nèi)錯(cuò)角相等(同旁內(nèi)角互補(bǔ)),兩直線平行.
7.經(jīng)過直線外一點(diǎn)有且只有一條直線與這條直線平行.
8.三角形的任意兩邊之和大于第三邊.三角形任意兩邊之差小于第三邊.
9.三角形的內(nèi)角之和等于180°.三角形的外角等于不相鄰的兩個(gè)內(nèi)角的和.三角形的外角大于任何一個(gè)和它不相鄰的內(nèi)角.10.三角形的中位線平行于第三邊,并且等于它的一半.11.全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角分別相等.12.兩邊夾角對(duì)應(yīng)相等的兩個(gè)三角形全等.兩角夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等.三邊對(duì)應(yīng)相等的兩個(gè)三角形全等.有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等.斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等.13.角的平分線上的點(diǎn)到角的兩邊的距離相等.到角的兩邊距離相等的點(diǎn)在這個(gè)角的平分線上.14.等腰三角形的兩底角相等(等邊對(duì)等角).底邊上的高、中線及頂角的平分線三線合一.15.有兩個(gè)角相等的三角形是等腰三角形(等角對(duì)等邊).等邊三角形的每個(gè)角都等于60°.三個(gè)角都相等的三角形是等邊三角形.有一個(gè)角是60°的等腰三角形是等邊三角形.16.有兩個(gè)角互余的三角形是直角三角形.如果三角形的一邊的平方等于另外兩邊的平方和,那么這個(gè)三角形是直角三角形.17.直角三角形的兩銳角互余,斜邊上的中線等于斜邊的一半.直角三角形中兩直角邊的平方和等于斜邊的平方.18.n邊形的內(nèi)角和等于(n-2)·180°;任意多邊形的外角和等于360°.19.平行四邊形的對(duì)邊相等、對(duì)角相等、兩對(duì)角線互相平分.20.一組對(duì)邊平行且相等,或兩條對(duì)角線互相平分,或兩組對(duì)邊分別相等的四邊形是平行四邊形.21.矩形的四個(gè)角都是直角,對(duì)角線相等.22.三個(gè)角是直角的四邊形,或?qū)蔷€相等的平行四邊形是矩形.23.菱形的四邊相等,對(duì)角線互相垂直平分.24.四邊相等的四邊形,或?qū)蔷€互相垂直的平行四邊形是菱形.25.正方形具有菱形和矩形的性質(zhì).26.有一個(gè)角是直角的菱形是正方形.有一組鄰邊相等的矩形是正方形.27.等腰梯形同一底邊上的兩底角相等,兩條對(duì)角線相等.28.在同一底上的兩底角相等的梯形是等腰梯形.梯形的中位線平行于兩底,并且等于兩底和的一半.
第二篇:初中數(shù)學(xué)定理證明
初中數(shù)學(xué)定理證明
數(shù)學(xué)定理
三角形三條邊的關(guān)系
定理:三角形兩邊的和大于第三邊
推論:三角形兩邊的差小于第三邊
三角形內(nèi)角和
三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°
推論1直角三角形的兩個(gè)銳角互余
推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角和
推論3三角形的一個(gè)外角大雨任何一個(gè)和它不相鄰的內(nèi)角
角的平分線
性質(zhì)定理在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
幾何語言:
∵OC是∠AOB的角平分線(或者∠AOC=∠BOC)
pE⊥OA,pF⊥OB
點(diǎn)p在OC上
∴pE=pF(角平分線性質(zhì)定理)
判定定理到一個(gè)角的兩邊的距離相等的點(diǎn),在這個(gè)角的平分線上
幾何語言:
∵pE⊥OA,pF⊥OB
pE=pF
∴點(diǎn)p在∠AOB的角平分線上(角平分線判定定理)
等腰三角形的性質(zhì)
等腰三角形的性質(zhì)定理等腰三角形的兩底角相等
幾何語言:
∵AB=AC
∴∠B=∠C(等邊對(duì)等角)
推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
幾何語言:
(1)∵AB=AC,BD=DC
∴∠1=∠2,AD⊥BC(等腰三角形頂角的平分線垂直平分底邊)
(2)∵AB=AC,∠1=∠
2∴AD⊥BC,BD=DC(等腰三角形頂角的平分線垂直平分底邊)
(3)∵AB=AC,AD⊥BC
∴∠1=∠2,BD=DC(等腰三角形頂角的平分線垂直平分底邊)
推論2等邊三角形的各角都相等,并且每一個(gè)角等于60°
幾何語言:
∵AB=AC=BC
∴∠A=∠B=∠C=60°(等邊三角形的各角都相等,并且每一個(gè)角都等于60°)
等腰三角形的判定
判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等
幾何語言:
∵∠B=∠C
∴AB=AC(等角對(duì)等邊)
推論1三個(gè)角都相等的三角形是等邊三角形
幾何語言:
∵∠A=∠B=∠C
∴AB=AC=BC(三個(gè)角都相等的三角形是等邊三角形)
推論2有一個(gè)角等于60°的等腰三角形是等邊三角形
幾何語言:
∵AB=AC,∠A=60°(∠B=60°或者∠C=60°)
∴AB=AC=BC(有一個(gè)角等于60°的等腰三角形是等邊三角形)
推論3在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半
幾何語言:
∵∠C=90°,∠B=30°
∴BC=AB或者AB=2BC(在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半)
線段的垂直平分線
定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等
幾何語言:
∵M(jìn)N⊥AB于C,AB=BC,(MN垂直平分AB)
