第一篇:相似三角形的應(yīng)用教學(xué)設(shè)計
《相似三角形的應(yīng)用》教學(xué)設(shè)計
無錫市安鎮(zhèn)中學(xué) 汪秋蓮
【教材分析】
(一)教材的地位和作用
《相似三角形的應(yīng)用》選自華東師范大學(xué)出版社義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書中數(shù)學(xué)九年級上冊第二十四章。相似與軸對稱、平移、旋轉(zhuǎn)一樣,也是圖形之間的一種變換,生活中存在大量相似的圖形,讓學(xué)生充分感受到數(shù)學(xué)與現(xiàn)實世界的聯(lián)系。相似三角形的知識是在全等三角形知識的基礎(chǔ)上的拓展和延伸,相似三角形承接全等三角形,從特殊的相等到一般的成比例予以深化。在這之前學(xué)生已經(jīng)學(xué)習(xí)了相似三角形的定義、判定、性質(zhì),這為本節(jié)課問題的探究提供了理論的依據(jù)。本節(jié)內(nèi)容是相似三角形的有關(guān)知識在生產(chǎn)實踐中的廣泛應(yīng)用,通過本節(jié)課的學(xué)習(xí),一方面培養(yǎng)學(xué)生解決實際問題的能力,另一方面增強學(xué)生對數(shù)學(xué)知識的不斷追求。
(二)教學(xué)目標(biāo)
1、。知識與能力:
①了解測量旗桿高度的方法。
②會用相似三角形的知識解決生活實際問題。2.過程與方法:
經(jīng)歷從實際問題到建立數(shù)學(xué)模型的過程,發(fā)展學(xué)生的抽象概括能力。3.情感、態(tài)度與價值觀:
①通過利用相似形知識解決生活實際問題,使學(xué)生體驗數(shù)學(xué)來源于生活,服務(wù)于生活。②通過對問題的探究,培養(yǎng)學(xué)生認(rèn)真踏實的學(xué)習(xí)態(tài)度和科學(xué)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)方法,通過獲得成功的經(jīng)驗和克服困難的經(jīng)歷,增進數(shù)學(xué)學(xué)習(xí)的信心。
(三)教學(xué)重點、難點和關(guān)鍵
重點:利用相似三角形的知識解決實際問題。
難點:運用相似三角形的判定定理構(gòu)造相似三角形解決實際問題。關(guān)鍵:將實際問題轉(zhuǎn)化為數(shù)學(xué)模型,利用所學(xué)的知識來進行解答。【教法與學(xué)法】
(一)教法分析
為了突出教學(xué)重點,突破教學(xué)難點,按照學(xué)生的認(rèn)知規(guī)律和心理特征,在教學(xué)過程中,我采用了以下的教學(xué)方法:
1.采用情境教學(xué)法。整節(jié)課圍繞測量旗桿高度這個問題展開,按照從易到難層層推進。在數(shù)學(xué)教學(xué)中,注重創(chuàng)設(shè)相關(guān)知識的現(xiàn)實問題情景,讓學(xué)生充分感知“數(shù)學(xué)來源于生活又服務(wù)于生活”。
2.貫徹啟發(fā)式教學(xué)原則。教學(xué)的各個環(huán)節(jié)均從提出問題開始,在師生共同分析、討論和探究中展開學(xué)生的思路,把啟發(fā)式思想貫穿與教學(xué)活動的全過程。
