教學(xué)目標(biāo)
(1)掌握由一點(diǎn)和斜率導(dǎo)出直線方程的方法,掌握直線方程的點(diǎn)斜式、兩點(diǎn)式和直線方程的一般式,并能根據(jù)條件熟練地求出直線的方程.
(2)理解直線方程幾種形式之間的內(nèi)在聯(lián)系,能在整體上把握直線的方程.
(3)掌握直線方程各種形式之間的互化.
(4)通過(guò)直線方程一般式的教學(xué)培養(yǎng)學(xué)生全面、系統(tǒng)、周密地分析、討論問(wèn)題的能力.
(5)通過(guò)直線方程特殊式與一般式轉(zhuǎn)化的教學(xué),培養(yǎng)學(xué)生靈活的思維品質(zhì)和辯證唯物主義觀點(diǎn).
(6)進(jìn)一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法.
教學(xué)建議1.教材分析
(1)知識(shí)結(jié)構(gòu)
由直線方程的概念和直線斜率的概念導(dǎo)出直線方程的點(diǎn)斜式;由直線方程的點(diǎn)斜式分別導(dǎo)出直線方程的斜截式和兩點(diǎn)式;再由兩點(diǎn)式導(dǎo)出截距式;最后都可以轉(zhuǎn)化歸結(jié)為直線的一般式;同時(shí)一般式也可以轉(zhuǎn)化成特殊式.
(2)重點(diǎn)、難點(diǎn)分析
①本節(jié)的重點(diǎn)是直線方程的點(diǎn)斜式、兩點(diǎn)式、一般式,以及根據(jù)具體條件求出直線的方程.
解析幾何有兩項(xiàng)根本性的任務(wù):一個(gè)是求曲線的方程;另一個(gè)就是用方程研究曲線.本節(jié)內(nèi)容就是求直線的方程,因此是非常重要的內(nèi)容,它對(duì)以后學(xué)習(xí)用方程討論直線起著直接的作用,同時(shí)也對(duì)曲線方程的學(xué)習(xí)起著重要的作用.
直線的點(diǎn)斜式方程是平面解析幾何中所求出的第一個(gè)方程,是后面幾種特殊形式的源頭.學(xué)生對(duì)點(diǎn)斜式學(xué)習(xí)的效果將直接影響后繼知識(shí)的學(xué)習(xí).
②本節(jié)的難點(diǎn)是直線方程特殊形式的限制條件,直線方程的整體結(jié)構(gòu),直線與二元一次方程的關(guān)系證明.
2.教法建議
(1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強(qiáng);一般形式的方程無(wú)任何限制,但幾何特征不明顯.教學(xué)中各部分知識(shí)之間過(guò)渡要自然流暢,不生硬.
(2)直線方程的一般式反映了直線方程各種形式之間的統(tǒng)一性,教學(xué)中應(yīng)充分揭示直線方程本質(zhì)屬性,建立二元一次方程與直線的對(duì)應(yīng)關(guān)系,為繼續(xù)學(xué)習(xí)“曲線方程”打下基礎(chǔ).
直線一般式方程都是字母系數(shù),在揭示這一概念深刻內(nèi)涵時(shí),還需要進(jìn)行正反兩方面的分析論證.教學(xué)中應(yīng)重點(diǎn)分析思路,還應(yīng)抓住這一有利時(shí)使學(xué)生學(xué)會(huì)嚴(yán)謹(jǐn)科學(xué)的分類討論方法,從而培養(yǎng)學(xué)生全面、系統(tǒng)、辯證、周密地分析、討論問(wèn)題的能力,特別是培養(yǎng)學(xué)生邏輯思維能力,同時(shí)培養(yǎng)學(xué)生辯證唯物主義觀點(diǎn)
(3)在強(qiáng)調(diào)幾種形式互化時(shí)要向?qū)W生充分揭示各種形式的特點(diǎn),它們的幾何特征,參數(shù)的意義等,使學(xué)生明白為什么要轉(zhuǎn)化,并加深對(duì)各種形式的理解.
(4)教學(xué)中要使學(xué)生明白兩個(gè)獨(dú)立條件確定一條直線,如兩個(gè)點(diǎn)、一個(gè)點(diǎn)和一個(gè)方向或其他兩個(gè)獨(dú)立條件.兩點(diǎn)確定一條直線,這是學(xué)生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點(diǎn)式和點(diǎn)斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點(diǎn)可以求得斜率,所以點(diǎn)斜式又可推出兩點(diǎn)式(斜截式和截距式僅是它們的特例),因此點(diǎn)斜式最重要.教學(xué)中應(yīng)突出點(diǎn)斜式、兩點(diǎn)式和一般式三個(gè)教學(xué)高潮.