點(diǎn)p為MN上任一點(diǎn)
∴pA=pB(線段垂直平分線性質(zhì))
逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
幾何語言:
∵pA=pB
∴點(diǎn)p在線段AB的垂直平分線上(線段垂直平分線判定)
軸對(duì)稱和軸對(duì)稱圖形
定理1關(guān)于某條之間對(duì)稱的兩個(gè)圖形是全等形
定理2如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線
定理3兩個(gè)圖形關(guān)于某直線對(duì)稱,若它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上
逆定理若兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那這兩個(gè)圖形關(guān)于這條直線對(duì)稱
勾股定理
勾股定理直角三角形兩直角邊a、b的平方和,等于斜邊c的平方,即
a2+b2=c
2勾股定理的逆定理
勾股定理的逆定理如果三角形的三邊長(zhǎng)a、b、c有關(guān)系,那么這個(gè)三角形是直角三角形
四邊形
定理任意四邊形的內(nèi)角和等于360°
多邊形內(nèi)角和
定理多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)·180°
推論任意多邊形的外角和等于360°
平行四邊形及其性質(zhì)
性質(zhì)定理1平行四邊形的對(duì)角相等
性質(zhì)定理2平行四邊形的對(duì)邊相等
推論夾在兩條平行線間的平行線段相等
性質(zhì)定理3平行四邊形的對(duì)角線互相平分
幾何語言:
∵四邊形ABCD是平行四邊形
∴AD‖BC,AB‖CD(平行四邊形的對(duì)角相等)
∠A=∠C,∠B=∠D(平行四邊形的對(duì)邊相等)
AO=CO,BO=DO(平行四邊形的對(duì)角線互相平分)
平行四邊形的判定
判定定理1兩組對(duì)邊分別平行的四邊形是平行四邊形
幾何語言:
∵AD‖BC,AB‖CD
∴四邊形ABCD是平行四邊形
(兩組對(duì)邊分別平行的四邊形是平行四邊形)
判定定理2兩組對(duì)角分別相等的四邊形是平行四邊形
幾何語言:
∵∠A=∠C,∠B=∠D
∴四邊形ABCD是平行四邊形
(兩組對(duì)角分別相等的四邊形是平行四邊形)
判定定理3兩組對(duì)邊分別相等的四邊形是平行四邊形
幾何語言:
∵AD=BC,AB=CD
∴四邊形ABCD是平行四邊形
(兩組對(duì)邊分別相等的四邊形是平行四邊形)
判定定理4對(duì)角線互相平分的四邊形是平行四邊形
幾何語言:
∵AO=CO,BO=DO
∴四邊形ABCD是平行四邊形
(對(duì)角線互相平分的四邊形是平行四邊形)
判定定理5一組對(duì)邊平行且相等的四邊形是平行四邊形
幾何語言:
∵AD‖BC,AD=BC
∴四邊形ABCD是平行四邊形
(一組對(duì)邊平行且相等的四邊形是平行四邊形)
矩形
性質(zhì)定理1矩形的四個(gè)角都是直角
性質(zhì)定理2矩形的對(duì)角線相等
幾何語言:
∵四邊形ABCD是矩形
∴AC=BD(矩形的對(duì)角線相等)
∠A=∠B=∠C=∠D=90°(矩形的四個(gè)角都是直角)
推論直角三角形斜邊上的中線等于斜邊的一半
幾何語言:
∵△ABC為直角三角形,AO=OC
∴BO=AC(直角三角形斜邊上的中線等于斜邊的一半)
判定定理1有三個(gè)角是直角的四邊形是矩形
幾何語言:
∵∠A=∠B=∠C=90°
∴四邊形ABCD是矩形(有三個(gè)角是直角的四邊形是矩形)
判定定理2對(duì)角線相等的平行四邊形是矩形
幾何語言:
∵AC=BD
∴四邊形ABCD是矩形(對(duì)角線相等的平行四邊形是矩形)
菱形
性質(zhì)定理1菱形的四條邊都相等
性質(zhì)定理2菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角
幾何語言:
∵四邊形ABCD是菱形
∴AB=BC=CD=AD(菱形的四條邊都相等)
AC⊥BD,AC平分∠DAB和∠DCB,BD平分∠ABC和∠ADC
(菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角)
判定定理1四邊都相等的四邊形是菱形
幾何語言:
∵AB=BC=CD=AD
∴四邊形ABCD是菱形(四邊都相等的四邊形是菱形)
判定定理2對(duì)角線互相垂直的平行四邊形是菱形
幾何語言:
∵AC⊥BD,AO=CO,BO=DO
∴四邊形ABCD是菱形(對(duì)角線互相垂直的平行四邊形是菱形)
正方形
性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等
性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角
中心對(duì)稱和中心對(duì)稱圖形
定理1關(guān)于中心對(duì)稱的兩個(gè)圖形是全等形
定理2關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分
逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱
梯形
等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等
幾何語言:
∵四邊形ABCD是等腰梯形
∴∠A=∠B,∠C=∠D(等腰梯形在同一底上的兩個(gè)角相等)
等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形
幾何語言:
∵∠A=∠B,∠C=∠D
∴四邊形ABCD是等腰梯形(在同一底上的兩個(gè)角相等的梯形是等腰梯形)
三角形、梯形中位線
三角形中位線定理三角形的中位線平行與第三邊,并且等于它的一半
幾何語言:
∵EF是三角形的中位線
∴EF=AB(三角形中位線定理)
