久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

初中定理

時(shí)間:2019-05-15 07:59:43下載本文作者:會(huì)員上傳
簡(jiǎn)介:寫寫幫文庫小編為你整理了多篇相關(guān)的《初中定理》,但愿對(duì)你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《初中定理》。

第一篇:初中定理

初中幾何證明的依據(jù)

1.兩點(diǎn)連線中線段最短.2.同角(或等角)的余角相等.同角(或等角)的補(bǔ)角相等.對(duì)頂角相等.3.平面內(nèi)經(jīng)過一點(diǎn)有且只有一條直線與已知直線垂直.直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短.4.線段垂直平分線上的點(diǎn)到線段兩端的距離相等,到線段兩端點(diǎn)距離相等的點(diǎn)在線段的垂直平分線上.

5.兩直線平行,同位角相等.同位角相等,兩直線平行.

6.兩直線平行,內(nèi)錯(cuò)角相等(同旁內(nèi)角互補(bǔ)).內(nèi)錯(cuò)角相等(同旁內(nèi)角互補(bǔ)),兩直線平行.

7.經(jīng)過直線外一點(diǎn)有且只有一條直線與這條直線平行.

8.三角形的任意兩邊之和大于第三邊.三角形任意兩邊之差小于第三邊.

9.三角形的內(nèi)角之和等于180°.三角形的外角等于不相鄰的兩個(gè)內(nèi)角的和.三角形的外角大于任何一個(gè)和它不相鄰的內(nèi)角.10.三角形的中位線平行于第三邊,并且等于它的一半.11.全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角分別相等.12.兩邊夾角對(duì)應(yīng)相等的兩個(gè)三角形全等.兩角夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等.三邊對(duì)應(yīng)相等的兩個(gè)三角形全等.有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等.斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等.13.角的平分線上的點(diǎn)到角的兩邊的距離相等.到角的兩邊距離相等的點(diǎn)在這個(gè)角的平分線上.14.等腰三角形的兩底角相等(等邊對(duì)等角).底邊上的高、中線及頂角的平分線三線合一.15.有兩個(gè)角相等的三角形是等腰三角形(等角對(duì)等邊).等邊三角形的每個(gè)角都等于60°.三個(gè)角都相等的三角形是等邊三角形.有一個(gè)角是60°的等腰三角形是等邊三角形.16.有兩個(gè)角互余的三角形是直角三角形.如果三角形的一邊的平方等于另外兩邊的平方和,那么這個(gè)三角形是直角三角形.17.直角三角形的兩銳角互余,斜邊上的中線等于斜邊的一半.直角三角形中兩直角邊的平方和等于斜邊的平方.18.n邊形的內(nèi)角和等于(n-2)·180°;任意多邊形的外角和等于360°.19.平行四邊形的對(duì)邊相等、對(duì)角相等、兩對(duì)角線互相平分.20.一組對(duì)邊平行且相等,或兩條對(duì)角線互相平分,或兩組對(duì)邊分別相等的四邊形是平行四邊形.21.矩形的四個(gè)角都是直角,對(duì)角線相等.22.三個(gè)角是直角的四邊形,或?qū)蔷€相等的平行四邊形是矩形.23.菱形的四邊相等,對(duì)角線互相垂直平分.24.四邊相等的四邊形,或?qū)蔷€互相垂直的平行四邊形是菱形.25.正方形具有菱形和矩形的性質(zhì).26.有一個(gè)角是直角的菱形是正方形.有一組鄰邊相等的矩形是正方形.27.等腰梯形同一底邊上的兩底角相等,兩條對(duì)角線相等.28.在同一底上的兩底角相等的梯形是等腰梯形.梯形的中位線平行于兩底,并且等于兩底和的一半.

第二篇:初中數(shù)學(xué)定理證明

初中數(shù)學(xué)定理證明

數(shù)學(xué)定理

三角形三條邊的關(guān)系

定理:三角形兩邊的和大于第三邊

推論:三角形兩邊的差小于第三邊

三角形內(nèi)角和

三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°

推論1直角三角形的兩個(gè)銳角互余

推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角和

推論3三角形的一個(gè)外角大雨任何一個(gè)和它不相鄰的內(nèi)角

角的平分線

性質(zhì)定理在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

幾何語言:

∵OC是∠AOB的角平分線(或者∠AOC=∠BOC)

pE⊥OA,pF⊥OB

點(diǎn)p在OC上

∴pE=pF(角平分線性質(zhì)定理)

判定定理到一個(gè)角的兩邊的距離相等的點(diǎn),在這個(gè)角的平分線上

幾何語言:

∵pE⊥OA,pF⊥OB

pE=pF

∴點(diǎn)p在∠AOB的角平分線上(角平分線判定定理)

等腰三角形的性質(zhì)

等腰三角形的性質(zhì)定理等腰三角形的兩底角相等

幾何語言:

∵AB=AC

∴∠B=∠C(等邊對(duì)等角)

推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

幾何語言:

(1)∵AB=AC,BD=DC

∴∠1=∠2,AD⊥BC(等腰三角形頂角的平分線垂直平分底邊)

(2)∵AB=AC,∠1=∠

2∴AD⊥BC,BD=DC(等腰三角形頂角的平分線垂直平分底邊)

(3)∵AB=AC,AD⊥BC

∴∠1=∠2,BD=DC(等腰三角形頂角的平分線垂直平分底邊)

推論2等邊三角形的各角都相等,并且每一個(gè)角等于60°

幾何語言:

∵AB=AC=BC

∴∠A=∠B=∠C=60°(等邊三角形的各角都相等,并且每一個(gè)角都等于60°)

等腰三角形的判定

判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等

幾何語言:

∵∠B=∠C

∴AB=AC(等角對(duì)等邊)

推論1三個(gè)角都相等的三角形是等邊三角形

幾何語言:

∵∠A=∠B=∠C

∴AB=AC=BC(三個(gè)角都相等的三角形是等邊三角形)

推論2有一個(gè)角等于60°的等腰三角形是等邊三角形

幾何語言:

∵AB=AC,∠A=60°(∠B=60°或者∠C=60°)

∴AB=AC=BC(有一個(gè)角等于60°的等腰三角形是等邊三角形)

推論3在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半

幾何語言:

∵∠C=90°,∠B=30°

∴BC=AB或者AB=2BC(在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半)

線段的垂直平分線

定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

幾何語言:

∵M(jìn)N⊥AB于C,AB=BC,(MN垂直平分AB)

點(diǎn)p為MN上任一點(diǎn)

∴pA=pB(線段垂直平分線性質(zhì))

逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

幾何語言:

∵pA=pB

∴點(diǎn)p在線段AB的垂直平分線上(線段垂直平分線判定)