求直線方程需要兩個(gè)獨(dú)立的條件,要依不同的幾何條件選用不同形式的方程.根據(jù)兩個(gè)條件運(yùn)用待定系數(shù)法和方程思想求直線方程.
(5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標(biāo)軸交點(diǎn)的相應(yīng)坐標(biāo),它是有向線段的數(shù)量,因而是一個(gè)實(shí)數(shù);距離是線段的長(zhǎng)度,是一個(gè)正實(shí)數(shù)(或非負(fù)實(shí)數(shù)).
(6)本節(jié)中有不少與函數(shù)、不等式、三角函數(shù)有關(guān)的問(wèn)題,是函數(shù)、不等式、三角與直線的重要知識(shí)交匯點(diǎn)之一,教學(xué)中要適當(dāng)選擇一些有關(guān)的問(wèn)題指導(dǎo)學(xué)生練習(xí),培養(yǎng)學(xué)生的綜合能力.
(7)直線方程的理論在其他學(xué)科和生產(chǎn)生活實(shí)際中有大量的應(yīng)用.教學(xué)中注意聯(lián)系實(shí)際和其它學(xué)科,教師要注意引導(dǎo),增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí)和能力.
(8)本節(jié)不少內(nèi)容可安排學(xué)生自學(xué)和討論,還要適當(dāng)增加練習(xí),使學(xué)生能更好地掌握,而不是僅停留在觀念上.
教學(xué)設(shè)計(jì)示例
直線方程的一般形式教學(xué)目標(biāo):
(1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.
(2)理解直線與二元一次方程的關(guān)系及其證明
(3)培養(yǎng)學(xué)生抽象概括能力、分類討論能力、逆向思維的習(xí)慣和形成特殊與一般辯證統(tǒng)一的觀點(diǎn).
高二直線方程數(shù)學(xué)說(shuō)課稿教學(xué)重點(diǎn)、難點(diǎn):直線方程的一般式.直線與二元一次方程(、不同時(shí)為0)的對(duì)應(yīng)關(guān)系及其證明.
教學(xué)用具:計(jì)算機(jī)
教學(xué)方法:?jiǎn)l(fā)引導(dǎo)法,討論法
教學(xué)過(guò)程:
下面給出教學(xué)實(shí)施過(guò)程設(shè)計(jì)的簡(jiǎn)要思路:
教學(xué)設(shè)計(jì)思路:
(一)引入的設(shè)計(jì)
前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問(wèn)題:
問(wèn):說(shuō)出過(guò)點(diǎn)(2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次.
肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一個(gè)問(wèn)題:
問(wèn):求出過(guò)點(diǎn),的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是(或其它形式),也屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次.
肯定學(xué)生回答后強(qiáng)調(diào)“也是二元一次方程,都是因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次”.
啟發(fā):你在想什么(或你想到了什么)?誰(shuí)來(lái)談?wù)?各小組可以討論討論.
學(xué)生紛紛談出自己的想法,教師邊評(píng)價(jià)邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識(shí)統(tǒng)一到如下問(wèn)題:
【問(wèn)題1】“任意直線的方程都是二元一次方程嗎?”
(二)本節(jié)主體內(nèi)容教學(xué)的設(shè)計(jì)
這是本節(jié)課要解決的第一個(gè)問(wèn)題,如何解決?自己先研究研究,也可以小組研究,確定解決問(wèn)題的思路.
學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo).
經(jīng)過(guò)一定時(shí)間的研究,教師組織開展集體討論.首先讓學(xué)生陳述解決思路或解決方案:
思路一:…
思路二:…
……
教師組織評(píng)價(jià),確定最優(yōu)方案(其它待課下研究)如下:
按斜率是否存在,任意直線的位置有兩種可能,即斜率存在或不存在.
當(dāng)存在時(shí),直線
的截距也一定存在,直線的方程可表示為,它是二元一次方程.
當(dāng)不存在時(shí),直線的方程可表示為形式的方程,它是二元一次方程嗎?
學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時(shí)教師引導(dǎo)學(xué)生,逐步認(rèn)識(shí)到把它看成二元一次方程的合理性:
平面直角坐標(biāo)系中直線上點(diǎn)的坐標(biāo)形式,與其它直線上點(diǎn)的坐標(biāo)形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的
綜合兩種情況,我們得出如下結(jié)論:
在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的關(guān)于、的二元一次方程.至此,我們的問(wèn)題1就解決了.簡(jiǎn)單點(diǎn)說(shuō)就是:直線方程都是二元一次方程.而且這個(gè)方程一定可以表示成或的形式,準(zhǔn)確地說(shuō)應(yīng)該是“要么形如這樣,要
么形如這樣的方程”.同學(xué)們注意:這樣表達(dá)起來(lái)是不是很啰嗦,能不能有一個(gè)更好的表達(dá)?
