第一篇:2012年高考真題——文科數(shù)學(xué)(解析版)15:推理與證明
2012高考試題分類匯編:15:推理和證明
1.【2012高考全國(guó)文12】正方形ABCD的邊長(zhǎng)為1,點(diǎn)E在邊AB上,點(diǎn)F在邊BC上,1AE?BF?。動(dòng)點(diǎn)P從E出發(fā)沿直線向F運(yùn)動(dòng),每當(dāng)碰到正方形的邊時(shí)反彈,反彈時(shí)反射
3角等于入射角,當(dāng)點(diǎn)P第一次碰到E時(shí),P與正方形的邊碰撞的次數(shù)為
(A)8(B)6(C)4(D)3
【答案】B
【解析】結(jié)合已知中的點(diǎn)E,F的位置,進(jìn)行作圖,推理可知,在反射的過程中,直線是平行的,那么利用平行關(guān)系,作圖,可以得到回到EA點(diǎn)時(shí),需要碰撞6次即可.2.【2012高考上海文18】若Sn?sin
中,正數(shù)的個(gè)數(shù)是()
A、16B、72C、86D、100
【答案】C
【解析】由題意可知,S13?S14=S27?S28=S41?S42=…=S97?S98=0,共14個(gè),其余均為正數(shù),故共有100-14=86個(gè)正數(shù)。
3.【2012高考江西文5】觀察下列事實(shí)|x|+|y|=1的不同整數(shù)解(x,y)的個(gè)數(shù)為4,|x|+|y|=2的不同整數(shù)解(x,y)的個(gè)數(shù)為8,|x|+|y|=3的不同整數(shù)解(x,y)的個(gè)數(shù)為12 ….則|x|+|y|=20的不同整數(shù)解(x,y)的個(gè)數(shù)為
A.76B.80C.86D.92
【答案】B
【解析】個(gè)數(shù)為首項(xiàng)為4,公差為4的等差數(shù)列,所以an?4?4(n?1)?4n,a20?80,選
B.4.【2012高考陜西文12】觀察下列不等式 ?7?sin2?n???...?sin(n?N),則在S1,S2,...,S10077
1?13? 222
1?115??,22333
11151?2?2?2? 2343
……
照此規(guī)律,第五個(gè)不等式為....
【答案】1?
【解析】通過觀察易知第五個(gè)不等式為1?
5.【2012高考湖南文1111111?2?2?2?2?.22345661111111?????.2232425262616】對(duì)于
0n?N?,將n表示為?11n?ak?2k?ak?1?k2???a??2a?1?k時(shí)ai?1,,當(dāng)i2當(dāng)0?i?k?1時(shí)ai為0或1,定義bn如下:在n的上述表示中,當(dāng)a0,a1,a2,…,ak中等于1的個(gè)數(shù)為奇數(shù)時(shí),bn=1;否則bn=0.(1)b2+b4+b6+b8=__;
(2)記cm為數(shù)列{bn}中第m個(gè)為0的項(xiàng)與第m+1個(gè)為0的項(xiàng)之間的項(xiàng)數(shù),則cm的最大值是___.【答案】(1)3;(2)2.【解析】(1)觀察知1?a0?20,a0?1,b1?1;2?1?21?0?20,a1?1,a0?0,b2?1; 一次類推3?1?21?1?20,b3?0;4?1?22?0?21?0?20,b4?1;
5?1?22?0?21?1?20,b5?0;6?1?22?1?21?0?20,b6?0,b7?1,b8?1,b2+b4+b6+b8=3;(2)由(1)知cm的最大值為2.【點(diǎn)評(píng)】本題考查在新環(huán)境下的創(chuàng)新意識(shí),考查運(yùn)算能力,考查創(chuàng)造性解決問題的能力.需要在學(xué)習(xí)中培養(yǎng)自己動(dòng)腦的習(xí)慣,才可順利解決此類問題.6.【2012高考湖北文17】傳說古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家經(jīng)常在沙灘上面畫點(diǎn)或用小石子表示數(shù)。他們研究過如圖所示的三角形數(shù):
將三角形數(shù)1,3,6,10,…記為數(shù)列{an},將可被5整除的三角形數(shù)按從小到大的順序組成一個(gè)新數(shù)列{bn},可以推測(cè):
(Ⅰ)b2012是數(shù)列{an}中的第______項(xiàng);
(Ⅱ)b2k-1=______。(用k表示)
5k?5k?1? 【答案】(Ⅰ)5030;(Ⅱ)2
【解析】由以上規(guī)律可知三角形數(shù)1,3,6,10,…,的一個(gè)通項(xiàng)公式為an?n(n?1),寫出其若干2