軸對(duì)稱和軸對(duì)稱圖形

定理1關(guān)于某條之間對(duì)稱的兩個(gè)圖形是全等形

定理2如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線

定理3兩個(gè)圖形關(guān)于某直線對(duì)稱,若它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上

逆定理若兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那這兩個(gè)圖形關(guān)于這條直線對(duì)稱

勾股定理

勾股定理直角三角形兩直角邊a、b的平方和,等于斜邊c的平方,即

a2+b2=c

2勾股定理的逆定理

勾股定理的逆定理如果三角形的三邊長(zhǎng)a、b、c有關(guān)系,那么這個(gè)三角形是直角三角形

四邊形

定理任意四邊形的內(nèi)角和等于360°

多邊形內(nèi)角和

定理多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)·180°

推論任意多邊形的外角和等于360°

平行四邊形及其性質(zhì)

性質(zhì)定理1平行四邊形的對(duì)角相等

性質(zhì)定理2平行四邊形的對(duì)邊相等

推論夾在兩條平行線間的平行線段相等

性質(zhì)定理3平行四邊形的對(duì)角線互相平分

幾何語言:

∵四邊形ABCD是平行四邊形

∴AD‖BC,AB‖CD(平行四邊形的對(duì)角相等)

∠A=∠C,∠B=∠D(平行四邊形的對(duì)邊相等)

AO=CO,BO=DO(平行四邊形的對(duì)角線互相平分)

平行四邊形的判定

判定定理1兩組對(duì)邊分別平行的四邊形是平行四邊形

幾何語言:

∵AD‖BC,AB‖CD

∴四邊形ABCD是平行四邊形

(兩組對(duì)邊分別平行的四邊形是平行四邊形)

判定定理2兩組對(duì)角分別相等的四邊形是平行四邊形

幾何語言:

∵∠A=∠C,∠B=∠D

∴四邊形ABCD是平行四邊形

(兩組對(duì)角分別相等的四邊形是平行四邊形)

判定定理3兩組對(duì)邊分別相等的四邊形是平行四邊形

幾何語言:

∵AD=BC,AB=CD

∴四邊形ABCD是平行四邊形

(兩組對(duì)邊分別相等的四邊形是平行四邊形)

判定定理4對(duì)角線互相平分的四邊形是平行四邊形

幾何語言:

∵AO=CO,BO=DO

∴四邊形ABCD是平行四邊形

(對(duì)角線互相平分的四邊形是平行四邊形)

判定定理5一組對(duì)邊平行且相等的四邊形是平行四邊形

幾何語言:

∵AD‖BC,AD=BC

∴四邊形ABCD是平行四邊形

(一組對(duì)邊平行且相等的四邊形是平行四邊形)

矩形

性質(zhì)定理1矩形的四個(gè)角都是直角

性質(zhì)定理2矩形的對(duì)角線相等

幾何語言:

∵四邊形ABCD是矩形

∴AC=BD(矩形的對(duì)角線相等)

∠A=∠B=∠C=∠D=90°(矩形的四個(gè)角都是直角)

推論直角三角形斜邊上的中線等于斜邊的一半

幾何語言:

∵△ABC為直角三角形,AO=OC

∴BO=AC(直角三角形斜邊上的中線等于斜邊的一半)

判定定理1有三個(gè)角是直角的四邊形是矩形

幾何語言:

∵∠A=∠B=∠C=90°

∴四邊形ABCD是矩形(有三個(gè)角是直角的四邊形是矩形)

判定定理2對(duì)角線相等的平行四邊形是矩形

幾何語言:

∵AC=BD

∴四邊形ABCD是矩形(對(duì)角線相等的平行四邊形是矩形)

菱形

性質(zhì)定理1菱形的四條邊都相等

性質(zhì)定理2菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角

幾何語言:

∵四邊形ABCD是菱形

∴AB=BC=CD=AD(菱形的四條邊都相等)

AC⊥BD,AC平分∠DAB和∠DCB,BD平分∠ABC和∠ADC

(菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角)

判定定理1四邊都相等的四邊形是菱形

幾何語言:

∵AB=BC=CD=AD

∴四邊形ABCD是菱形(四邊都相等的四邊形是菱形)

判定定理2對(duì)角線互相垂直的平行四邊形是菱形

幾何語言:

∵AC⊥BD,AO=CO,BO=DO

∴四邊形ABCD是菱形(對(duì)角線互相垂直的平行四邊形是菱形)

正方形

性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等

性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角

中心對(duì)稱和中心對(duì)稱圖形

定理1關(guān)于中心對(duì)稱的兩個(gè)圖形是全等形

定理2關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中心,并且被對(duì)稱中心平分

逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱

梯形

等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等

幾何語言:

∵四邊形ABCD是等腰梯形

∴∠A=∠B,∠C=∠D(等腰梯形在同一底上的兩個(gè)角相等)

等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形

幾何語言:

∵∠A=∠B,∠C=∠D

∴四邊形ABCD是等腰梯形(在同一底上的兩個(gè)角相等的梯形是等腰梯形)

三角形、梯形中位線

三角形中位線定理三角形的中位線平行與第三邊,并且等于它的一半

幾何語言:

∵EF是三角形的中位線

∴EF=AB(三角形中位線定理)

梯形中位線定理梯形的中位線平行與兩底,并且等于兩底和的一半

幾何語言:

∵EF是梯形的中位線

∴EF=(AB+CD)(梯形中位線定理)

比例線段

1、比例的基本性質(zhì)

如果a∶b=c∶d,那么ad=bc2、合比性質(zhì)

3、等比性質(zhì)

平行線分線段成比例定理

平行線分線段成比例定理三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例

幾何語言:

∵l‖p‖a

(三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例)

推論平行與三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例

定理如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行與三角形的第三邊

垂直于弦的直徑

垂徑定理垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧

幾何語言:

∵OC⊥AB,OC過圓心

(垂徑定理)

推論

1(1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

幾何語言:

∵OC⊥AB,AC=BC,AB不是直徑

(平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧)

(2)弦的垂直平分線過圓心,并且平分弦所對(duì)的兩條弧

幾何語言:

∵AC=BC,OC過圓心

(弦的垂直平分線過圓心,并且平分弦所對(duì)的兩條弧)

(3)平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

幾何語言:

(平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧)

推論2圓的兩條平分弦所夾的弧相等

幾何語言:∵AB‖CD

圓心角、虎弦、弦心距之間的關(guān)系

定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距也相等

推論在同圓或等圓中,如果兩個(gè)圓心角、兩條虎兩條弦或兩條弦的弦心距中有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等

圓周角

定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直角

推論3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形

圓的內(nèi)接四邊形

定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

幾何語言:

∵四邊形ABCD是⊙O的內(nèi)接四邊形

∴∠A+∠C=180°,∠B+∠ADB=180°,∠B=∠ADE

切線的判定和性質(zhì)