學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式.
這樣上邊的結(jié)論可以表述如下:
在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的形如(其中、不同時(shí)為0)的二元一次方程.
啟發(fā):任何一條直線都有這種形式的方程.你是否覺(jué)得還有什么與之相關(guān)的問(wèn)題呢?
【問(wèn)題2】任何形如(其中、不同時(shí)為0)的二元一次方程都表示一條直線嗎?
不難看出上邊的結(jié)論只是直線與方程相互關(guān)系的一個(gè)方面,這個(gè)問(wèn)題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認(rèn)真地研究,得到明確的結(jié)論.那么如何研究呢?
師生共同討論,評(píng)價(jià)不同思路,達(dá)成共識(shí):
回顧上邊解決問(wèn)題的思路,發(fā)現(xiàn)原路返回就是非常好的思路,即方程(其中、不同時(shí)為0)系數(shù)是否為0恰好對(duì)應(yīng)斜率是否存在,即
(1)當(dāng)時(shí),方程可化為這是表示斜率為、在軸上的截距為的直線.
(2)當(dāng)時(shí),由于、不同時(shí)為0,必有,方程可化為
這表示一條與軸垂直的直線.因此,得到結(jié)論:在平面直角坐標(biāo)系中,任何形如(其中、不同時(shí)為0)的二元一次方程都表示一條直線.為方便,我們把(其中、不同時(shí)為0)稱作直線方程的一般式是合理的【動(dòng)畫演示】
演示“直線各參數(shù).gsp”文件,體會(huì)任何二元一次方程都表示一條直線.
至此,我們的第二個(gè)問(wèn)題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個(gè)問(wèn)題其實(shí)是一個(gè)大問(wèn)題的兩個(gè)方面,這個(gè)大問(wèn)題揭示了直線與二元一次方程的對(duì)應(yīng)關(guān)系,同時(shí),直線方程的一般形式是對(duì)直線特殊形式的抽象和概括,而且抽象的層次越高越簡(jiǎn)潔,我們還體會(huì)到了特殊與一般的轉(zhuǎn)化關(guān)系.
(三)練習(xí)鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設(shè)計(jì)在此從略
3eud教育網(wǎng)
http://www.3edu.net 50多萬(wàn)教學(xué)資源,完全免費(fèi),無(wú)須注冊(cè),天天更新!
直線的方程(1)
【教學(xué)目標(biāo)】1.掌握由一點(diǎn)和斜率導(dǎo)出直線方程的方法,掌握直線的點(diǎn)斜式方程,了解直線方程的斜截式是點(diǎn)斜式的特例;
2.能通過(guò)待定系數(shù)(直線上的一個(gè)點(diǎn)的坐標(biāo)(x1,y1)及斜率k,或者直線的斜率k及在y軸上的截距b)求直線方程; 3.掌握斜率不存在時(shí)的直線方程,即x?x1.
【教學(xué)重點(diǎn)】直線的點(diǎn)斜式、斜截式方程的推導(dǎo)及運(yùn)用.【教學(xué)難點(diǎn)】直線的點(diǎn)斜式的推導(dǎo)。【教學(xué)過(guò)程】
(一)復(fù)習(xí):(1)直線的傾斜角和斜率的概念;
(2)直線上兩個(gè)不同點(diǎn)(x1,y1),(x2,y2),x1?x2,求此直線的斜率k.
(二)新課講解: 1.點(diǎn)斜式
問(wèn)題引入:已知直線l經(jīng)過(guò)點(diǎn)P1(x1,y1),且斜率為k,求直線l的方程.設(shè)點(diǎn)P(x,y)是直線l不同于點(diǎn)P1(x1,y1)的任意一點(diǎn),根據(jù)直線的斜率公式,得:k?y?y1x?x1,可化為y?y1?k(x?x1).
可以驗(yàn)證:直線l上每一個(gè)點(diǎn)的坐標(biāo)都是方程的解,以方程的解為坐標(biāo)的點(diǎn)都在直線l上.這個(gè)方程就是過(guò)點(diǎn)P1,斜率為k的直線l的方程,叫做直線方程的點(diǎn)斜式.
2.兩種特殊的直線方程
(1)直線l經(jīng)過(guò)點(diǎn)P1(x1,y1)的傾斜角為0?,則k?tan0??0,直線l的方程是y?y1;(2)直線l經(jīng)過(guò)點(diǎn)P1(x1,y1)的傾斜角為90,則斜率不存在,因?yàn)橹本€l上每一點(diǎn)的橫坐標(biāo)都等于x1,直線l的方程是x?x1.