項(xiàng)有:1,3,6,10,15,21,28,36,45,55,66,78,91,105,110,發(fā)現(xiàn)其中能被5整除的為10,15,45,55,105,110,故b1?a4,b2?a5,b3?a9,b4?a10,b5?a14,b6?a15.從而由上述規(guī)律可猜想:b2k?a5k?5k(5k?1)(k為正整數(shù)),2
(5k?1)(5k?1?1)5k(5k?1)b2k?1?a5k?1??,22
故b2012?a2?1006?a5?1006?a5030,即b2012是數(shù)列{an}中的第5030項(xiàng).【點(diǎn)評(píng)】本題考查歸納推理,猜想的能力.歸納推理題型重在猜想,不一定要證明,但猜想需要有一定的經(jīng)驗(yàn)與能力,不能憑空猜想.來年需注意類比推理以及創(chuàng)新性問題的考查.7.【2102高考北京文20】(本小題共13分)
記ri(A)為A的第i行各數(shù)之和(i=1,2),Cj(A)為第j列各數(shù)之和(j=1,2,3);記k(A)為|r1(A)|, |r2(A)|, |c1(A)|,|c2(A)|,|c3(A)|中的最小值。
對(duì)如下數(shù)表A,求k(A)的值
設(shè)數(shù)表A形如
其中-1≤d≤0,求k(A)的最大值;
(Ⅲ)對(duì)所有滿足性質(zhì)P的2行3列的數(shù)表A,求k(A)的最大值。
【答案】
8.【2102高考福建文20】20.(本小題滿分13分)
某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù)。
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-sin2(-18°)cos248°
(5)sin2(-25°)+cos255°-sin2(-25°)cos255°
Ⅰ 試從上述五個(gè)式子中選擇一個(gè),求出這個(gè)常數(shù)
Ⅱ 根據(jù)(Ⅰ)的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣位三角恒等式,并證明你的結(jié)論。
【答案
】
第二篇:2012年高考真題文科數(shù)學(xué)解析分類15:推理與證明1
2012高考文科試題解析分類匯編:推理和證明
1.【2012高考全國(guó)文12】正方形ABCD的邊長(zhǎng)為1,點(diǎn)E在邊AB上,點(diǎn)F在邊BC上,AE?BF?
13。動(dòng)點(diǎn)P從E出發(fā)沿直線向F運(yùn)動(dòng),每當(dāng)碰到正方形的邊時(shí)反彈,反彈時(shí)反
射角等于入射角,當(dāng)點(diǎn)P第一次碰到E時(shí),P與正方形的邊碰撞的次數(shù)為
(A)8(B)6(C)4(D)
3【答案】B
【命題意圖】本試題主要考查了反射原理與三角形相似知識(shí)的運(yùn)用。通過相似三角形,來確定反射后的點(diǎn)的落的位置,結(jié)合圖像分析反射的次數(shù)即可。
【解析】解:結(jié)合已知中的點(diǎn)E,F的位置,進(jìn)行作圖,推理可知,在反射的過程中,直線是平行的,那么利用平行關(guān)系,作圖,可以得到回到EA點(diǎn)時(shí),需要碰撞8次即可。
?2?n??...?sin2.【2012高考上海文18】若Sn?sin?sinn?N?),則在S1,S2,...,S100777
中,正數(shù)的個(gè)數(shù)是()
A、16B、72C、86D、100
【答案】C
【解析】依據(jù)正弦函數(shù)的周期性,可以找其中等于零或者小于零的項(xiàng).【點(diǎn)評(píng)】本題主要考查正弦函數(shù)的圖象和性質(zhì)和間接法解題.解決此類問題需要找到規(guī)律,從題目出發(fā)可以看出來相鄰的14項(xiàng)的和為0,這就是規(guī)律,考查綜合分析問題和解決問題的能力.3.【2012高考江西文5】觀察下列事實(shí)|x|+|y|=1的不同整數(shù)解(x,y)的個(gè)數(shù)為4,|x|+|y|=2的不同整數(shù)解(x,y)的個(gè)數(shù)為8,|x|+|y|=3的不同整數(shù)解(x,y)的個(gè)數(shù)為12 ….則|x|+|y|=20的不同整數(shù)解(x,y)的個(gè)數(shù)為
A.76B.80C.86D.92
【答案】B
【解析】本題主要為數(shù)列的應(yīng)用題,觀察可得不同整數(shù)解的個(gè)數(shù)可以構(gòu)成一個(gè)首先為4,公差為4的等差數(shù)列,則所求為第20項(xiàng),可計(jì)算得結(jié)果.4.【2012高考陜西文12】觀察下列不等式
1?
1?121
22??321
?532,?5
31?1
22?132?142
……
照此規(guī)律,第五個(gè)不等式為....