梯形中位線定理梯形的中位線平行與兩底,并且等于兩底和的一半
幾何語言:
∵EF是梯形的中位線
∴EF=(AB+CD)(梯形中位線定理)
比例線段
1、比例的基本性質(zhì)
如果a∶b=c∶d,那么ad=bc2、合比性質(zhì)
3、等比性質(zhì)
平行線分線段成比例定理
平行線分線段成比例定理三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例
幾何語言:
∵l‖p‖a
(三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例)
推論平行與三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例
定理如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行與三角形的第三邊
垂直于弦的直徑
垂徑定理垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧
幾何語言:
∵OC⊥AB,OC過圓心
(垂徑定理)
推論
1(1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
幾何語言:
∵OC⊥AB,AC=BC,AB不是直徑
(平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧)
(2)弦的垂直平分線過圓心,并且平分弦所對(duì)的兩條弧
幾何語言:
∵AC=BC,OC過圓心
(弦的垂直平分線過圓心,并且平分弦所對(duì)的兩條弧)
(3)平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
幾何語言:
(平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧)
推論2圓的兩條平分弦所夾的弧相等
幾何語言:∵AB‖CD
圓心角、虎弦、弦心距之間的關(guān)系
定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距也相等
推論在同圓或等圓中,如果兩個(gè)圓心角、兩條虎兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等
圓周角
定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半
推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等
推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直角
推論3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形
圓的內(nèi)接四邊形
定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角
幾何語言:
∵四邊形ABCD是⊙O的內(nèi)接四邊形
∴∠A+∠C=180°,∠B+∠ADB=180°,∠B=∠ADE
切線的判定和性質(zhì)
切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
幾何語言:∵l⊥OA,點(diǎn)A在⊙O上
∴直線l是⊙O的切線(切線判定定理)
切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)半徑
幾何語言:∵OA是⊙O的半徑,直線l切⊙O于點(diǎn)A
∴l(xiāng)⊥OA(切線性質(zhì)定理)
推論1經(jīng)過圓心且垂直于切線的直徑必經(jīng)過切點(diǎn)
推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心
切線長(zhǎng)定理
定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角
幾何語言:∵弦pB、pD切⊙O于A、C兩點(diǎn)
∴pA=pC,∠ApO=∠CpO(切線長(zhǎng)定理)
弦切角
弦切角定理弦切角等于它所夾的弧對(duì)的圓周角
幾何語言:∵∠BCN所夾的是,∠A所對(duì)的是
∴∠BCN=∠A
推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等
幾何語言:∵∠BCN所夾的是,∠ACM所對(duì)的是,=
∴∠BCN=∠ACM
和圓有關(guān)的比例線段
相交弦定理:圓內(nèi)的兩條相交弦,被焦點(diǎn)分成的兩條線段長(zhǎng)的積相等
幾何語言:∵弦AB、CD交于點(diǎn)p
∴pA·pB=pC·pD(相交弦定理)
推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)
幾何語言:∵AB是直徑,CD⊥AB于點(diǎn)p
∴pC2=pA·pB(相交弦定理推論)
切割線定理從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓焦點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)
幾何語言:∵pT切⊙O于點(diǎn)T,pBA是⊙O的割線
∴pT2=pA·pB(切割線定理)
推論從圓外一點(diǎn)因圓的兩條割線,這一點(diǎn)到每條割線與圓的焦點(diǎn)的兩條線段長(zhǎng)的積相等
幾何語言:∵pBA、pDC是⊙O的割線
∴pT2=pA·pB(切割線定理推論)。
第三篇:著名定理證明(初中)
24.著名定理證明(14分)(該題有六個(gè)小題,須選做兩個(gè),全對(duì)才給分,每個(gè)七分,多做滿分也是14分)
(1)試證明海倫公式:S三角形=√p(p-a)(p-b)(p-c),(p=三角形周長(zhǎng)的一半)
(2)試證明角平分線定理:如圖:若AD平分∠BAC,證明:
AB*CD=AC*BD
(3)證明射影定理:如圖:在RT三角形EGF中,HG⊥EF,EG⊥FG
ⅰ:證明:HG2=EH*HF
ⅱ:證明:FG2=HF*EF
ⅲ:證明:EG2=EH*EF
(4)證明:S圓錐=sh/3(s=底面積,h=高)(提示,將圓錐等分為無限個(gè)“圓片”)
(5)證明:2π=sin(360/∞)*∞(提示,作圓內(nèi)接正n邊形)
(6)證明:中線定理:
如圖,AI是三角形ABC中線,證明:
25、三角形是一個(gè)神奇的圖形,如三角形有五心(旁心、重心、內(nèi)心、外心、垂心),在三角形中有許多重要定理,如:勾股定理、余弦定理??,三角形有許多重要公式,如:海倫公式??,在三角形中還有許多重要的點(diǎn),如:費(fèi)馬點(diǎn)、歐拉點(diǎn)??
但今天,我們來研究一個(gè)多點(diǎn)共圓的問題:
首先,要證明多點(diǎn)共圓,只能從四點(diǎn)共圓入手,因此我現(xiàn)在這里提出一個(gè)證明四點(diǎn)共圓的方法:
證明:在任意凸四邊形中,連接對(duì)角線,若同邊所對(duì)的角相等,則這四點(diǎn)共圓,請(qǐng)以下圖為例證明:如圖,∠CBD=∠CAD(4分)
(2)如圖,在任意等腰三角形中(頂角小于90度),證明:三垂線垂足、及三個(gè)歐拉點(diǎn)共圓(歐拉點(diǎn):三角形三垂線交于一點(diǎn)為垂心,垂心與三頂點(diǎn)的連線的三條線段的中點(diǎn)即為歐拉點(diǎn))(10分):以下圖為例證明:
如圖,AB=AC,CH、AD、BM是等腰三角形ABC的高,P為垂心,O、N、G是三個(gè)歐拉點(diǎn)
第四篇:初中平面幾何重要定理匯總
初中平面幾何重要定理匯總
1、勾股定理(畢達(dá)哥拉斯定理)(直角三角形的兩直角邊分別是a、b,斜邊是c;則a*a+b*b=c*c)
2、射影定理(歐幾里得定理)(直角三角形中,斜邊上的高是兩直角邊在斜邊上射影的比例中項(xiàng)。每一條直角邊是這條直角邊在斜邊上的射影和斜邊的比例中項(xiàng)。公式Rt△ABC中,∠BAC=90°,AD是斜邊BC上的高,則有射影定理如下:(1)(AD)^2;=BD·DC,(2)(AB)^2;=BD·BC ,(3)(AC)^2;=CD·BC。等積式(4)ABXAC=BCXAD(可用面積來證明))
3、三角形的三條中線交于一點(diǎn),并且,各中線被這個(gè)點(diǎn)分成2:1的兩部分
4、四邊形兩邊中心的連線的兩條對(duì)角線中心的連線交于一點(diǎn)
5、間隔的連接六邊形的邊的中心所作出的兩個(gè)三角形的重心是重合的。
6、三角形各邊的垂直一平分線交于一點(diǎn)。
7、三角形的三條高線交于一點(diǎn)
8、設(shè)三角形ABC的外心為O,垂心為H,從O向BC邊引垂線,設(shè)垂足為L(zhǎng),則AH=2OL
9、三角形的外心,垂心,重心在同一條直線(歐拉線)上。
10、(九點(diǎn)圓或歐拉圓或費(fèi)爾巴赫?qǐng)A)三角形中,三邊中心、從各頂點(diǎn)向其對(duì)邊所引垂線的垂足,以及垂心與各頂點(diǎn)連線的中點(diǎn),這九個(gè)點(diǎn)在同一個(gè)圓上,11、歐拉定理:三角形的外心、重心、九點(diǎn)圓圓心、垂心依次位于同一直線(歐拉線)上
12、庫立奇*大上定理:(圓內(nèi)接四邊形的九點(diǎn)圓)
圓周上有四點(diǎn),過其中任三點(diǎn)作三角形,這四個(gè)三角形的九點(diǎn)圓圓心都在同一圓周上,我們把過這四個(gè)九點(diǎn)圓圓心的圓叫做圓內(nèi)接四邊形的九點(diǎn)圓。
13、(內(nèi)心)三角形的三條內(nèi)角平分線交于一點(diǎn),內(nèi)切圓的半徑公式:r=(s-a)(s-b)(s-c)s,s為三角形周長(zhǎng)的一半
14、(旁心)三角形的一個(gè)內(nèi)角平分線和另外兩個(gè)頂點(diǎn)處的外角平分線交于一點(diǎn)
15、中線定理:(巴布斯定理)設(shè)三角形ABC的邊BC的中點(diǎn)為P,則有AB2+AC2=2(AP2+BP2)
16、斯圖爾特定理:P將三角形ABC的邊BC內(nèi)分成m:n,則有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2
17、波羅摩及多定理:圓內(nèi)接四邊形ABCD的對(duì)角線互相垂直時(shí),連接AB中點(diǎn)M和對(duì)角線交點(diǎn)E的直線垂直于CD
18、阿波羅尼斯定理:到兩定點(diǎn)A、B的距離之比為定比m:n(值不為1)的點(diǎn)P,位于將線段AB分成m:n的內(nèi)分點(diǎn)C和外分點(diǎn)D為直徑兩端點(diǎn)的定圓周上
19、托勒密定理:設(shè)四邊形ABCD內(nèi)接于圓,則有AB×CD+AD×BC=AC×BD
20、以任意三角形ABC的邊BC、CA、AB為底邊,分別向外作底角都是30度的等腰△BDC、△CEA、△AFB,則△DEF是正三角形,21、愛爾可斯定理1:若△ABC和△DEF都是正三角形,則由線段AD、BE、CF的中心構(gòu)成的三角形也是正三角形。
22、愛爾可斯定理2:若△ABC、△DEF、△GHI都是正三角形,則由三角形△ADG、△BEH、△CFI的重心構(gòu)成的三角形是正三角形。
23、梅涅勞斯定理:設(shè)△ABC的三邊BC、CA、AB或其延長(zhǎng)線和一條不經(jīng)過它們?nèi)我豁旤c(diǎn)的直線的交點(diǎn)分別為P、Q、R則有BPPC×CQQA×ARRB=1
24、梅涅勞斯定理的逆定理:(略)
25、梅涅勞斯定理的應(yīng)用定理1:設(shè)△ABC的∠A的外角平分線交邊CA于Q、∠C的平分線交邊AB于R,、∠B的平分線交邊CA于Q,則P、Q、R三點(diǎn)共線。
26、梅涅勞斯定理的應(yīng)用定理2:過任意△ABC的三個(gè)頂點(diǎn)A、B、C作它的外接圓的切線,分別和BC、CA、AB的延長(zhǎng)線交于點(diǎn)P、Q、R,則P、Q、R三點(diǎn)共線