3.采用師生合作教學(xué)模式。本節(jié)課采用師生合作教學(xué)模式,以師生之間、生生之間的全員互動關(guān)系為課堂教學(xué)的核心,使學(xué)生共同達到教學(xué)目標(biāo)。教師要當(dāng)好“導(dǎo)演”,讓學(xué)生當(dāng)好“演員”,從充分尊重學(xué)生的潛能和主體地位出發(fā),課堂教學(xué)以教師的“導(dǎo)”為前提,以學(xué)生的“演”為主體,把較多的課堂時間留給學(xué)生,使他們有機會進行獨立思考,相互磋商,并發(fā)表意見。
(二)學(xué)法分析
按照學(xué)生的認(rèn)識規(guī)律,遵循教師為主導(dǎo),學(xué)生為主體的指導(dǎo)思想,在本節(jié)課的學(xué)習(xí)過程中,采用自主探究、合作交流的學(xué)習(xí)方式,讓學(xué)生思考問題、獲取知識、掌握方法,運用所學(xué)知識解決實際問題,啟發(fā)學(xué)生從書本知識到社會實踐,學(xué)以致用,力求促使每個學(xué)生都在原有的基礎(chǔ)上得到有效的發(fā)展。
【教學(xué)過程】
一、知識梳理
1.相似三角形的識別方法:
◆
的兩個三角形相似; ◆
的兩個三角形相似; ◆
的兩個三角形相似。2.相似三角形的性質(zhì):
相似三角形的。
(通過對知識的梳理,幫助學(xué)生形成自己的知識結(jié)構(gòu)體系,為解決問題儲備理論依據(jù)。)
二、情境導(dǎo)入
古希臘,有一位偉大的科學(xué)家塔列斯。一天,希臘國王阿馬西斯對他說:“聽說你什么都知道,那就請你測量一下埃及大金字塔的高度吧!”這在當(dāng)時的條件下是個大難題,因為很難爬到塔頂?shù)?。親愛的同學(xué),你知道塔列斯是怎樣測量大金字塔的高度的嗎?
(數(shù)學(xué)教學(xué)從學(xué)生的生活體驗和客觀存在的事實或現(xiàn)實課題出發(fā),為學(xué)生提供較感興趣的問題情景,幫助學(xué)生順利地進入學(xué)習(xí)情景。同時,問題是知識、能力的生長點,通過富有實際意義的問題能夠激活學(xué)生原有認(rèn)知,促使學(xué)生主動地進行探索和思考。)
三、問題探究
1.如圖,某同學(xué)想測量旗桿的高度,他在某時刻測得1m長的標(biāo)桿豎直放置時影子長為1.5m,同一時刻測得旗桿的影子長為12m,你能幫他求出旗桿的高度嗎?(溫馨提示:太陽光線是平行線)
(通過對這一問題的順利解決,一方面促使學(xué)生經(jīng)歷從實際問題到建立數(shù)學(xué)模型的過程,明確通過運用相似三角形的判定定理構(gòu)造相似三角形和運用相似三角形的性質(zhì)列出比例式求解來解決這類問題;另一方面,讓學(xué)生品嘗解題成功帶來的喜悅,從而提高學(xué)習(xí)數(shù)學(xué)的興趣。)
2.如圖,另一同學(xué)在某時刻測得1m長的標(biāo)桿豎直放置時影子長為1.6m,同一時刻測量旗桿的影子長時,因旗桿靠近一棟樓房,影子不全落在地面,有一部分落在墻上,他測得落在地面上的影子長為 11.2m,留在墻上的影子高為1m。你能幫他求出旗桿的高度嗎?
在學(xué)生求出旗桿的高度以后,教師設(shè)計兩個問題:①能不能把旗桿縮短一點,使它的影子恰好落在地上?②如果把那堵墻拆除,光線照射過來影子落在什么地方?
(通過這一問題的解決,一方面加深學(xué)生對“構(gòu)造相似三角形”的理解和應(yīng)用,另一方面發(fā)散學(xué)生思維,促使他們獲取更多解決問題的方法。同時,及時總結(jié),比較三種方法,將它們歸結(jié)為梯形中添加輔助線的兩大類型:平移對角線和延長兩腰,從而提高學(xué)生的認(rèn)知水平,促使他們獲取更多解決問題的策略。)
四、思維拓展 如果沒有影子,怎樣測量旗桿的高度呢?