【答案】1?
?
?
?
?
?
116
.【解析】觀察不等式的左邊發(fā)現(xiàn),第n個(gè)不等式的左邊=1?1?1???
2?n?1??1n?1
?n?1?,右邊=5.【2012
k,所以第五個(gè)不等式為1?
?
?
?2
?
?
?
116
. 表示為
高考湖南文
k?1
16】對(duì)于
n?N,將n
n?ak?2?ak?1?2???a1?2?a0?2,當(dāng)i?k時(shí)ai?1,當(dāng)0?i?k?1時(shí)ai為0
或1,定義bn如下:在n的上述表示中,當(dāng)a0,a1,a2,…,ak中等于1的個(gè)數(shù)為奇數(shù)時(shí),bn=1;否則bn=0.(1)b2+b4+b6+b8=__;
(2)記cm為數(shù)列{bn}中第m個(gè)為0的項(xiàng)與第m+1個(gè)為0的項(xiàng)之間的項(xiàng)數(shù),則cm的最大值是___.【答案】(1)3;(2)2.010【解析】(1)觀察知1?a0?2,a0?1,b1?1;2?1?2?0?2,a1?1,a0?0,b2?1;
10210
一次類推3?1?2?1?2,b3?0;4?1?2?0?2?0?2,b4?1;
5?1?2?0?2?1?2,b5?0;6?1?2?1?2?0?2,b6?0,b7?1,b8?1,210210
b2+b4+b6+b8=3;(2)由(1)知cm的最大值為2.【點(diǎn)評(píng)】本題考查在新環(huán)境下的創(chuàng)新意識(shí),考查運(yùn)算能力,考查創(chuàng)造性解決問題的能力.需要在學(xué)習(xí)中培養(yǎng)自己動(dòng)腦的習(xí)慣,才可順利解決此類問題.6.【2012高考湖北文17】傳說古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家經(jīng)常在沙灘上面畫點(diǎn)或用小石子表示數(shù)。他們研究過如圖所示的三角形數(shù):
將三角形數(shù)1,3,6,10,…記為數(shù)列{an},將可被5整除的三角形數(shù)按從小到大的順序組成一個(gè)新數(shù)列{bn},可以推測(cè):
(Ⅰ)b2012是數(shù)列{an}中的第______項(xiàng);(Ⅱ)b2k-1=______。(用k表示)【答案】(Ⅰ)5030;(Ⅱ)
5k?5k?1?
n(n?1)2
【解析】由以上規(guī)律可知三角形數(shù)1,3,6,10,…,的一個(gè)通項(xiàng)公式為an?,寫出其若
干項(xiàng)有:1,3,6,10,15,21,28,36,45,55,66,78,91,105,110,發(fā)現(xiàn)其中能被5整除的為10,15,45,55,105,110,故b1?a4,b2?a5,b3?a9,b4?a10,b5?a14,b6?a15.從而由上述規(guī)律可猜想:b2k?a5k?
b2k?1?a5k?1?
(5k?1)(5k?1?1)
?
5k(5k?1)
(k為正整數(shù)),5k(5k?1),故b2012?a2?1006?a5?1006?a5030,即b2012是數(shù)列{an}中的第5030項(xiàng).【點(diǎn)評(píng)】本題考查歸納推理,猜想的能力.歸納推理題型重在猜想,不一定要證明,但猜想需要有一定的經(jīng)驗(yàn)與能力,不能憑空猜想.來年需注意類比推理以及創(chuàng)新性問題的考查.7.【2102高考北京文20】(本小題共13分)設(shè)A是如下形式的2行3列的數(shù)表,滿足性質(zhì)P:a,b,c,d,e,f∈[-1,1],且a+b+c+d+e+f=0.記ri(A)為A的第i行各數(shù)之和(i=1,2),Cj(A)為第j列各數(shù)之和(j=1,2,3);記k(A)為|r1(A)|, |r2(A)|, |c1(A)|,|c2(A)|,|c3(A)|中的最小值。對(duì)如下數(shù)表A,求k(A)的值
設(shè)數(shù)表A形如
其中-1≤d≤0,求k(A)的最大值;
(Ⅲ)對(duì)所有滿足性質(zhì)P的2行3列的數(shù)表A,求k(A)的最大值。
【考點(diǎn)定位】此題作為壓軸題難度較大,考查學(xué)生分析問題解決問題的能力,考查學(xué)生嚴(yán)謹(jǐn)?shù)倪壿嬎季S能力。
(1)因?yàn)閞1(A)=1.2,r2(A)??1.2,c1(A)?1.1,c2(A)?0.7,c3(A)??1.8,所以
k(A)?0.7
(2)r1(A)?1?2d,r2(A)??1?2d,c1(A)?c2(A)?1?d,c3(A)??2?2d.因?yàn)?1?d?0,所以|r1(A)|=|r2(A)|?d?0,|c3(A)|?d?0.所以k(A)?1?d?1.當(dāng)d?0時(shí),k(A)取得最大值1.(3
任意改變A的行次序或列次序,或把A中的每個(gè)數(shù)換成它的相反數(shù),所得數(shù)表A*仍滿足性
*
質(zhì)P,并且k(A)?k(A),因此,不妨設(shè)r1(A)?0,c1(A)?0,c2(A)?0,由k(A)的定義
知
3k,?1(A
k(?