切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

幾何語言:∵l⊥OA,點(diǎn)A在⊙O上

∴直線l是⊙O的切線(切線判定定理)

切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)半徑

幾何語言:∵OA是⊙O的半徑,直線l切⊙O于點(diǎn)A

∴l(xiāng)⊥OA(切線性質(zhì)定理)

推論1經(jīng)過圓心且垂直于切線的直徑必經(jīng)過切點(diǎn)

推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心

切線長(zhǎng)定理

定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角

幾何語言:∵弦pB、pD切⊙O于A、C兩點(diǎn)

∴pA=pC,∠ApO=∠CpO(切線長(zhǎng)定理)

弦切角

弦切角定理弦切角等于它所夾的弧對(duì)的圓周角

幾何語言:∵∠BCN所夾的是,∠A所對(duì)的是

∴∠BCN=∠A

推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等

幾何語言:∵∠BCN所夾的是,∠ACM所對(duì)的是,=

∴∠BCN=∠ACM

和圓有關(guān)的比例線段

相交弦定理:圓內(nèi)的兩條相交弦,被焦點(diǎn)分成的兩條線段長(zhǎng)的積相等

幾何語言:∵弦AB、CD交于點(diǎn)p

∴pA·pB=pC·pD(相交弦定理)

推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)

幾何語言:∵AB是直徑,CD⊥AB于點(diǎn)p

∴pC2=pA·pB(相交弦定理推論)

切割線定理從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓焦點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)

幾何語言:∵pT切⊙O于點(diǎn)T,pBA是⊙O的割線

∴pT2=pA·pB(切割線定理)

推論從圓外一點(diǎn)因圓的兩條割線,這一點(diǎn)到每條割線與圓的焦點(diǎn)的兩條線段長(zhǎng)的積相等

幾何語言:∵pBA、pDC是⊙O的割線

∴pT2=pA·pB(切割線定理推論)。

第三篇:著名定理證明(初中)

24.著名定理證明(14分)(該題有六個(gè)小題,須選做兩個(gè),全對(duì)才給分,每個(gè)七分,多做滿分也是14分)

(1)試證明海倫公式:S三角形=√p(p-a)(p-b)(p-c),(p=三角形周長(zhǎng)的一半)

(2)試證明角平分線定理:如圖:若AD平分∠BAC,證明:

AB*CD=AC*BD

(3)證明射影定理:如圖:在RT三角形EGF中,HG⊥EF,EG⊥FG

ⅰ:證明:HG2=EH*HF

ⅱ:證明:FG2=HF*EF

ⅲ:證明:EG2=EH*EF

(4)證明:S圓錐=sh/3(s=底面積,h=高)(提示,將圓錐等分為無限個(gè)“圓片”)

(5)證明:2π=sin(360/∞)*∞(提示,作圓內(nèi)接正n邊形)

(6)證明:中線定理:

如圖,AI是三角形ABC中線,證明:

25、三角形是一個(gè)神奇的圖形,如三角形有五心(旁心、重心、內(nèi)心、外心、垂心),在三角形中有許多重要定理,如:勾股定理、余弦定理??,三角形有許多重要公式,如:海倫公式??,在三角形中還有許多重要的點(diǎn),如:費(fèi)馬點(diǎn)、歐拉點(diǎn)??

但今天,我們來研究一個(gè)多點(diǎn)共圓的問題:

首先,要證明多點(diǎn)共圓,只能從四點(diǎn)共圓入手,因此我現(xiàn)在這里提出一個(gè)證明四點(diǎn)共圓的方法:

證明:在任意凸四邊形中,連接對(duì)角線,若同邊所對(duì)的角相等,則這四點(diǎn)共圓,請(qǐng)以下圖為例證明:如圖,∠CBD=∠CAD(4分)

(2)如圖,在任意等腰三角形中(頂角小于90度),證明:三垂線垂足、及三個(gè)歐拉點(diǎn)共圓(歐拉點(diǎn):三角形三垂線交于一點(diǎn)為垂心,垂心與三頂點(diǎn)的連線的三條線段的中點(diǎn)即為歐拉點(diǎn))(10分):以下圖為例證明:

如圖,AB=AC,CH、AD、BM是等腰三角形ABC的高,P為垂心,O、N、G是三個(gè)歐拉點(diǎn)

第四篇:初中平面幾何重要定理匯總

初中平面幾何重要定理匯總

1、勾股定理(畢達(dá)哥拉斯定理)(直角三角形的兩直角邊分別是a、b,斜邊是c;則a*a+b*b=c*c)

2、射影定理(歐幾里得定理)(直角三角形中,斜邊上的高是兩直角邊在斜邊上射影的比例中項(xiàng)。每一條直角邊是這條直角邊在斜邊上的射影和斜邊的比例中項(xiàng)。公式Rt△ABC中,∠BAC=90°,AD是斜邊BC上的高,則有射影定理如下:(1)(AD)^2;=BD·DC,(2)(AB)^2;=BD·BC ,(3)(AC)^2;=CD·BC。等積式(4)ABXAC=BCXAD(可用面積來證明))

3、三角形的三條中線交于一點(diǎn),并且,各中線被這個(gè)點(diǎn)分成2:1的兩部分

4、四邊形兩邊中心的連線的兩條對(duì)角線中心的連線交于一點(diǎn)

5、間隔的連接六邊形的邊的中心所作出的兩個(gè)三角形的重心是重合的。

6、三角形各邊的垂直一平分線交于一點(diǎn)。

7、三角形的三條高線交于一點(diǎn)

8、設(shè)三角形ABC的外心為O,垂心為H,從O向BC邊引垂線,設(shè)垂足為L(zhǎng),則AH=2OL

9、三角形的外心,垂心,重心在同一條直線(歐拉線)上。

10、(九點(diǎn)圓或歐拉圓或費(fèi)爾巴赫?qǐng)A)三角形中,三邊中心、從各頂點(diǎn)向其對(duì)邊所引垂線的垂足,以及垂心與各頂點(diǎn)連線的中點(diǎn),這九個(gè)點(diǎn)在同一個(gè)圓上,11、歐拉定理:三角形的外心、重心、九點(diǎn)圓圓心、垂心依次位于同一直線(歐拉線)上

12、庫立奇*大上定理:(圓內(nèi)接四邊形的九點(diǎn)圓)

圓周上有四點(diǎn),過其中任三點(diǎn)作三角形,這四個(gè)三角形的九點(diǎn)圓圓心都在同一圓周上,我們把過這四個(gè)九點(diǎn)圓圓心的圓叫做圓內(nèi)接四邊形的九點(diǎn)圓。

13、(內(nèi)心)三角形的三條內(nèi)角平分線交于一點(diǎn),內(nèi)切圓的半徑公式:r=(s-a)(s-b)(s-c)s,s為三角形周長(zhǎng)的一半