1.如圖,第三位同學(xué)與標(biāo)桿頂端F、旗桿頂端在同一直線上,已知此人眼睛距地面1.5米,標(biāo)桿為3米,且BC=3米,CD=10米。求旗桿的高度。
EFADCB(在前面一個題目中,通過教師的引導(dǎo)和點撥,大大激活了學(xué)生的思維,打開了學(xué)生思緒的閘門,通過這一問題的出示,為學(xué)生提供了大展身手的機會。在這里,學(xué)生通過動手實踐,真正領(lǐng)悟“構(gòu)造相似三角形”的精髓,親身體驗數(shù)學(xué)建模的過程,在積極參與的過程中享受探索的樂趣。同時,借助實物投影出示部分學(xué)生的解題方法,這樣,為學(xué)生提供了一個展示成果的平臺,從而將課堂氣氛推向高潮。)
2.如圖,第四位同學(xué)把一小鏡子放在離旗桿(AB)14米的點E處,然后沿著直線BE后退到點B',這時恰好在鏡子里看到旗桿頂端A點。再用皮尺量得B' E=2.8米,觀察者目高A' B' =1.6米。這時的旗桿高度是多少?你能解決這個問題嗎?(溫馨提示:根據(jù)光的反射定律:反射角等于入射角。即∠1= ∠2)
AA'12BEB'(進一步深化相似三角形的基本知識,形成“構(gòu)造相似三角形”的基本技能,并嘗試獨立地寫出完整的解題過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度和良好的學(xué)習(xí)習(xí)慣。)
五、回顧小結(jié)
1.現(xiàn)在你知道塔列斯是怎樣測量大金字塔的高度了嗎?
(前呼后應(yīng),讓學(xué)生解決開頭提出的實際問題。通過學(xué)生的表述,概括出常見的測量旗桿的方法,并且促使學(xué)生體驗數(shù)學(xué)來源于生活又服務(wù)于生活。)
(結(jié)合圖形,教師出示塔列斯測量的方法)
O’OA’B’AB
天氣晴朗時,塔列斯來到大金字塔旁,在沙地上立起一根棍子,在太陽光的照射下,棍子把影子留在了沙地上,當(dāng)棍子和他的影子一般長時,塔列斯就把大金字塔的高度測量出來了。
2.這節(jié)課你有哪些收獲?
(落實教師的引導(dǎo)作用以及學(xué)生的主體地位,既訓(xùn)練學(xué)生的概括歸納能力,又有助于學(xué)生在歸納的過程中把所學(xué)的知識條理化、系統(tǒng)化。)
六、跟蹤練習(xí)
1.(2005·陜西)如圖,身高1.6m的小華站在距路燈桿5m的C處,測得她在燈光下的影長CD為2.5m,則路燈的高度AB為
m.2.(2005·大連)張華同學(xué)的身高為1.6m,某一時刻他在陽光下的影長為2m,與他臨近的一棵樹的影長為6m,則這棵樹的高為()
A.3.2m
B.4.8m
C.5.2m
D.5.6m 3.某數(shù)學(xué)課外實習(xí)小組想利用樹影測量樹高,如圖,他們在同一時刻測得一身高為1.5米的同學(xué)的影子長為1.35,因大樹靠近一棟建筑物,大樹的影子不全在地面上,他們測得地面部分的影子長BC=3.6米,墻上影子高CD=1.8米,求樹高AB。
4.如圖,某測量工作人員與標(biāo)桿頂端F、電視塔頂端在同一直線上,已知此人眼睛距地面1.6米,標(biāo)桿為3.2米,且BC=1米,CD=5米,求電視塔的高ED。
5.小強用這樣的方法來測量學(xué)校教學(xué)樓的高度:如圖,在地面上放一面鏡子(鏡子高度忽略不計),他剛好能從鏡子中看到教學(xué)樓的頂端B,他請同學(xué)協(xié)助量了鏡子與教學(xué)樓的距離EA=21米,以及他與鏡子的距離CE=2.5米,已知他的眼睛距離地面的高度DC=1.6米,請你幫助小強計算出教學(xué)樓的高度。(根據(jù)光的反射定律:反射角等于入射角)