A)(A?
r(?)c
A)?(A,k?,(A?)
c
從)
?(A
c而?)
a
(A
(?)kb)?r1
?(a?b?c?d?e?f)?(a?b?f)?a?b?f?3
因此k(A)?1,由(2)知,存在滿足性質(zhì)P的數(shù)表A,使k(A)?1,故k(A)的最大值為1。
8.【2102高考福建文20】20.(本小題滿分13分)
某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù)。(1)sin213°+cos217°-sin13°cos17°(2)sin215°+cos215°-sin15°cos15°(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-sin2(-18°)cos248°(5)sin2(-25°)+cos255°-sin2(-25°)cos255° Ⅰ 試從上述五個(gè)式子中選擇一個(gè),求出這個(gè)常數(shù)
Ⅱ 根據(jù)(Ⅰ)的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣位三角恒等式,并證明你的結(jié)論。
考點(diǎn):三角恒等變換。難度:中。
分析:本題考查的知識(shí)點(diǎn)恒等變換公式的轉(zhuǎn)換及其應(yīng)用。解答:
(I)選擇(2):sin15?cos15?sin15cos15?1?
sin30?
(II)三角恒等式為:sin??cos(30??)?sin?cos(30??)?
sin??cos(30??)?sin?cos(30??)
?sin2???34sin??
234
??cos??
sin?)?sin?2
??
sin?)
第三篇:2007-2013年廣東省高考真題《推理與證明》文科
傾心教學(xué)2007年文科2007-2013年廣東省高考真題《推理與證明》文科
第10題.圖3是某汽車維修公司的維修點(diǎn)環(huán)形分布圖公司在年初分配給A、B、C、D四個(gè)維修點(diǎn)某種配件各50件.在使用前發(fā)現(xiàn)需將A、B、C、D四個(gè)維修點(diǎn)的這批配件分別調(diào)整為40、45、54、61件,但調(diào)整只能在相鄰維修點(diǎn)之間進(jìn)行.那么要完成上述調(diào)整,最少的調(diào)動(dòng)件次(n件配件從一個(gè)維修點(diǎn)調(diào)整到相鄰維修點(diǎn)的調(diào)動(dòng)件次為n)為()
A.18B.17
C.16D.15
【答案】C
2008年文科
2009年文科
第10題.廣州2010年亞運(yùn)會(huì)火炬?zhèn)鬟f在A,B,C,D,E五個(gè)城市之間進(jìn)行,各城市之間的路線距離(單位:百公里)見右表.若以A為起點(diǎn),E為終點(diǎn),每個(gè)城市經(jīng)過且只經(jīng)過一次,那么火炬?zhèn)鬟f的最短路線距離是()
A.20.6B.21C.22D.23
【答案】B,由題意知,所有可能路線有6種:
①A?B?C?D?E,②A?B?D?C?E,③A?C?B?D?E,④A?C?D?B?E,⑤A?D?B?C?E,⑥A?D?C?B?E,其中,路線③A?C?B?D?E的距離最短,最短路線距離等于4?9?6?2?21.
第10題.在集合{a,b,c,d}上定義兩種運(yùn)算?和?如下:
那么d?(a?c)?()
A.a(chǎn)B.bC.cD.d
【答案】A
2011年文科
第10題.設(shè)f(x),g(x),h(x)是R上的任意實(shí)值函數(shù).如下定義兩個(gè)函數(shù)?f?g??x?和?f?g??x?;對(duì)任意x?R,?f?g??x??f?g(x)?;?f?g??x??f?x?g(x).則下列等式恒成立的是()
A.??f?g??h??x????f?h???g?h??(x)B.??f?g??h??x????f?h???g?h??(x)C.??f?g??h??x????f?h???g?h??(x)D.??f?g??h??x????f?h???g?h??(x)
【答案】B,由題知?f?g??x?表示兩個(gè)函數(shù)復(fù)合,?f?g??x?表示兩個(gè)函數(shù)相乘,故
對(duì)A:左=??f?g??h??x?=f(g(x))h(x),右=??f?h???g?h??(x)=(f(x)h(x))?(g(x)h(x))=(f(g(x)h(x))h(g(x)h(x))),顯然不等,對(duì)B:左=((f?g)?h)(x)=f(h(x))g(h(x)),右=((f?h)?(g?h))(x)=(f?h)(x)(g?h)(x)=f(h(x))g(h(x)),顯然正確,對(duì)C:左=((f?g)?h)(x)=f(g(h(x))),右=((f?h)?(g?h))(x)=f(h(g(h(x)))),顯然不等,對(duì)D:左=((f?g)?h)(x)=f(x)g(x)h(x),右=((f?h)?(g?h))(x)=f(x)g(x)h(x),顯然不等.