27、塞瓦定理:設(shè)△ABC的三個(gè)頂點(diǎn)A、B、C的不在三角形的邊或它們的延長(zhǎng)線上的一點(diǎn)S連接面成的三條直線,分別與邊BC、CA、AB或它們的延長(zhǎng)線交于點(diǎn)P、Q、R,則BPPC×CQQA×ARRB()=1.28、塞瓦定理的應(yīng)用定理:設(shè)平行于△ABC的邊BC的直線與兩邊AB、AC的交點(diǎn)分別是D、E,又設(shè)BE和CD交于S,則AS一定過邊BC的中心M
29、塞瓦定理的逆定理:(略)
30、塞瓦定理的逆定理的應(yīng)用定理1:三角形的三條中線交于一點(diǎn)
31、塞瓦定理的逆定理的應(yīng)用定理2:設(shè)△ABC的內(nèi)切圓和邊BC、CA、AB分別相切于點(diǎn)R、S、T,則AR、BS、CT交于一點(diǎn)。
32、西摩松定理:從△ABC的外接圓上任意一點(diǎn)P向三邊BC、CA、AB或其延長(zhǎng)線作垂線,設(shè)其垂足分別是D、E、R,則D、E、R共線,(這條直線叫西摩松線)
33、西摩松定理的逆定理:(略)
34、史坦納定理:設(shè)△ABC的垂心為H,其外接圓的任意點(diǎn)P,這時(shí)關(guān)于△ABC的點(diǎn)P的西摩松線通過線段PH的中心。
35、史坦納定理的應(yīng)用定理:△ABC的外接圓上的一點(diǎn)P的關(guān)于邊BC、CA、AB的對(duì)稱點(diǎn)和△ABC的垂心H同在一條(與西摩松線平行的)直線上。這條直線被叫做點(diǎn)P關(guān)于△ABC的鏡象線。
36、波朗杰、騰下定理:設(shè)△ABC的外接圓上的三點(diǎn)為P、Q、R,則P、Q、R關(guān)于△ABC交于一點(diǎn)的充要條件是:弧AP+弧BQ+弧CR=0(mod2∏).37、波朗杰、騰下定理推論1:設(shè)P、Q、R為△ABC的外接圓上的三點(diǎn),若P、Q、R關(guān)于△ABC的西摩松線交于一點(diǎn),則A、B、C三點(diǎn)關(guān)于△PQR的的西摩松線交于與前相同的一點(diǎn)
38、波朗杰、騰下定理推論2:在推論1中,三條西摩松線的交點(diǎn)是A、B、C、P、Q、R六點(diǎn)任取三點(diǎn)所作的三角形的垂心和其余三點(diǎn)所作的三角形的垂心的連線段的中點(diǎn)。
39、波朗杰、騰下定理推論3:考查△ABC的外接圓上的一點(diǎn)P的關(guān)于△ABC的西摩松線,如設(shè)QR為垂直于這條西摩松線該外接圓珠筆的弦,則三點(diǎn)P、Q、R的關(guān)于△ABC的西摩松線交于一點(diǎn)
40、波朗杰、騰下定理推論4:從△ABC的頂點(diǎn)向邊BC、CA、AB引垂線,設(shè)垂足分別是D、E、F,且設(shè)邊BC、CA、AB的中點(diǎn)分別是L、M、N,則D、E、F、L、M、N六點(diǎn)在同一個(gè)圓上,這時(shí)L、M、N點(diǎn)關(guān)于關(guān)于△ABC的西摩松線交于一點(diǎn)。
41、關(guān)于西摩松線的定理1:△ABC的外接圓的兩個(gè)端點(diǎn)P、Q關(guān)于該三角形的西摩松線互相垂直,其交點(diǎn)在九點(diǎn)圓上。
42、關(guān)于西摩松線的定理2(安寧定理):在一個(gè)圓周上有4點(diǎn),以其中任三點(diǎn)作三角形,再作其余一點(diǎn)的關(guān)于該三角形的西摩松線,這些西摩松線交于一點(diǎn)。
43、卡諾定理:通過△ABC的外接圓的一點(diǎn)P,引與△ABC的三邊BC、CA、AB分別成同向的等角的直線PD、PE、PF,與三邊的交點(diǎn)分別是D、E、F,則D、E、F三點(diǎn)共線。
44、奧倍爾定理:通過△ABC的三個(gè)頂點(diǎn)引互相平行的三條直線,設(shè)它們與△ABC的外接圓的交點(diǎn)分別是L、M、N,在△ABC的外接圓取一點(diǎn)P,則PL、PM、PN與△ABC的三邊BC、CA、AB或其延長(zhǎng)線的交點(diǎn)分別是D、E、F,則D、E、F三點(diǎn)共線
45、清宮定理:設(shè)P、Q為△ABC的外接圓的異于A、B、C的兩點(diǎn),P點(diǎn)的關(guān)于三邊BC、CA、AB的對(duì)稱點(diǎn)分別是U、V、W,這時(shí),QU、QV、QW和邊BC、CA、AB或其延長(zhǎng)線的交點(diǎn)分別是D、E、F,則D、E、F三點(diǎn)共線
46、他拿定理:設(shè)P、Q為關(guān)于△ABC的外接圓的一對(duì)反點(diǎn),點(diǎn)P的關(guān)于三邊BC、CA、AB的對(duì)稱點(diǎn)分別是U、V、W,這時(shí),如果QU、QV、QW與邊BC、CA、AB或其延長(zhǎng)線的交點(diǎn)分別為ED、E、F,則D、E、F三點(diǎn)共線。(反點(diǎn):P、Q分別為圓O的半徑OC和其延長(zhǎng)線的兩點(diǎn),如果OC2=OQ×OP 則稱P、Q兩點(diǎn)關(guān)于圓O互為反點(diǎn))
47、朗古來定理:在同一圓同上有A1B1C1D14點(diǎn),以其中任三點(diǎn)作三角形,在圓周取一點(diǎn)P,作P點(diǎn)的關(guān)于這4個(gè)三角形的西摩松線,再從P向這4條西摩松線引垂線,則四個(gè)垂足在同一條直線上。
48、九點(diǎn)圓定理:三角形三邊的中點(diǎn),三高的垂足和三個(gè)歐拉點(diǎn)[連結(jié)三角形各頂點(diǎn)與垂心所得三線段的中點(diǎn)]九點(diǎn)共圓[通常稱這個(gè)圓為九點(diǎn)圓[nine-point circle],或歐拉圓,費(fèi)爾巴哈圓.49、一個(gè)圓周上有n個(gè)點(diǎn),從其中任意n-1個(gè)點(diǎn)的重心,向該圓周的在其余一點(diǎn)處的切線所引的垂線都交于一點(diǎn)。