七、綜合延伸
(2006·深圳)如圖,王華晚上由路燈A下的B處走到C處時,測得影子CD?的長為1米,繼續(xù)往前走2米到達E處時,測得影子EF的長為2米,已知王華的身高是1.5米,求路燈A的高度。
(分梯度的練習(xí),既落實雙基又滿足不同層次學(xué)生的需求,照顧了學(xué)生的個體差異,關(guān)注了學(xué)生的個性發(fā)展。同時,練習(xí)的內(nèi)容緊扣教學(xué)要求,目的明確,有針對性;練習(xí)的設(shè)計有層次,有坡度,難易適中。這樣。學(xué)生在解題的過程中既鞏固和深化了所學(xué)知識,形成技能,并且享受了解題成功帶來的喜悅。)
【教學(xué)設(shè)計說明】
相似應(yīng)用最廣泛的是測量學(xué)中的應(yīng)用,在實際測量物體的高度、寬度時,關(guān)鍵是要構(gòu)造和實物所在三角形相似的三角形,而且要能測量已知三角形的各條線段的長,運用相似三角形的性質(zhì)列出比例式求解。鑒于這一點,我設(shè)計整節(jié)課圍繞測量旗桿高度這個問題展開,通過一個個問題的解決,一方面,促使學(xué)生了解測量旗桿高度的方法,從而學(xué)會設(shè)計利用相似三角形解決問題的方案;另一方面,會構(gòu)造與實物相似的三角形,通過對實際問題的分析和解決,讓學(xué)生充分感受到數(shù)學(xué)與現(xiàn)實世界的聯(lián)系,教學(xué)中既發(fā)揮教師的主導(dǎo)作用,又注重凸現(xiàn)學(xué)生的主體地位,“以學(xué)生活動為中心”構(gòu)建課堂教學(xué)的基本框架,以“探究交流為形式”作為課堂教學(xué)的基本模式,以全面發(fā)展學(xué)生的能力作為根本的教學(xué)目標(biāo),最大限度地調(diào)動學(xué)生學(xué)習(xí)的積極性和主動性。
(責(zé)編:姚敬東)
第二篇:相似三角形的應(yīng)用教學(xué)設(shè)計
相似三角形的應(yīng)用
一、知識要點:
(一)相似三角形的應(yīng)用主要有如下兩個方面
1.測高(不能直接使用皮尺或刻度尺度量的);
2.測距(不能直接測量的兩點間的距離)。
(二)測高的方法
測量不能到達頂部的物體的高度,通常使用“在同一時刻物高與影長的比例”的原理解決。
(三)測距的方法
測量不能直接到達的兩點間的距離,常構(gòu)造如下兩種相似三角形求解。
1.如圖甲所示,通常可先測量圖中的“線段”BD、DC、DE的距離(長度),根據(jù)相似三角形的性質(zhì),求出AB的長.2.如圖乙所示,可先測AC、DC及DE的長,再根據(jù)相似三角形的性質(zhì)計算AB的長。
二、例題解析:
例1.如圖,AB、CD相交于點O,且AC∥BD,則OA·OD=OC·OB嗎?為什么?
解:∵AC∥BD
∴∠B=∠A,∠D=∠C
∴△OBD∽△OAC
∴
∴OA·OD=OB·OC 1
因此OA·OD=OC·OB成立.
例2.如圖,物AB與其所成像A′B′平行,孔心O到蠟燭頭A的距離是36cm,到蠟燭頭的像A′的距離是12cm,你知道像長是物長的幾分之幾嗎?你是怎樣知道的?
解:∵AB∥A′B′
∴∠ABO=∠A′B′O
又 ∵ ∠AOB=∠A′OB′
∴△AOB∽△A′OB′
∴
∵AO=36cm,A′O=12cm
∴ 則
答:像長與物長之比為
.
例3.如圖:小明欲測量一座古塔的高度,他站在該塔的影子上前后移動,直到他本身影子的頂端正好與塔的影子的頂端重疊,此時他距離該塔18 m,已知小明的身高是1.6 m,他的影長是2 m.