??????第10題.對(duì)任意兩個(gè)非零的平面向量?和?,定義????;若兩個(gè)非零的平面向量a,b滿足,a???
??????????n與b的夾角??(,),且a?b,b?a都在集合?n?Z}中,則a?b?()42?2
(A)1??(B)1(C)(D)2?
【答案】A
2013年文科
?
第四篇:2012年高考真題文科數(shù)學(xué)15:推理與證明
2012高考試題分類匯編:推理和證明
1.【2012高考全國(guó)文12】正方形ABCD的邊長(zhǎng)為1,點(diǎn)E在邊AB上,點(diǎn)F在邊BC上,1AE?BF?。動(dòng)點(diǎn)P從E出發(fā)沿直線向F運(yùn)動(dòng),每當(dāng)碰到正方形的邊時(shí)反彈,反彈時(shí)反射
3角等于入射角,當(dāng)點(diǎn)P第一次碰到E時(shí),P與正方形的邊碰撞的次數(shù)為
(A)8(B)6(C)4(D)3
【答案】B
2.【2012高考上海文18】若Sn?sin
中,正數(shù)的個(gè)數(shù)是()
A、16B、72C、86D、100
【答案】C
3.【2012高考江西文5】觀察下列事實(shí)|x|+|y|=1的不同整數(shù)解(x,y)的個(gè)數(shù)為4,|x|+|y|=2的不同整數(shù)解(x,y)的個(gè)數(shù)為8,|x|+|y|=3的不同整數(shù)解(x,y)的個(gè)數(shù)為12 ….則|x|+|y|=20的不同整數(shù)解(x,y)的個(gè)數(shù)為
A.76B.80C.86D.92
【答案】B
4.【2012高考陜西文12】觀察下列不等式 ?7?sin2?n???...?sin(n?N),則在S1,S2,...,S10077
13? 222
1151?2?3?,233
11151?2?2?2? 23431?
……
照此規(guī)律,第五個(gè)不等式為....
【答案】1?1111111?????.22324252626
高考湖南文16】對(duì)于
05.【2012n?N?,將n表示為?11n?ak?2k?ak?1?k2???a??2a?1?k時(shí)ai?1,,當(dāng)i2當(dāng)0?i?k?1時(shí)ai為0或1,定義bn如下:在n的上述表示中,當(dāng)a0,a1,a2,…,ak中等于1的個(gè)數(shù)為奇數(shù)時(shí),bn=1;否則bn=0.-1-
(1)b2+b4+b6+b8=__;
(2)記cm為數(shù)列{bn}中第m個(gè)為0的項(xiàng)與第m+1個(gè)為0的項(xiàng)之間的項(xiàng)數(shù),則cm的最大值是___.【答案】(1)3;(2)2.【點(diǎn)評(píng)】本題考查在新環(huán)境下的創(chuàng)新意識(shí),考查運(yùn)算能力,考查創(chuàng)造性解決問題的能力.需要在學(xué)習(xí)中培養(yǎng)自己動(dòng)腦的習(xí)慣,才可順利解決此類問題.6.【2012高考湖北文17】傳說古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家經(jīng)常在沙灘上面畫點(diǎn)或用小石子表示數(shù)。他們研究過如圖所示的三角形數(shù):
將三角形數(shù)1,3,6,10,…記為數(shù)列{an},將可被5整除的三角形數(shù)按從小到大的順序組成一個(gè)新數(shù)列{bn},可以推測(cè):
(Ⅰ)b2012是數(shù)列{an}中的第______項(xiàng);
(Ⅱ)b2k-1=______。(用k表示)
【答案】(Ⅰ)5030;(Ⅱ)5k?5k?1? 2
7.【2102高考北京文20】(本小題共13分)
滿足性質(zhì)P:a,b,c,d,e,f∈[-1,1],且a+b+c+d+e+f=0.記ri(A)為A的第i行各數(shù)之和(i=1,2),Cj(A)為第j列各數(shù)之和(j=1,2,3);記k(A)為|r1(A)|, |r2(A)|, |c1(A)|,|c2(A)|,|c3(A)|中的最小值。
對(duì)如下數(shù)表A,求k(A)的值
設(shè)數(shù)表A形如
其中-1≤d≤0,求k(A)的最大值;
(Ⅲ)對(duì)所有滿足性質(zhì)P的2行3列的數(shù)表A,求k(A)的最大值。
【答案】
8.【2102高考福建文20】20.(本小題滿分13分)
某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù)。
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-sin2(-18°)cos248°
(5)sin2(-25°)+cos255°-sin2(-25°)cos255°
Ⅰ 試從上述五個(gè)式子中選擇一個(gè),求出這個(gè)常數(shù)
Ⅱ 根據(jù)(Ⅰ)的計(jì)算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣位三角恒等式,并證明你的結(jié)論。
【答案
】
第五篇:數(shù)學(xué)《推理與證明(文科)
!