50、康托爾定理1:一個(gè)圓周上有n個(gè)點(diǎn),從其中任意n-2個(gè)點(diǎn)的重心向余下兩點(diǎn)的連線所引的垂線共點(diǎn)。
51、康托爾定理2:一個(gè)圓周上有A、B、C、D四點(diǎn)及M、N兩點(diǎn),則M和N點(diǎn)關(guān)于四個(gè)三角形△BCD、△CDA、△DAB、△ABC中的每一個(gè)的兩條西摩松的交點(diǎn)在同一直線上。這條直線叫做M、N兩點(diǎn)關(guān)于四邊形ABCD的康托爾線。
52、康托爾定理3:一個(gè)圓周上有A、B、C、D四點(diǎn)及M、N、L三點(diǎn),則M、N兩點(diǎn)的關(guān)于四邊形ABCD的康托爾線、L、N兩點(diǎn)的關(guān)于四邊形ABCD的康托爾線、M、L兩點(diǎn)的關(guān)于四邊形ABCD的康托爾線交于一點(diǎn)。這個(gè)點(diǎn)叫做M、N、L三點(diǎn)關(guān)于四邊形ABCD的康托爾點(diǎn)。
53、康托爾定理4:一個(gè)圓周上有A、B、C、D、E五點(diǎn)及M、N、L三點(diǎn),則M、N、L三點(diǎn)關(guān)于四邊形BCDE、CDEA、DEAB、EABC中的每一個(gè)康托爾點(diǎn)在一條直線上。這條直線叫做M、N、L三點(diǎn)關(guān)于五邊形A、B、C、D、E的康托爾線。
54、費(fèi)爾巴赫定理:三角形的九點(diǎn)圓與內(nèi)切圓和旁切圓相切。
55、莫利定理:將三角形的三個(gè)內(nèi)角三等分,靠近某邊的兩條三分角線相得到一個(gè)交點(diǎn),則這樣的三個(gè)交點(diǎn)可以構(gòu)成一個(gè)正三角形。這個(gè)三角形常被稱作莫利正三角形。
56、牛頓定理1:四邊形兩條對(duì)邊的延長(zhǎng)線的交點(diǎn)所連線段的中點(diǎn)和兩條對(duì)角線的中點(diǎn),三條共線。這條直線叫做這個(gè)四邊形的牛頓線。
57、牛頓定理2:圓外切四邊形的兩條對(duì)角線的中點(diǎn),及該圓的圓心,三點(diǎn)共線。
58、笛沙格定理1:平面上有兩個(gè)三角形△ABC、△DEF,設(shè)它們的對(duì)應(yīng)頂點(diǎn)(A和D、B和E、C和F)的連線交于一點(diǎn),這時(shí)如果對(duì)應(yīng)邊或其延長(zhǎng)線相交,則這三個(gè)交點(diǎn)共線。
59、笛沙格定理2:相異平面上有兩個(gè)三角形△ABC、△DEF,設(shè)它們的對(duì)應(yīng)頂點(diǎn)(A和D、B和E、C和F)的連線交于一點(diǎn),這時(shí)如果對(duì)應(yīng)邊或其延長(zhǎng)線相交,則這三個(gè)交點(diǎn)共線。
60、布利安松定理:連結(jié)外切于圓的六邊形ABCDEF相對(duì)的頂點(diǎn)A和D、B和E、C和F,則這三線共點(diǎn)。
60、巴斯加定理:圓內(nèi)接六邊形ABCDEF相對(duì)的邊AB和DE、BC和EF、CD和FA的(或延長(zhǎng)線的)交點(diǎn)共線。
第五篇:初中平面幾何的60個(gè)定理
1、勾股定理(畢達(dá)哥拉斯定理)小學(xué)都應(yīng)該掌握的重要定理
2、射影定理(歐幾里得定理)重要
3、三角形的三條中線交于一點(diǎn),并且,各中線被這個(gè)點(diǎn)分成2:1的兩部分
重要
4、四邊形兩邊中心的連線的兩條對(duì)角線中心的連線交于一點(diǎn) 學(xué)習(xí)中位線時(shí)的一個(gè)常見問題,中考不需要,初中競(jìng)賽需要
5、間隔的連接六邊形的邊的中心所作出的兩個(gè)三角形的重心是重合的。
完全沒有意義,學(xué)習(xí)解析幾何后顯然的結(jié)論,不用知道
6、三角形各邊的垂直一平分線交于一點(diǎn)。重要
7、從三角形的各頂點(diǎn)向其對(duì)邊所作的三條垂線交于一點(diǎn) 重要
8、設(shè)三角形ABC的外心為O,垂心為H,從O向BC邊引垂線,設(shè)垂足不L,則AH=2OL 中考不需要,競(jìng)賽中很顯然的結(jié)論
9、三角形的外心,垂心,重心在同一條直線上。
高中競(jìng)賽中非常重要的定理,稱為歐拉線
10、(九點(diǎn)圓或歐拉圓或費(fèi)爾巴赫?qǐng)A)三角形中,三邊中心、從各頂點(diǎn)向其對(duì)邊所引垂線的垂足,以及垂心與各頂點(diǎn)連線的中點(diǎn),這九個(gè)點(diǎn)在同一個(gè)圓上,高中競(jìng)賽中的常用定理
11、歐拉定理:三角形的外心、重心、九點(diǎn)圓圓心、垂心依次位于同一直線(歐拉線)上 高中競(jìng)賽中會(huì)用,不常用
12、庫立奇*大上定理:(圓內(nèi)接四邊形的九點(diǎn)圓)圓周上有四點(diǎn),過其中任三點(diǎn)作三角形,這四個(gè)三角形的九點(diǎn)圓圓心都在同一圓周上,我們把過這四個(gè)九點(diǎn)圓圓心的圓叫做圓內(nèi)接四邊形的九點(diǎn)圓。
高中競(jìng)賽的題目,不用掌握
13、(內(nèi)心)三角形的三條內(nèi)角平分線交于一點(diǎn),內(nèi)切圓的半徑公式:r=(s-a)(s-b)(s-c)ss為三角形周長(zhǎng)的一半
重要
14、(旁心)三角形的一個(gè)內(nèi)角平分線和另外兩個(gè)頂點(diǎn)處的外角平分線交于一點(diǎn)
重要
15、中線定理:(巴布斯定理)設(shè)三角形ABC的邊BC的中點(diǎn)為P,則有AB2+AC2=2(AP2+BP2)初中競(jìng)賽需要,重要
16、斯圖爾特定理:P將三角形ABC的邊BC內(nèi)分成m:n,則有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2 高中競(jìng)賽需要,重要