(1)圖中△ABC與△ADE是否相似?為什么?
(2)求古塔的高度.
解:(1)△ABC∽△ADE.
∵BC⊥AE,DE⊥AE ∴∠ACB=∠AED=90°
∵∠A=∠A ∴△ABC∽△ADE(2)由(1)得△ABC∽△ADE ∴
∵AC=2m,AE=2+18=20m,BC=1.6m ∴
∴DE=16m 答:古塔的高度為16m 例4.如圖,我們想要測量河兩岸相對應(yīng)兩點A、B之間的距離(即河寬),你有什么方法?3
方案1:如上左圖,構(gòu)造全等三角形,測量CD,得到AB=CD,得到河寬。
方案2:如上右圖,先從B點出發(fā)與AB成90°角方向走50m到O處立一標(biāo)桿,然后方向不變,繼續(xù)向前走10m到C處,在C處轉(zhuǎn)90°,沿CD方向再走17m到達D處,使得A、O、D在同一條直線上.那么A、B之間的距離是多少?
解:∵AB⊥BC,CD⊥BC
∴∠ABO=∠DCO=90°
又 ∵ ∠AOB=∠DOC
∴△AOB∽△DOC
∴
∵BO=50m,CO=10m,CD=17m
∴AB=85m
答:河寬為85m.
例5.已知:如圖,陽光通過窗口照射到室內(nèi),在地面上留下1.5m寬的亮區(qū)DE。亮區(qū)一邊 4 到窗下的墻腳距離CE=1.2m,窗口高AB=1.8m,求窗口底邊離地面的高BC?
分析:作EF⊥DC交AD于F。則,利用邊的比例關(guān)系求出BC。
解:作EF⊥DC交AD于F。因為AD∥BE,所以,所以
又因為,所以。因為AB∥EF,AD∥BE,所以四邊形ABEF是平行四邊形,所以EF=AB=1.8m。所以
m。
例6.用一個正方形完全蓋住邊長分別為3厘米、4厘米、5厘米的一個三角形,這個正方形的邊長最小是多少?
分析:設(shè)
則能完全蓋住是直角三角形,其中,EG為斜邊。顯然,邊長為4cm的正方形的正方形ABCD,如圖所三邊EF、FG、GE分別長3cm,4cm,5cm,但不是最小的,可以設(shè)想一個完全蓋住
示,此時正方形的邊長
解:設(shè),則,而
即,于是,整理后可解得:
所以要完全蓋住
三、課后練習(xí): 的最小正方形邊長
1.一位同學(xué)想利用樹影測量樹高,他在某一時刻測得長為1m的竹竿影長0.9m,但當(dāng)他馬上測量樹影時,因樹靠近一幢建筑物,影子不全落在地面上,有一部分影子在墻上,如圖,他先測得留在墻上的影高1.2m,又測得地面部分的影長2.7m,他求得樹高是多少?
2.測量河寬AB,先從A處出發(fā),沿河岸走100步到C處,在C處立一根桿標(biāo),然后沿AC繼續(xù)朝前走20步到D處,在D處,轉(zhuǎn)過90°角沿DE方向再走32步,到達E處,并使河對岸的B處(目標(biāo)物)和C、E同在一直線上,問測得河寬為多少米?(1步約等于0.75m)
3.一油桶高0.8m,桶內(nèi)有油,一根木棒長1m,從桶蓋小口斜插入桶內(nèi),一端到桶底,另一端到小口,抽出木棒,量得棒上浸油部分長0.8m,求桶內(nèi)油面的高度。
練習(xí)答案:
1.提示:作CE//DA交AB于E,樹高是4.2m。
2.點撥:利用相似三角形的判定和性質(zhì)。
解:因為B、C、E在同一直線 所以
又因為
所以(步)
答:河寬約為120m。
3.0.64m。
第三篇:《相似三角形》教學(xué)設(shè)計
《相似三角形》教學(xué)設(shè)計
一、教學(xué)目標(biāo)
(一)知識教學(xué)點
1.使學(xué)生能利用公式解決簡單的實際問題.