文科數(shù)學(xué)《推理與證明》練習(xí)題
2013-5-10
1.歸納推理和類比推理的相似之處為()
A、都是從一般到一般B、都是從一般到特殊C、都是從特殊到特殊D、都不一定正確
2.命題“有些有理數(shù)是無限循環(huán)小數(shù),整數(shù)是有理數(shù),所以整數(shù)是無限循環(huán)小數(shù)”是假命題,推理錯(cuò)誤的原因是使用了()
A.歸納推理B.類比推理C. “三段論”,但大前提錯(cuò)誤D.“三段論”,但小前提錯(cuò)誤
3.三角形的面積為S?1?a?b?c??r,a,b,c為三角形的邊長(zhǎng),r為三角形內(nèi)切圓的半徑,利用類比推理,2可得出四面體的體積為()
111abcB、V?ShC、V??S1?S2?S3?S4?r(S1,S2,S3,S4分別為四面體的四33
31個(gè)面的面積,r為四面體內(nèi)切球的半徑)D、V?(ab?bc?ac)h,(h為四面體的高)3A、V?
4.當(dāng)n?1,2,3,4,5,6時(shí),比較2和n的大小并猜想()
n2n2n2n2A.n?1時(shí),2?nB.n?3時(shí),2?nC.n?4時(shí),2?nD.n?5時(shí),2?n n
25.已知數(shù)列?an?的前n項(xiàng)和為Sn,且a1?1,Sn?n2an n?N,試歸納猜想出Sn的表達(dá)式為()*
A、2n2n?12n?12nB、C、D、n?1n?1n?1n?
26.為確保信息安全,信息需加密傳輸,發(fā)送方由明文?密文(加密),接受方由密文?明文(解密),已知加密規(guī)則為:明文a,b,c,d對(duì)應(yīng)密文a?2b,2b?c,2c?3d,4d,例如,明文1,2,3,4對(duì)應(yīng)密文5,7,18,16.當(dāng)接受方收到密文14,9,23,28時(shí),則解密得到的明文為().
A. 4,6,1,7B. 7,6,1,4C. 6,4,1,7D. 1,6,4,7
7.有一段演繹推理是這樣的:“直線平行于平面,則平行于平面內(nèi)所有直線;已知直線b??平面?,直線a?平面?,直線b∥平面?,則直線b∥直線a”的結(jié)論顯然是錯(cuò)誤的,這是因?yàn)?
()
A.大前提錯(cuò)誤B.小前提錯(cuò)誤C.推理形式錯(cuò)誤D.非以上錯(cuò)誤
8.下面使用類比推理恰當(dāng)?shù)氖?①“若a·3=b·3,則a=b”類推出“若a·0=b·0,則a=b”
②“(a+b)c=ac+bc”類推出“a?bab=+” ccc
a?bab=+(c≠0)” ccc
nnn③“(a+b)c=ac+bc”類推出“nnn④“(ab)=ab”類推出“(a+b)=a+b”
9.“?AC,BD是菱形ABCD的對(duì)角線,?AC,BD互相垂直且平分。”補(bǔ)充以上推理的大前提是。
10.由①正方形的對(duì)角線相等;②平行四邊形的對(duì)角線相等;③正方形是平行四邊形,根據(jù) “三段論”推理出一個(gè)結(jié)論,則這個(gè)結(jié)論是。
11.補(bǔ)充下列推理的三段論:
(1)因?yàn)榛橄喾磾?shù)的兩個(gè)數(shù)的和為0,又因?yàn)閍與b互為相反數(shù)且所以b=8.(2)因?yàn)橛忠驗(yàn)閑?2.71828?是無限不循環(huán)小數(shù),所以e是無理數(shù).