14、(旁心)三角形的一個(gè)內(nèi)角平分線和另外兩個(gè)頂點(diǎn)處的外角平分線交于一點(diǎn)

15、中線定理:(巴布斯定理)設(shè)三角形ABC的邊BC的中點(diǎn)為P,則有AB2+AC2=2(AP2+BP2)

16、斯圖爾特定理:P將三角形ABC的邊BC內(nèi)分成m:n,則有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2

17、波羅摩及多定理:圓內(nèi)接四邊形ABCD的對(duì)角線互相垂直時(shí),連接AB中點(diǎn)M和對(duì)角線交點(diǎn)E的直線垂直于CD

18、阿波羅尼斯定理:到兩定點(diǎn)A、B的距離之比為定比m:n(值不為1)的點(diǎn)P,位于將線段AB分成m:n的內(nèi)分點(diǎn)C和外分點(diǎn)D為直徑兩端點(diǎn)的定圓周上

19、托勒密定理:設(shè)四邊形ABCD內(nèi)接于圓,則有AB×CD+AD×BC=AC×BD

20、以任意三角形ABC的邊BC、CA、AB為底邊,分別向外作底角都是30度的等腰△BDC、△CEA、△AFB,則△DEF是正三角形,21、愛爾可斯定理1:若△ABC和△DEF都是正三角形,則由線段AD、BE、CF的中心構(gòu)成的三角形也是正三角形。

22、愛爾可斯定理2:若△ABC、△DEF、△GHI都是正三角形,則由三角形△ADG、△BEH、△CFI的重心構(gòu)成的三角形是正三角形。

23、梅涅勞斯定理:設(shè)△ABC的三邊BC、CA、AB或其延長(zhǎng)線和一條不經(jīng)過它們?nèi)我豁旤c(diǎn)的直線的交點(diǎn)分別為P、Q、R則有BPPC×CQQA×ARRB=1

24、梅涅勞斯定理的逆定理:(略)

25、梅涅勞斯定理的應(yīng)用定理1:設(shè)△ABC的∠A的外角平分線交邊CA于Q、∠C的平分線交邊AB于R,、∠B的平分線交邊CA于Q,則P、Q、R三點(diǎn)共線。

26、梅涅勞斯定理的應(yīng)用定理2:過任意△ABC的三個(gè)頂點(diǎn)A、B、C作它的外接圓的切線,分別和BC、CA、AB的延長(zhǎng)線交于點(diǎn)P、Q、R,則P、Q、R三點(diǎn)共線

27、塞瓦定理:設(shè)△ABC的三個(gè)頂點(diǎn)A、B、C的不在三角形的邊或它們的延長(zhǎng)線上的一點(diǎn)S連接面成的三條直線,分別與邊BC、CA、AB或它們的延長(zhǎng)線交于點(diǎn)P、Q、R,則BPPC×CQQA×ARRB()=1.28、塞瓦定理的應(yīng)用定理:設(shè)平行于△ABC的邊BC的直線與兩邊AB、AC的交點(diǎn)分別是D、E,又設(shè)BE和CD交于S,則AS一定過邊BC的中心M

29、塞瓦定理的逆定理:(略)

30、塞瓦定理的逆定理的應(yīng)用定理1:三角形的三條中線交于一點(diǎn)

31、塞瓦定理的逆定理的應(yīng)用定理2:設(shè)△ABC的內(nèi)切圓和邊BC、CA、AB分別相切于點(diǎn)R、S、T,則AR、BS、CT交于一點(diǎn)。

32、西摩松定理:從△ABC的外接圓上任意一點(diǎn)P向三邊BC、CA、AB或其延長(zhǎng)線作垂線,設(shè)其垂足分別是D、E、R,則D、E、R共線,(這條直線叫西摩松線)

33、西摩松定理的逆定理:(略)

34、史坦納定理:設(shè)△ABC的垂心為H,其外接圓的任意點(diǎn)P,這時(shí)關(guān)于△ABC的點(diǎn)P的西摩松線通過線段PH的中心。

35、史坦納定理的應(yīng)用定理:△ABC的外接圓上的一點(diǎn)P的關(guān)于邊BC、CA、AB的對(duì)稱點(diǎn)和△ABC的垂心H同在一條(與西摩松線平行的)直線上。這條直線被叫做點(diǎn)P關(guān)于△ABC的鏡象線。

36、波朗杰、騰下定理:設(shè)△ABC的外接圓上的三點(diǎn)為P、Q、R,則P、Q、R關(guān)于△ABC交于一點(diǎn)的充要條件是:弧AP+弧BQ+弧CR=0(mod2∏).37、波朗杰、騰下定理推論1:設(shè)P、Q、R為△ABC的外接圓上的三點(diǎn),若P、Q、R關(guān)于△ABC的西摩松線交于一點(diǎn),則A、B、C三點(diǎn)關(guān)于△PQR的的西摩松線交于與前相同的一點(diǎn)

38、波朗杰、騰下定理推論2:在推論1中,三條西摩松線的交點(diǎn)是A、B、C、P、Q、R六點(diǎn)任取三點(diǎn)所作的三角形的垂心和其余三點(diǎn)所作的三角形的垂心的連線段的中點(diǎn)。

39、波朗杰、騰下定理推論3:考查△ABC的外接圓上的一點(diǎn)P的關(guān)于△ABC的西摩松線,如設(shè)QR為垂直于這條西摩松線該外接圓珠筆的弦,則三點(diǎn)P、Q、R的關(guān)于△ABC的西摩松線交于一點(diǎn)

40、波朗杰、騰下定理推論4:從△ABC的頂點(diǎn)向邊BC、CA、AB引垂線,設(shè)垂足分別是D、E、F,且設(shè)邊BC、CA、AB的中點(diǎn)分別是L、M、N,則D、E、F、L、M、N六點(diǎn)在同一個(gè)圓上,這時(shí)L、M、N點(diǎn)關(guān)于關(guān)于△ABC的西摩松線交于一點(diǎn)。

41、關(guān)于西摩松線的定理1:△ABC的外接圓的兩個(gè)端點(diǎn)P、Q關(guān)于該三角形的西摩松線互相垂直,其交點(diǎn)在九點(diǎn)圓上。

42、關(guān)于西摩松線的定理2(安寧定理):在一個(gè)圓周上有4點(diǎn),以其中任三點(diǎn)作三角形,再作其余一點(diǎn)的關(guān)于該三角形的西摩松線,這些西摩松線交于一點(diǎn)。

43、卡諾定理:通過△ABC的外接圓的一點(diǎn)P,引與△ABC的三邊BC、CA、AB分別成同向的等角的直線PD、PE、PF,與三邊的交點(diǎn)分別是D、E、F,則D、E、F三點(diǎn)共線。