17、波羅摩及多定理:圓內(nèi)接四邊形ABCD的對(duì)角線互相垂直時(shí),連接AB中點(diǎn)M和對(duì)角線交點(diǎn)E的直線垂直于CD 顯然的結(jié)論,不需要掌握
18、阿波羅尼斯定理:到兩定點(diǎn)A、B的距離之比為定比m:n(值不為1)的點(diǎn)P,位于將線段AB分成m:n的內(nèi)分點(diǎn)C和外分點(diǎn)D為直徑兩端點(diǎn)的定圓周上 高中競(jìng)賽需要,重要
19、托勒密定理:設(shè)四邊形ABCD內(nèi)接于圓,則有AB×CD+AD×BC=AC 初中競(jìng)賽需要,重要
20、以任意三角形ABC的邊BC、CA、AB為底邊,分別向外作底角都是30度的等腰△BDC、△CEA、△AFB,則△DEF是正三角形,學(xué)習(xí)復(fù)數(shù)后是顯然的結(jié)論,不需要掌握
21、愛爾可斯定理1:若△ABC和三角形△都是正三角形,則由線段AD、BE、CF的重心構(gòu)成的三角形也是正三角形。不需要掌握
22、愛爾可斯定理2:若△ABC、△DEF、△GHI都是正三角形,則由三角形△ADG、△BEH、△CFI的重心構(gòu)成的三角形是正三角形。
不需要掌握
23、梅涅勞斯定理:設(shè)△ABC的三邊BC、CA、AB或其延長(zhǎng)線和一條不經(jīng)過它們?nèi)我豁旤c(diǎn)的直線的交點(diǎn)分別為P、Q、R則有 BPPC×CQQA×ARRB=1 初中競(jìng)賽需要,重要
24、梅涅勞斯定理的逆定理:(略)初中競(jìng)賽需要,重要
25、梅涅勞斯定理的應(yīng)用定理1:設(shè)△ABC的∠A的外角平分線交邊CA于Q、∠C的平分線交邊AB于R,、∠B的平分線交邊CA于Q,則P、Q、R三點(diǎn)共線。
不用掌握
26、梅涅勞斯定理的應(yīng)用定理2:過任意△ABC的三個(gè)頂點(diǎn)A、B、C作它的外接圓的切線,分別和BC、CA、AB的延長(zhǎng)線交于點(diǎn)P、Q、R,則P、Q、R三點(diǎn)共線
不用掌握
27、塞瓦定理:設(shè)△ABC的三個(gè)頂點(diǎn)A、B、C的不在三角形的邊或它們的延長(zhǎng)線上的一點(diǎn)S連接面成的三條直線,分別與邊BC、CA、AB或它們的延長(zhǎng)線交于點(diǎn)P、Q、R,則BPPC×CQQA×ARRB()=1.初中競(jìng)賽需要,重要
28、塞瓦定理的應(yīng)用定理:設(shè)平行于△ABC的邊BC的直線與兩邊AB、AC的交點(diǎn)分別是D、E,又設(shè)BE和CD交于S,則AS一定過邊BC的中心M 不用掌握
29、塞瓦定理的逆定理:(略)初中競(jìng)賽需要,重要
30、塞瓦定理的逆定理的應(yīng)用定理1:三角形的三條中線交于一點(diǎn)
這個(gè)定理用塞瓦定理來證明將毫無幾何美感,應(yīng)該用中位線證明才漂亮
31、塞瓦定理的逆定理的應(yīng)用定理2:設(shè)△ABC的內(nèi)切圓和邊BC、CA、AB分別相切于點(diǎn)R、S、T,則AR、BS、CT交于一點(diǎn)。
不用掌握
32、西摩松定理:從△ABC的外接圓上任意一點(diǎn)P向三邊BC、CA、AB或其延長(zhǎng)線作垂線,設(shè)其垂足分別是D、E、R,則D、E、R共線,(這條直線叫西摩松線)初中競(jìng)賽的常用定理
33、西摩松定理的逆定理:(略)初中競(jìng)賽的常用定理
34、史坦納定理:設(shè)△ABC的垂心為H,其外接圓的任意點(diǎn)P,這時(shí)關(guān)于△ABC的點(diǎn)P的西摩松線通過線段PH的中心。
不用掌握
35、史坦納定理的應(yīng)用定理:△ABC的外接圓上的一點(diǎn)P的關(guān)于邊BC、CA、AB的對(duì)稱點(diǎn)和△ABC的垂心H同在一條(與西摩松線平行的)直線上。這條直線被叫做點(diǎn)P關(guān)于△ABC的鏡象線。
不用掌握
36、波朗杰、騰下定理:設(shè)△ABC的外接圓上的三點(diǎn)為P、Q、R,則P、Q、R關(guān)于△ABC交于一點(diǎn)的充要條件是:弧AP+弧BQ+弧CR=0(mod2∏).不用掌握
37、波朗杰、騰下定理推論1:設(shè)P、Q、R為△ABC的外接圓上的三點(diǎn),若P、Q、R關(guān)于△ABC的西摩松線交于一點(diǎn),則A、B、C三點(diǎn)關(guān)于△PQR的的西摩松線交于與前相同的一點(diǎn) 不用掌握
38、波朗杰、騰下定理推論2:在推論1中,三條西摩松線的交點(diǎn)是A、B、C、P、Q、R六點(diǎn)任取三點(diǎn)所作的三角形的垂心和其余三點(diǎn)所作的三角形的垂心的連線段的中點(diǎn)。
不用掌握
39、波朗杰、騰下定理推論3:考查△ABC的外接圓上的一點(diǎn)P的關(guān)于△ABC的西摩松線,如設(shè)QR為垂直于這條西摩松線該外接圓珠筆的弦,則三點(diǎn)P、Q、R的關(guān)于△ABC的西摩松線交于一點(diǎn) 不用掌握
40、波朗杰、騰下定理推論4:從△ABC的頂點(diǎn)向邊BC、CA、AB引垂線,設(shè)垂足分別是D、E、F,且設(shè)邊BC、CA、AB的中點(diǎn)分別是L、M、N,則D、E、F、L、M、N六點(diǎn)在同一個(gè)圓上,這時(shí)L、M、N點(diǎn)關(guān)于關(guān)于△ABC的西摩松線交于一點(diǎn)。
不用掌握
41、關(guān)于西摩松線的定理1:△ABC的外接圓的兩個(gè)端點(diǎn)P、Q關(guān)于該三角形的西摩松線互相垂直,其交點(diǎn)在九點(diǎn)圓上。不用掌握
42、關(guān)于西摩松線的定理2(安寧定理):在一個(gè)圓周上有4點(diǎn),以其中任三點(diǎn)作三角形,再作其余一點(diǎn)的關(guān)于該三角形的西摩松線,這些西摩松線交于一點(diǎn)。
不用掌握