此時(shí)不能使用直線方程的點(diǎn)斜式求它的方程,這時(shí)直線l的方程是x?x1。3.問(wèn):k?y?y1x?x1?與y?y1?k(x?x1)表示同一直線嗎?.
(三)例題分析:
例1.一條直線經(jīng)過(guò)點(diǎn)P1(?2,3),傾斜角為??45,求這條直線方程,并畫出圖形。
解:∵直線經(jīng)過(guò)點(diǎn)P1(?2,3),且斜率k?tan45?1,代入點(diǎn)斜式,得:y?3?x?2,即x?y?5?0.
x?y?5?0
??y
?5 O x
例2.直線l斜率為k,與y軸的交點(diǎn)是P(0,b),求直線l的方程。
3eud教育網(wǎng) http://www.3edu.net 教學(xué)資源集散地。可能是最大的免費(fèi)教育資源網(wǎng)!3eud教育網(wǎng)
http://www.3edu.net 50多萬(wàn)教學(xué)資源,完全免費(fèi),無(wú)須注冊(cè),天天更新!
解:代入直線的點(diǎn)斜式,得:y?b?k(x?0),即y?kx?b.
說(shuō)明:(1)直線l與x軸交點(diǎn)(a,0),與y軸交點(diǎn)(0,b),稱a為直線l在x軸上的截距,稱b為直線l在y軸上的截距;
(2)這個(gè)方程由直線l斜率k和它在y軸上的截距b確定,叫做直線方程的斜截式;
(3)初中學(xué)習(xí)的一次函數(shù)y?kx?b中,常數(shù)k是直線的斜率,常數(shù)b為直線在y軸上的截距(b可以大于0,也可以等于或小于0).
例3.已知直線l經(jīng)過(guò)點(diǎn)P(2,1),且傾斜角等于直線y?2x?1的傾斜角的2倍,求直線l的方程.
解:設(shè)已知直線的傾斜角為?,則直線l的傾斜角為2?,2tan?4 ∵tan??2,∴k?tan2??,??21?tan?3又∵直線l經(jīng)過(guò)點(diǎn)P(2,1),∴直線l的方程為y?1??(x?2),3即所求的直線方程為4x?3y?11?0. 4例4.求直線y??3(x?2)繞點(diǎn)(2,0)按順時(shí)針?lè)较蛐D(zhuǎn)30?所得的直線方程。
解:設(shè)直線y??3(x?2)的傾斜角為?,則tan???3,又∵??[0?,180?),∴??120?,∴所求的直線的傾斜角為120??30??90?,所以,所求的直線方程為x?2.
例5:已知直線過(guò)點(diǎn)P(-2,3),且與兩坐標(biāo)軸圍成的三角形面積為4,求直線的方程。
分析:關(guān)鍵是求斜率k.解:因?yàn)橹本€與x軸不垂直,所以可設(shè)直線的方程為y-3=k(x+2)令x=0得y=2k+3;令y=0得x=?12(|2k?3)(?3k3k3k?2 ?由題意得:
?2)|?4,?2)?8,無(wú)解;若(2k?3)(?3k?2)??8,解得:k??12,k??92若(2k?3)(?
?所求直線的方程為y?3??12(x?2)和y?3??92(x?2)
即x?2y?4?0和9x?2y?12?0規(guī)律:已知直線過(guò)一個(gè)點(diǎn)常選用直線方程的點(diǎn)斜式。
(四).課堂練習(xí):1.課本第39頁(yè)練習(xí)1,2,3;
? 2.求直線y?x?cot??1,??(,?)的傾斜角; 3.求過(guò)點(diǎn)(2,1)且傾斜角?滿足sin??
45的直線方程.3eud教育網(wǎng) http://www.3edu.net 教學(xué)資源集散地。可能是最大的免費(fèi)教育資源網(wǎng)!3eud教育網(wǎng)
http://www.3edu.net 50多萬(wàn)教學(xué)資源,完全免費(fèi),無(wú)須注冊(cè),天天更新!
(五).小結(jié):要求直線方程,通過(guò)待定系數(shù):直線上的一個(gè)點(diǎn)的坐標(biāo)(x1,y1)及斜率k,或者直線的斜
率k及在y軸上的截距b,代入點(diǎn)斜式或斜截式求出直線方程.(六).作業(yè):課本第44頁(yè)第1題(1)(3)(5)
3eud教育網(wǎng) http://www.3edu.net 教學(xué)資源集散地。可能是最大的免費(fèi)教育資源網(wǎng)!