44、奧倍爾定理:通過△ABC的三個(gè)頂點(diǎn)引互相平行的三條直線,設(shè)它們與△ABC的外接圓的交點(diǎn)分別是L、M、N,在△ABC的外接圓取一點(diǎn)P,則PL、PM、PN與△ABC的三邊BC、CA、AB或其延長(zhǎng)線的交點(diǎn)分別是D、E、F,則D、E、F三點(diǎn)共線

45、清宮定理:設(shè)P、Q為△ABC的外接圓的異于A、B、C的兩點(diǎn),P點(diǎn)的關(guān)于三邊BC、CA、AB的對(duì)稱點(diǎn)分別是U、V、W,這時(shí),QU、QV、QW和邊BC、CA、AB或其延長(zhǎng)線的交點(diǎn)分別是D、E、F,則D、E、F三點(diǎn)共線

46、他拿定理:設(shè)P、Q為關(guān)于△ABC的外接圓的一對(duì)反點(diǎn),點(diǎn)P的關(guān)于三邊BC、CA、AB的對(duì)稱點(diǎn)分別是U、V、W,這時(shí),如果QU、QV、QW與邊BC、CA、AB或其延長(zhǎng)線的交點(diǎn)分別為ED、E、F,則D、E、F三點(diǎn)共線。(反點(diǎn):P、Q分別為圓O的半徑OC和其延長(zhǎng)線的兩點(diǎn),如果OC2=OQ×OP 則稱P、Q兩點(diǎn)關(guān)于圓O互為反點(diǎn))

47、朗古來定理:在同一圓同上有A1B1C1D14點(diǎn),以其中任三點(diǎn)作三角形,在圓周取一點(diǎn)P,作P點(diǎn)的關(guān)于這4個(gè)三角形的西摩松線,再從P向這4條西摩松線引垂線,則四個(gè)垂足在同一條直線上。

48、九點(diǎn)圓定理:三角形三邊的中點(diǎn),三高的垂足和三個(gè)歐拉點(diǎn)[連結(jié)三角形各頂點(diǎn)與垂心所得三線段的中點(diǎn)]九點(diǎn)共圓[通常稱這個(gè)圓為九點(diǎn)圓[nine-point circle],或歐拉圓,費(fèi)爾巴哈圓.49、一個(gè)圓周上有n個(gè)點(diǎn),從其中任意n-1個(gè)點(diǎn)的重心,向該圓周的在其余一點(diǎn)處的切線所引的垂線都交于一點(diǎn)。

50、康托爾定理1:一個(gè)圓周上有n個(gè)點(diǎn),從其中任意n-2個(gè)點(diǎn)的重心向余下兩點(diǎn)的連線所引的垂線共點(diǎn)。

51、康托爾定理2:一個(gè)圓周上有A、B、C、D四點(diǎn)及M、N兩點(diǎn),則M和N點(diǎn)關(guān)于四個(gè)三角形△BCD、△CDA、△DAB、△ABC中的每一個(gè)的兩條西摩松的交點(diǎn)在同一直線上。這條直線叫做M、N兩點(diǎn)關(guān)于四邊形ABCD的康托爾線。

52、康托爾定理3:一個(gè)圓周上有A、B、C、D四點(diǎn)及M、N、L三點(diǎn),則M、N兩點(diǎn)的關(guān)于四邊形ABCD的康托爾線、L、N兩點(diǎn)的關(guān)于四邊形ABCD的康托爾線、M、L兩點(diǎn)的關(guān)于四邊形ABCD的康托爾線交于一點(diǎn)。這個(gè)點(diǎn)叫做M、N、L三點(diǎn)關(guān)于四邊形ABCD的康托爾點(diǎn)。

53、康托爾定理4:一個(gè)圓周上有A、B、C、D、E五點(diǎn)及M、N、L三點(diǎn),則M、N、L三點(diǎn)關(guān)于四邊形BCDE、CDEA、DEAB、EABC中的每一個(gè)康托爾點(diǎn)在一條直線上。這條直線叫做M、N、L三點(diǎn)關(guān)于五邊形A、B、C、D、E的康托爾線。

54、費(fèi)爾巴赫定理:三角形的九點(diǎn)圓與內(nèi)切圓和旁切圓相切。

55、莫利定理:將三角形的三個(gè)內(nèi)角三等分,靠近某邊的兩條三分角線相得到一個(gè)交點(diǎn),則這樣的三個(gè)交點(diǎn)可以構(gòu)成一個(gè)正三角形。這個(gè)三角形常被稱作莫利正三角形。

56、牛頓定理1:四邊形兩條對(duì)邊的延長(zhǎng)線的交點(diǎn)所連線段的中點(diǎn)和兩條對(duì)角線的中點(diǎn),三條共線。這條直線叫做這個(gè)四邊形的牛頓線。

57、牛頓定理2:圓外切四邊形的兩條對(duì)角線的中點(diǎn),及該圓的圓心,三點(diǎn)共線。

58、笛沙格定理1:平面上有兩個(gè)三角形△ABC、△DEF,設(shè)它們的對(duì)應(yīng)頂點(diǎn)(A和D、B和E、C和F)的連線交于一點(diǎn),這時(shí)如果對(duì)應(yīng)邊或其延長(zhǎng)線相交,則這三個(gè)交點(diǎn)共線。

59、笛沙格定理2:相異平面上有兩個(gè)三角形△ABC、△DEF,設(shè)它們的對(duì)應(yīng)頂點(diǎn)(A和D、B和E、C和F)的連線交于一點(diǎn),這時(shí)如果對(duì)應(yīng)邊或其延長(zhǎng)線相交,則這三個(gè)交點(diǎn)共線。

60、布利安松定理:連結(jié)外切于圓的六邊形ABCDEF相對(duì)的頂點(diǎn)A和D、B和E、C和F,則這三線共點(diǎn)。

60、巴斯加定理:圓內(nèi)接六邊形ABCDEF相對(duì)的邊AB和DE、BC和EF、CD和FA的(或延長(zhǎng)線的)交點(diǎn)共線。

第五篇:初中平面幾何的60個(gè)定理

1、勾股定理(畢達(dá)哥拉斯定理)小學(xué)都應(yīng)該掌握的重要定理

2、射影定理(歐幾里得定理)重要

3、三角形的三條中線交于一點(diǎn),并且,各中線被這個(gè)點(diǎn)分成2:1的兩部分

重要

4、四邊形兩邊中心的連線的兩條對(duì)角線中心的連線交于一點(diǎn) 學(xué)習(xí)中位線時(shí)的一個(gè)常見問題,中考不需要,初中競(jìng)賽需要