43、卡諾定理:通過△ABC的外接圓的一點(diǎn)P,引與△ABC的三邊BC、CA、AB分別成同向的等角的直線PD、PE、PF,與三邊的交點(diǎn)分別是D、E、F,則D、E、F三點(diǎn)共線。
不用掌握
44、奧倍爾定理:通過△ABC的三個(gè)頂點(diǎn)引互相平行的三條直線,設(shè)它們與△ABC的外接圓的交點(diǎn)分別是L、M、N,在△ABC的外接圓取一點(diǎn)P,則PL、PM、PN與△ABC的三邊BC、CA、AB或其延長(zhǎng)線的交點(diǎn)分別是D、E、F,則D、E、F三點(diǎn)共線
不用掌握
45、清宮定理:設(shè)P、Q為△ABC的外接圓的異于A、B、C的兩點(diǎn),P點(diǎn)的關(guān)于三邊BC、CA、AB的對(duì)稱點(diǎn)分別是U、V、W,這時(shí),QU、QV、QW和邊BC、CA、AB或其延長(zhǎng)線的交點(diǎn)分別是D、E、F,則D、E、F三點(diǎn)共線
不用掌握
46、他拿定理:設(shè)P、Q為關(guān)于△ABC的外接圓的一對(duì)反點(diǎn),點(diǎn)P的關(guān)于三邊BC、CA、AB的對(duì)稱點(diǎn)分別是U、V、W,這時(shí),如果QU、QV、QW與邊BC、CA、AB或其延長(zhǎng)線的交點(diǎn)分別為ED、E、F,則D、E、F三點(diǎn)共線。(反點(diǎn):P、Q分別為圓O的半徑OC和其延長(zhǎng)線的兩點(diǎn),如果OC2=OQ×OP 則稱P、Q兩點(diǎn)關(guān)于圓O互為反點(diǎn))不用掌握
47、朗古來定理:在同一圓同上有A1B1C1D14點(diǎn),以其中任三點(diǎn)作三角形,在圓周取一點(diǎn)P,作P點(diǎn)的關(guān)于這4個(gè)三角形的西摩松線,再從P向這4條西摩松線引垂線,則四個(gè)垂足在同一條直線上。
不用掌握
48、九點(diǎn)圓定理:三角形三邊的中點(diǎn),三高的垂足和三個(gè)歐拉點(diǎn)[連結(jié)三角形各頂點(diǎn)與垂心所得三線段的中點(diǎn)]九點(diǎn)共圓[通常稱這個(gè)圓為九點(diǎn)圓[nine-point circle],或歐拉圓,費(fèi)爾巴哈圓.上面已經(jīng)有了
49、一個(gè)圓周上有n個(gè)點(diǎn),從其中任意n-1個(gè)點(diǎn)的重心,向該圓周的在其余一點(diǎn)處的切線所引的垂線都交于一點(diǎn)。
不用掌握
50、康托爾定理1:一個(gè)圓周上有n個(gè)點(diǎn),從其中任意n-2個(gè)點(diǎn)的重心向余下兩點(diǎn)的連線所引的垂線共點(diǎn)。
不用掌握
51、康托爾定理2:一個(gè)圓周上有A、B、C、D四點(diǎn)及M、N兩點(diǎn),則M和N點(diǎn)關(guān)于四個(gè)三角形△BCD、△CDA、△DAB、△ABC中的每一個(gè)的兩條西摩松的交點(diǎn)在同一直線上。這條直線叫做M、N兩點(diǎn)關(guān)于四邊形ABCD的康托爾線。不用掌握
52、康托爾定理3:一個(gè)圓周上有A、B、C、D四點(diǎn)及M、N、L三點(diǎn),則M、N兩點(diǎn)的關(guān)于四邊形ABCD的康托爾線、L、N兩點(diǎn)的關(guān)于四邊形ABCD的康托爾線、M、L兩點(diǎn)的關(guān)于四邊形ABCD的康托爾線交于一點(diǎn)。這個(gè)點(diǎn)叫做M、N、L三點(diǎn)關(guān)于四邊形ABCD的康托爾點(diǎn)。
不用掌握
53、康托爾定理4:一個(gè)圓周上有A、B、C、D、E五點(diǎn)及M、N、L三點(diǎn),則M、N、L三點(diǎn)關(guān)于四邊形BCDE、CDEA、DEAB、EABC中的每一個(gè)康托爾點(diǎn)在一條直線上。這條直線叫做M、N、L三點(diǎn)關(guān)于五邊形A、B、C、D、E的康托爾線。
不用掌握
54、費(fèi)爾巴赫定理:三角形的九點(diǎn)圓與內(nèi)切圓和旁切圓相切。
不用掌握
55、莫利定理:將三角形的三個(gè)內(nèi)角三等分,靠近某邊的兩條三分角線相得到一個(gè)交點(diǎn),則這樣的三個(gè)交點(diǎn)可以構(gòu)成一個(gè)正三角形。這個(gè)三角形常被稱作莫利正三角形。
這是我認(rèn)為的平面幾何中最漂亮最神奇的幾個(gè)定理之一,但不用掌握
56、牛頓定理1:四邊形兩條對(duì)邊的延長(zhǎng)線的交點(diǎn)所連線段的中點(diǎn)和兩條對(duì)角線的中點(diǎn),三條共線。這條直線叫做這個(gè)四邊形的牛頓線。
高中競(jìng)賽中常用
57、牛頓定理2:圓外切四邊形的兩條對(duì)角線的中點(diǎn),及該圓的圓心,三點(diǎn)共線。
不用掌握
58、笛沙格定理1:平面上有兩個(gè)三角形△ABC、△DEF,設(shè)它們的對(duì)應(yīng)頂點(diǎn)(A和D、B和E、C和F)的連線交于一點(diǎn),這時(shí)如果對(duì)應(yīng)邊或其延長(zhǎng)線相交,則這三個(gè)交點(diǎn)共線。
高中競(jìng)賽中偶爾會(huì)用
59、笛沙格定理2:相異平面上有兩個(gè)三角形△ABC、△DEF,設(shè)它們的對(duì)應(yīng)頂點(diǎn)(A和D、B和E、C和F)的連線交于一點(diǎn),這時(shí)如果對(duì)應(yīng)邊或其延長(zhǎng)線相交,則這三個(gè)交點(diǎn)共線。60、布利安松定理:連結(jié)外切于圓的六邊形ABCDEF相對(duì)的頂點(diǎn)A和D、B和E、C和F,則這三線共點(diǎn)。
高中競(jìng)賽中偶爾會(huì)用
60、巴斯加定理:圓內(nèi)接六邊形ABCDEF相對(duì)的邊AB和DE、BC和EF、CD和FA的(或延長(zhǎng)線的)交點(diǎn)共線。高中競(jìng)賽中重要,一般稱做帕斯卡定理,而且是圓錐曲線內(nèi)接六邊形。