12.在平面直角坐標(biāo)系中,直線一般方程為Ax?By?C?0,圓心在(x0,y0)的圓的一般方程為(x?x0)2?(y?y0)2?r2;則類似的,在空間直角坐標(biāo)系中,平面的一般方程為________________,球心在(x0,y0,z0)的球的一般方程為_______________________.13.在平面幾何里,有勾股定理:“設(shè)?ABC的兩邊AB、AC互相垂直,則AB?AC?BC。”拓展到空間,類比平面幾何的勾股定理,研究三棱錐的側(cè)面積與底面積間的關(guān)系,可以得妯的正確結(jié)論是:“設(shè)三棱錐A-BCD的三個(gè)側(cè)面ABC、ACD、ADB兩兩互相垂直,則”.14.從1=1,1?4??(1?2),1?4?9?1?2?3,1?4?9?16??(1?2?3?4)?,概括出第n個(gè)式子為.
15.對(duì)函數(shù)f(n),n?N*,若滿足f(n)??222?n?100??n?3,試由f?10?4,f?10?3和??????ffn?5n?100?
f?99?,f?98?,f?97?和f?96?的值,猜測(cè)f?2??f?31??16.若函數(shù)f(n)?k,其中n?N,k是??3.1415926535......的小數(shù)點(diǎn)后第n位數(shù)字,例
如f(2)?4,則f{f.....f[f(7)]}(共2007個(gè)f)17.設(shè)平面內(nèi)有n條直線(n?3),其中有且僅有兩條直線互相平行,任意三條直線不過同一點(diǎn).若用f(n)表示這n條直線交點(diǎn)的個(gè)數(shù),則f(4)=;當(dāng)n>4時(shí),f(n)=(用n表示).18.蜜蜂被認(rèn)為是自然界中最杰出的建筑師,單個(gè)蜂巢可以近似地看作是一個(gè)正六邊
形,如圖為一組蜂巢的截面圖.其中第一個(gè)圖有1個(gè)蜂巢,第二個(gè)圖有7個(gè)蜂巢,第三個(gè)圖有19個(gè)蜂巢,按此規(guī)律,以f(n)表示第n幅圖的蜂巢總數(shù).則
f(4)=_____;f(n)=_____________.
19.在等差數(shù)列?an?中,若a10?0,則有等式a1?a2?????an?a1?a2?????a19?n(n?19,n?N?)成立,類比上述性質(zhì),相應(yīng)地:在等比數(shù)列?bn?中,若b9?1,則有等式.:
20.某同學(xué)在電腦上打下了一串黑白圓,如圖所示,○○○●●○○○●●○○○?,按這種規(guī)律往下排,那么第36個(gè)圓的顏色應(yīng)是.21.求垂直于直線2x?6y?1?0并且與曲線y?x?3x?5相切的直線方程
32322.已知函數(shù)f(x)?ax?3(a?2)x2?6x?3 2
(1)當(dāng)a?2時(shí),求函數(shù)f(x)極小值;
(2)試討論曲線y?f(x)與x軸公共點(diǎn)的個(gè)數(shù)。
《2.1合情推理與演繹推理》知識(shí)要點(diǎn)梳理
知識(shí)點(diǎn)一:推理的概念根據(jù)一個(gè)或幾個(gè)已知事實(shí)(或假設(shè))得出一個(gè)判斷,這種思維方式叫做推理.從結(jié)構(gòu)上說,推理一般由兩部分組成,一部分是已知的事實(shí)(或假設(shè))叫做前提,一部分是由已知推出的判斷,叫做結(jié)論.
知識(shí)點(diǎn)二:合情推理根據(jù)已有的事實(shí)和正確的結(jié)論(包括定義、公理、定理等)、實(shí)驗(yàn)和實(shí)踐的結(jié)果、個(gè)人的經(jīng)驗(yàn)和直覺等,經(jīng)過觀察、分析、比較、聯(lián)想、歸納、類比等推測(cè)出某些結(jié)果的推理過程。其中歸納推理和類比推理是最常見的合情推理。
1.歸納推理
(1)定義:由某類事物的部分對(duì)象具有某些特征,推出該類事物的全部對(duì)象都具有這些特征的推理,或者由個(gè)別事實(shí)概括出一般結(jié)論的推理,稱為歸納推理(簡(jiǎn)稱歸納)。
(2)一般模式:部分整體,個(gè)體一般
(3)一般步驟:
①通過觀察個(gè)別情況發(fā)現(xiàn)某些相同性質(zhì);
②從已知的相同的性質(zhì)中猜想出一個(gè)明確表述的一般性命題;
③檢驗(yàn)猜想.(4)歸納推理的結(jié)論可真可假
2.類比推理
(1)定義:由兩類對(duì)象具有某些類似特征和其中一類對(duì)象的某些已知特征,推出另一類對(duì)象也具有這些特征的推理稱為類比推理(簡(jiǎn)稱類比).(2)一般模式:特殊特殊
(3)類比的原則:可以從不同的角度選擇類比對(duì)象,但類比的原則是根據(jù)當(dāng)前問題的需要,選擇恰當(dāng)?shù)念惐葘?duì)象.(4)一般步驟:
①找出兩類對(duì)象之間的相似性或一致性;
②用一類對(duì)象的已知特征去推測(cè)另一類對(duì)象的特征,得出一個(gè)明確的命題(猜想);
③檢驗(yàn)猜想.(5)類比推理的結(jié)論可真可假
知識(shí)點(diǎn)三:演繹推理
(1)定義:從一般性的原理出發(fā),按照嚴(yán)格的邏輯法則,推出某個(gè)特殊情況下的結(jié)論的推理,叫做演繹推理.簡(jiǎn)言之,演繹推理是由一般到特殊的推理.