5、間隔的連接六邊形的邊的中心所作出的兩個(gè)三角形的重心是重合的。

完全沒有意義,學(xué)習(xí)解析幾何后顯然的結(jié)論,不用知道

6、三角形各邊的垂直一平分線交于一點(diǎn)。重要

7、從三角形的各頂點(diǎn)向其對(duì)邊所作的三條垂線交于一點(diǎn) 重要

8、設(shè)三角形ABC的外心為O,垂心為H,從O向BC邊引垂線,設(shè)垂足不L,則AH=2OL 中考不需要,競(jìng)賽中很顯然的結(jié)論

9、三角形的外心,垂心,重心在同一條直線上。

高中競(jìng)賽中非常重要的定理,稱為歐拉線

10、(九點(diǎn)圓或歐拉圓或費(fèi)爾巴赫?qǐng)A)三角形中,三邊中心、從各頂點(diǎn)向其對(duì)邊所引垂線的垂足,以及垂心與各頂點(diǎn)連線的中點(diǎn),這九個(gè)點(diǎn)在同一個(gè)圓上,高中競(jìng)賽中的常用定理

11、歐拉定理:三角形的外心、重心、九點(diǎn)圓圓心、垂心依次位于同一直線(歐拉線)上 高中競(jìng)賽中會(huì)用,不常用

12、庫立奇*大上定理:(圓內(nèi)接四邊形的九點(diǎn)圓)圓周上有四點(diǎn),過其中任三點(diǎn)作三角形,這四個(gè)三角形的九點(diǎn)圓圓心都在同一圓周上,我們把過這四個(gè)九點(diǎn)圓圓心的圓叫做圓內(nèi)接四邊形的九點(diǎn)圓。

高中競(jìng)賽的題目,不用掌握

13、(內(nèi)心)三角形的三條內(nèi)角平分線交于一點(diǎn),內(nèi)切圓的半徑公式:r=(s-a)(s-b)(s-c)ss為三角形周長(zhǎng)的一半

重要

14、(旁心)三角形的一個(gè)內(nèi)角平分線和另外兩個(gè)頂點(diǎn)處的外角平分線交于一點(diǎn)

重要

15、中線定理:(巴布斯定理)設(shè)三角形ABC的邊BC的中點(diǎn)為P,則有AB2+AC2=2(AP2+BP2)初中競(jìng)賽需要,重要

16、斯圖爾特定理:P將三角形ABC的邊BC內(nèi)分成m:n,則有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2 高中競(jìng)賽需要,重要

17、波羅摩及多定理:圓內(nèi)接四邊形ABCD的對(duì)角線互相垂直時(shí),連接AB中點(diǎn)M和對(duì)角線交點(diǎn)E的直線垂直于CD 顯然的結(jié)論,不需要掌握

18、阿波羅尼斯定理:到兩定點(diǎn)A、B的距離之比為定比m:n(值不為1)的點(diǎn)P,位于將線段AB分成m:n的內(nèi)分點(diǎn)C和外分點(diǎn)D為直徑兩端點(diǎn)的定圓周上 高中競(jìng)賽需要,重要

19、托勒密定理:設(shè)四邊形ABCD內(nèi)接于圓,則有AB×CD+AD×BC=AC 初中競(jìng)賽需要,重要

20、以任意三角形ABC的邊BC、CA、AB為底邊,分別向外作底角都是30度的等腰△BDC、△CEA、△AFB,則△DEF是正三角形,學(xué)習(xí)復(fù)數(shù)后是顯然的結(jié)論,不需要掌握

21、愛爾可斯定理1:若△ABC和三角形△都是正三角形,則由線段AD、BE、CF的重心構(gòu)成的三角形也是正三角形。不需要掌握

22、愛爾可斯定理2:若△ABC、△DEF、△GHI都是正三角形,則由三角形△ADG、△BEH、△CFI的重心構(gòu)成的三角形是正三角形。

不需要掌握

23、梅涅勞斯定理:設(shè)△ABC的三邊BC、CA、AB或其延長(zhǎng)線和一條不經(jīng)過它們?nèi)我豁旤c(diǎn)的直線的交點(diǎn)分別為P、Q、R則有 BPPC×CQQA×ARRB=1 初中競(jìng)賽需要,重要

24、梅涅勞斯定理的逆定理:(略)初中競(jìng)賽需要,重要

25、梅涅勞斯定理的應(yīng)用定理1:設(shè)△ABC的∠A的外角平分線交邊CA于Q、∠C的平分線交邊AB于R,、∠B的平分線交邊CA于Q,則P、Q、R三點(diǎn)共線。

不用掌握

26、梅涅勞斯定理的應(yīng)用定理2:過任意△ABC的三個(gè)頂點(diǎn)A、B、C作它的外接圓的切線,分別和BC、CA、AB的延長(zhǎng)線交于點(diǎn)P、Q、R,則P、Q、R三點(diǎn)共線

不用掌握

27、塞瓦定理:設(shè)△ABC的三個(gè)頂點(diǎn)A、B、C的不在三角形的邊或它們的延長(zhǎng)線上的一點(diǎn)S連接面成的三條直線,分別與邊BC、CA、AB或它們的延長(zhǎng)線交于點(diǎn)P、Q、R,則BPPC×CQQA×ARRB()=1.初中競(jìng)賽需要,重要

28、塞瓦定理的應(yīng)用定理:設(shè)平行于△ABC的邊BC的直線與兩邊AB、AC的交點(diǎn)分別是D、E,又設(shè)BE和CD交于S,則AS一定過邊BC的中心M 不用掌握

29、塞瓦定理的逆定理:(略)初中競(jìng)賽需要,重要

30、塞瓦定理的逆定理的應(yīng)用定理1:三角形的三條中線交于一點(diǎn)

這個(gè)定理用塞瓦定理來證明將毫無幾何美感,應(yīng)該用中位線證明才漂亮

31、塞瓦定理的逆定理的應(yīng)用定理2:設(shè)△ABC的內(nèi)切圓和邊BC、CA、AB分別相切于點(diǎn)R、S、T,則AR、BS、CT交于一點(diǎn)。

不用掌握

32、西摩松定理:從△ABC的外接圓上任意一點(diǎn)P向三邊BC、CA、AB或其延長(zhǎng)線作垂線,設(shè)其垂足分別是D、E、R,則D、E、R共線,(這條直線叫西摩松線)初中競(jìng)賽的常用定理

33、西摩松定理的逆定理:(略)初中競(jìng)賽的常用定理

34、史坦納定理:設(shè)△ABC的垂心為H,其外接圓的任意點(diǎn)P,這時(shí)關(guān)于△ABC的點(diǎn)P的西摩松線通過線段PH的中心。

不用掌握

35、史坦納定理的應(yīng)用定理:△ABC的外接圓上的一點(diǎn)P的關(guān)于邊BC、CA、AB的對(duì)稱點(diǎn)和△ABC的垂心H同在一條(與西摩松線平行的)直線上。這條直線被叫做點(diǎn)P關(guān)于△ABC的鏡象線。

不用掌握

36、波朗杰、騰下定理:設(shè)△ABC的外接圓上的三點(diǎn)為P、Q、R,則P、Q、R關(guān)于△ABC交于一點(diǎn)的充要條件是:弧AP+弧BQ+弧CR=0(mod2∏).不用掌握

37、波朗杰、騰下定理推論1:設(shè)P、Q、R為△ABC的外接圓上的三點(diǎn),若P、Q、R關(guān)于△ABC的西摩松線交于一點(diǎn),則A、B、C三點(diǎn)關(guān)于△PQR的的西摩松線交于與前相同的一點(diǎn) 不用掌握

38、波朗杰、騰下定理推論2:在推論1中,三條西摩松線的交點(diǎn)是A、B、C、P、Q、R六點(diǎn)任取三點(diǎn)所作的三角形的垂心和其余三點(diǎn)所作的三角形的垂心的連線段的中點(diǎn)。

不用掌握

39、波朗杰、騰下定理推論3:考查△ABC的外接圓上的一點(diǎn)P的關(guān)于△ABC的西摩松線,如設(shè)QR為垂直于這條西摩松線該外接圓珠筆的弦,則三點(diǎn)P、Q、R的關(guān)于△ABC的西摩松線交于一點(diǎn) 不用掌握

40、波朗杰、騰下定理推論4:從△ABC的頂點(diǎn)向邊BC、CA、AB引垂線,設(shè)垂足分別是D、E、F,且設(shè)邊BC、CA、AB的中點(diǎn)分別是L、M、N,則D、E、F、L、M、N六點(diǎn)在同一個(gè)圓上,這時(shí)L、M、N點(diǎn)關(guān)于關(guān)于△ABC的西摩松線交于一點(diǎn)。

不用掌握

41、關(guān)于西摩松線的定理1:△ABC的外接圓的兩個(gè)端點(diǎn)P、Q關(guān)于該三角形的西摩松線互相垂直,其交點(diǎn)在九點(diǎn)圓上。不用掌握

42、關(guān)于西摩松線的定理2(安寧定理):在一個(gè)圓周上有4點(diǎn),以其中任三點(diǎn)作三角形,再作其余一點(diǎn)的關(guān)于該三角形的西摩松線,這些西摩松線交于一點(diǎn)。

不用掌握

43、卡諾定理:通過△ABC的外接圓的一點(diǎn)P,引與△ABC的三邊BC、CA、AB分別成同向的等角的直線PD、PE、PF,與三邊的交點(diǎn)分別是D、E、F,則D、E、F三點(diǎn)共線。

不用掌握

44、奧倍爾定理:通過△ABC的三個(gè)頂點(diǎn)引互相平行的三條直線,設(shè)它們與△ABC的外接圓的交點(diǎn)分別是L、M、N,在△ABC的外接圓取一點(diǎn)P,則PL、PM、PN與△ABC的三邊BC、CA、AB或其延長(zhǎng)線的交點(diǎn)分別是D、E、F,則D、E、F三點(diǎn)共線

不用掌握

45、清宮定理:設(shè)P、Q為△ABC的外接圓的異于A、B、C的兩點(diǎn),P點(diǎn)的關(guān)于三邊BC、CA、AB的對(duì)稱點(diǎn)分別是U、V、W,這時(shí),QU、QV、QW和邊BC、CA、AB或其延長(zhǎng)線的交點(diǎn)分別是D、E、F,則D、E、F三點(diǎn)共線

不用掌握

46、他拿定理:設(shè)P、Q為關(guān)于△ABC的外接圓的一對(duì)反點(diǎn),點(diǎn)P的關(guān)于三邊BC、CA、AB的對(duì)稱點(diǎn)分別是U、V、W,這時(shí),如果QU、QV、QW與邊BC、CA、AB或其延長(zhǎng)線的交點(diǎn)分別為ED、E、F,則D、E、F三點(diǎn)共線。(反點(diǎn):P、Q分別為圓O的半徑OC和其延長(zhǎng)線的兩點(diǎn),如果OC2=OQ×OP 則稱P、Q兩點(diǎn)關(guān)于圓O互為反點(diǎn))不用掌握

47、朗古來定理:在同一圓同上有A1B1C1D14點(diǎn),以其中任三點(diǎn)作三角形,在圓周取一點(diǎn)P,作P點(diǎn)的關(guān)于這4個(gè)三角形的西摩松線,再從P向這4條西摩松線引垂線,則四個(gè)垂足在同一條直線上。

不用掌握

48、九點(diǎn)圓定理:三角形三邊的中點(diǎn),三高的垂足和三個(gè)歐拉點(diǎn)[連結(jié)三角形各頂點(diǎn)與垂心所得三線段的中點(diǎn)]九點(diǎn)共圓[通常稱這個(gè)圓為九點(diǎn)圓[nine-point circle],或歐拉圓,費(fèi)爾巴哈圓.上面已經(jīng)有了

49、一個(gè)圓周上有n個(gè)點(diǎn),從其中任意n-1個(gè)點(diǎn)的重心,向該圓周的在其余一點(diǎn)處的切線所引的垂線都交于一點(diǎn)。

不用掌握

50、康托爾定理1:一個(gè)圓周上有n個(gè)點(diǎn),從其中任意n-2個(gè)點(diǎn)的重心向余下兩點(diǎn)的連線所引的垂線共點(diǎn)。

不用掌握

51、康托爾定理2:一個(gè)圓周上有A、B、C、D四點(diǎn)及M、N兩點(diǎn),則M和N點(diǎn)關(guān)于四個(gè)三角形△BCD、△CDA、△DAB、△ABC中的每一個(gè)的兩條西摩松的交點(diǎn)在同一直線上。這條直線叫做M、N兩點(diǎn)關(guān)于四邊形ABCD的康托爾線。不用掌握

52、康托爾定理3:一個(gè)圓周上有A、B、C、D四點(diǎn)及M、N、L三點(diǎn),則M、N兩點(diǎn)的關(guān)于四邊形ABCD的康托爾線、L、N兩點(diǎn)的關(guān)于四邊形ABCD的康托爾線、M、L兩點(diǎn)的關(guān)于四邊形ABCD的康托爾線交于一點(diǎn)。這個(gè)點(diǎn)叫做M、N、L三點(diǎn)關(guān)于四邊形ABCD的康托爾點(diǎn)。

不用掌握

53、康托爾定理4:一個(gè)圓周上有A、B、C、D、E五點(diǎn)及M、N、L三點(diǎn),則M、N、L三點(diǎn)關(guān)于四邊形BCDE、CDEA、DEAB、EABC中的每一個(gè)康托爾點(diǎn)在一條直線上。這條直線叫做M、N、L三點(diǎn)關(guān)于五邊形A、B、C、D、E的康托爾線。