(2)一般模式:“三段論”是演繹推理的一般模式,常用的一種格式
① 大前提——已知的一般原理;
② 小前提——所研究的特殊情況;
③ 結(jié)論——根據(jù)一般原理,對(duì)特殊情況作出的結(jié)論.(3)用集合的觀點(diǎn)理解“三段論”若集合的所有元素都具有性質(zhì),是的子集,那么中所有元素都具有性質(zhì)
(4)演繹推理的結(jié)論一定正確
演繹推理是一個(gè)必然性的推理,因而只要大前提、小前提及推理形式正確,那么結(jié)論一定是正確的,它是完全可靠的推理。
合情推理與演繹推理(文科)答案
1——7.D C C D A C A8.③
9.菱形對(duì)角線互相垂直且平分。10.②③?①。11.(1)a=-8;(2)無限不循環(huán)小數(shù)都是無理數(shù)
12.Ax?By?Cz?D?0;(x?x0)2?(y?y0)2?(z?z0)2?r2;
13.S?BCD?S?ABC?S?ACD?S?ABD;
14.122222?22?32?42???(?1)n?1?n2??(1?2?3???n);
18.【解題思路】找出f(n)?f(n?1)的關(guān)系式 15.97,98;16.1;17.5; n+1)(n-2);
[解析]f(1)?1,f(2)?1?6,f(3)?1?6?12,?f(4)?1?6?12?18?37
?f(n)?1?6?12?18???6(n?1)?3n2?3n?1
【名師指引】處理“遞推型”問題的方法之一是尋找相鄰兩組數(shù)據(jù)的關(guān)系.19.【解析】:在等差數(shù)列?an?中,由a10?0,得a1?a19?a2?a18???an?a20?n
?an?1?a19?n?2a10?0
所以a1?a2???an???a19?0即a1?a2???an??a19?a18???an?1
又?a1??a19,a2??a18,?a19?n??an?1
?a1?a2???an??a19?a18???an?1?a1?a2???a19?n
若a9?0,同理可得a1?a2??an?a1?a2???a17?n
相應(yīng)地等比數(shù)列?bn?中,則可得:b1b2?bn?b1b2?b17?nn?17,n?N*
【點(diǎn)評(píng)】已知性質(zhì)成立的理由是應(yīng)用了“等距和”性質(zhì),故類比等比數(shù)列中,相應(yīng)的“等距積”性質(zhì),即可求解。
20.白色
21.解:設(shè)切點(diǎn)為P(a,b),函數(shù)y?x3?3x2?5的導(dǎo)數(shù)為y'?3x2?6x
切線的斜率k?y'|x?a?3a2?6a??3,得a??1,代入到y(tǒng)?x?3x?5
得b??3,即P(?1,?3),y?3??3(x?1),3x?y?6?0??32
22.解:(1)a2f'(x)?3ax2?3(a?2)x?6?3a(x?)(x?1),f(x)極小值為f(1)?? 2a
2(2)①若a?0,則f(x)??3(x?1),?f(x)的圖像與x軸只有一個(gè)交點(diǎn);
②若a?0,?f(x)極大值為f(1)??a2?0,?f(x)的極小值為f()?0,2a
?f(x)的圖像與x軸有三個(gè)交點(diǎn);
③若0?a?2,f(x)的圖像與x軸只有一個(gè)交點(diǎn);
'2④若a?2,則f(x)?6(x?1)?0,?f(x)的圖像與x軸只有一個(gè)交點(diǎn);
⑤若a?2,由(1)知f(x)的極大值為f()??4(點(diǎn); 2a1323?)??0,?f(x)的圖像與x軸只有一個(gè)交a44
綜上知,若a?0,f(x)的圖像與x軸只有一個(gè)交點(diǎn);若a?0,f(x)的圖像與x軸有三個(gè)交點(diǎn)。