不用掌握

54、費(fèi)爾巴赫定理:三角形的九點(diǎn)圓與內(nèi)切圓和旁切圓相切。

不用掌握

55、莫利定理:將三角形的三個(gè)內(nèi)角三等分,靠近某邊的兩條三分角線相得到一個(gè)交點(diǎn),則這樣的三個(gè)交點(diǎn)可以構(gòu)成一個(gè)正三角形。這個(gè)三角形常被稱作莫利正三角形。

這是我認(rèn)為的平面幾何中最漂亮最神奇的幾個(gè)定理之一,但不用掌握

56、牛頓定理1:四邊形兩條對(duì)邊的延長(zhǎng)線的交點(diǎn)所連線段的中點(diǎn)和兩條對(duì)角線的中點(diǎn),三條共線。這條直線叫做這個(gè)四邊形的牛頓線。

高中競(jìng)賽中常用

57、牛頓定理2:圓外切四邊形的兩條對(duì)角線的中點(diǎn),及該圓的圓心,三點(diǎn)共線。

不用掌握

58、笛沙格定理1:平面上有兩個(gè)三角形△ABC、△DEF,設(shè)它們的對(duì)應(yīng)頂點(diǎn)(A和D、B和E、C和F)的連線交于一點(diǎn),這時(shí)如果對(duì)應(yīng)邊或其延長(zhǎng)線相交,則這三個(gè)交點(diǎn)共線。

高中競(jìng)賽中偶爾會(huì)用

59、笛沙格定理2:相異平面上有兩個(gè)三角形△ABC、△DEF,設(shè)它們的對(duì)應(yīng)頂點(diǎn)(A和D、B和E、C和F)的連線交于一點(diǎn),這時(shí)如果對(duì)應(yīng)邊或其延長(zhǎng)線相交,則這三個(gè)交點(diǎn)共線。60、布利安松定理:連結(jié)外切于圓的六邊形ABCDEF相對(duì)的頂點(diǎn)A和D、B和E、C和F,則這三線共點(diǎn)。

高中競(jìng)賽中偶爾會(huì)用

60、巴斯加定理:圓內(nèi)接六邊形ABCDEF相對(duì)的邊AB和DE、BC和EF、CD和FA的(或延長(zhǎng)線的)交點(diǎn)共線。高中競(jìng)賽中重要,一般稱做帕斯卡定理,而且是圓錐曲線內(nèi)接六邊形。

下載初中定理word格式文檔
下載初中定理.doc
將本文檔下載到自己電腦,方便修改和收藏,請(qǐng)勿使用迅雷等下載。
點(diǎn)此處下載文檔

文檔為doc格式


聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會(huì)在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

相關(guān)范文推薦

    初中數(shù)學(xué)幾何定理集錦

    初中數(shù)學(xué)幾何定理集錦 1。同角(或等角)的余角相等。 3。對(duì)頂角相等。 5。三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角之和。 6。在同一平面內(nèi)垂直于同一條直線的兩條直線是平行......

    初中物理100條定理總結(jié)

    初中物理100條定理總結(jié) [電學(xué)]: 1.電荷的定向移動(dòng)形成電流(金屬導(dǎo)體里自由電子定向移動(dòng)的方向與電流方向相反),規(guī)定正電荷的定向移動(dòng)方向?yàn)殡娏鞣较颉?、電流表不能直接與電源......

    初中數(shù)學(xué)常用定理(精選5篇)

    1圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合 2圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合 3圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合 4同圓或等圓的半徑相等 5到定點(diǎn)......

    北師大版初中數(shù)學(xué)證明定理

    公理 兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行(同位角相等,兩直線平行)定理 兩條直線被第三條直線所截,如果同旁內(nèi)角互補(bǔ),那么這兩條直線平行(同旁內(nèi)角互補(bǔ),兩直......

    初中-考場(chǎng)作文定理及素材

    考場(chǎng)作文定理 開頭切入要快捷, 中間講述一故事; 篇末點(diǎn)題重呼應(yīng), 優(yōu)美語句置首尾; 修辭描寫勤使用, 多分幾段卷清晰。可置于首尾或過渡的排比式議論句:(愛心)是冬日里的一縷陽光,驅(qū)散......

    初中數(shù)學(xué)之韋達(dá)定理

    初中數(shù)學(xué)之韋達(dá)定理 韋達(dá)定理:對(duì)于一元二次方程ax2?bx?c?0(a?0),如果方程有兩個(gè)實(shí)數(shù)根 bcx1,x2,那么x1?x2??,x1x2? aa 說明:定理成立的條件??01.不解方程寫出下列方程的兩根和與兩根差 (1)x2......

    初中數(shù)學(xué)相關(guān)定理[范文大全]

    1,三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180° 2, 推論1直角三角形的兩個(gè)銳角互余 3, 推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和 4,推論3三角形的一個(gè)外角大于......

    初中數(shù)學(xué)幾何公式、定理(二)

    初中數(shù)學(xué)幾何公式、定理匯編(二) 21 全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等 22邊角邊公理(SAS) 有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等 23 角邊角公理( ASA)有兩角和它們的......

主站蜘蛛池模板: 久久综合色之久久综合| 一本色道久久88加勒比—综合| 婷婷五月婷婷五月| 大屁股国产白浆一二区| 亚洲色成人网站www永久下载| 欧美老妇牲交videos| 国产超碰人人爽人人做| 综合自拍亚洲综合图区高清| 亚洲国产老鸭窝一区二区三区| 亚洲一区激情校园小说| 亚洲国产美女精品久久久| 妺妺窝人体色www在线下载| 国产精品人妻在线观看| 亚洲一本大道av久在线播放| 精品欧美一区二区三区久久久| 越南女子杂交内射bbwxz| 欧美色欧美亚洲高清在线观看| 国产精品成人午夜久久| 东北老女人高潮大喊舒服死了| 色翁荡息又大又硬又粗又爽| 国产热a欧美热a在线视频| 99久久精品午夜一区二区| 亚洲欧洲国产成人综合在线观看| 国产人妇三级视频在线观看| 国内精品自产拍在线观看| 亚洲精品国男人在线视频| 婷婷国产天堂久久综合亚洲| 极品少妇一区二区三区四区| 亚欧乱色熟女一区二区三区| 国产69精品久久久久999小说| 四虎影视在线影院在线观看免费视频| 国产精品无码永久免费888| 肥老熟妇伦子伦456视频| 18分钟处破好疼哭视频在线观看| 国产福利萌白酱在线观看视频| 97久久精品人妻人人搡人人玩| 一本久道综合在线中文无码| 中国精品少妇hd| 热99re久久精品天堂| 午夜福到在线a国产4 视频| 97一期涩涩97片久久久久久久|