2.使學(xué)生理解公式與代數(shù)式的關(guān)系.
(二)能力訓(xùn)練點
1.利用數(shù)學(xué)公式解決實際問題的能力.
2.利用已知的公式推導(dǎo)新公式的能力.
(三)德育滲透點
數(shù)學(xué)來源于生產(chǎn)實踐,又反過來服務(wù)于生產(chǎn)實踐.
(四)美育滲透點
數(shù)學(xué)公式是用簡潔的數(shù)學(xué)形式來闡明自然規(guī)定,解決實際問題,形成了色彩斑斕的多種數(shù)學(xué)方法,從而使學(xué)生感受到數(shù)學(xué)公式的簡潔美.
二、學(xué)法引導(dǎo)
1.?dāng)?shù)學(xué)方法:引導(dǎo)發(fā)現(xiàn)法,以復(fù)習(xí)提問小學(xué)里學(xué)過的公式為基礎(chǔ)、突破難點
2.學(xué)生學(xué)法:觀察→分析→推導(dǎo)→計算
三、重點、難點、疑點及解決辦法
1.重點:利用舊公式推導(dǎo)出新的圖形的計算公式.
2.難點:同重點.
3.疑點:把要求的圖形如何分解成已經(jīng)熟悉的圖形的和或差.
四、課時安排
1課時
五、教具學(xué)具準(zhǔn)備
投影儀,自制膠片。
六、教學(xué)步驟
(一)創(chuàng)設(shè)情景,復(fù)習(xí)引入
師:同學(xué)們已經(jīng)知道,代數(shù)的一個重要特點就是用字母表示數(shù),用字母表示數(shù)有很多應(yīng)用,公式就是其中之一,我們在小學(xué)里學(xué)過許多公式,請大家回憶一下,我們已經(jīng)學(xué)過哪些公式,教法說明,讓學(xué)生一開始就參與課堂教學(xué),使學(xué)生在后面利用公式計算感到不生疏.
在學(xué)生說出幾個公式后,師提出本節(jié)課我們應(yīng)在小學(xué)學(xué)習(xí)的基礎(chǔ)上,研究如何運用公式解決實際問題. 板書: 公式
師:小學(xué)里學(xué)過哪些面積公式?
板書: S = ah
附圖
(出示投影1)。解釋三角形,梯形面積公式
【教法說明】讓學(xué)生感知用割補法求圖形的面積。
(二)探索求知,講授新課
師:下面利用面積公式進行有關(guān)計算
(出示投影2)
例1 如圖是一個梯形,下底(米),上底,高,利用梯形面積公式求這個梯形的面積S。
師生共同分析:1.根據(jù)梯形面積計算公式,要計算梯形面積,必須知道哪些量?這些現(xiàn)在知道嗎?
2.題中“M”是什么意思?(師補充說明厘米可寫作cm,千米寫作km,平方厘米寫作 等)
學(xué)生口述解題過程,教師予以指正并指出,強調(diào)解題的規(guī)范性.
【教法說明】1.通過分析,引導(dǎo)學(xué)生在一個實際問題中,必須明確哪些量是已知的,哪些量是未知的,要解決這個問題,必須已知哪些量.2.用公式計算時,要先寫出公式,然后代入計算,養(yǎng)成良好的解題習(xí)慣.
(出示投影3)
例2 如圖是一個環(huán)形,外圓半徑,內(nèi)圓半徑 求這個環(huán)形的面積
學(xué)生討論:1.環(huán)形是怎樣形成的.2.如何求環(huán)形的面積討論后請學(xué)生板演,其他同學(xué)做在練習(xí)本上,教育巡回指導(dǎo).
評講時注意1.如果有學(xué)生作了簡便計算,則給予表揚和鼓勵:如果沒有學(xué)生這樣計算,則啟發(fā)學(xué)生這樣計算.
2.本題實際上是由圓的面積公式推導(dǎo)出環(huán)形面積公式.
3.進一步強調(diào)解題的規(guī)范性
教法說明,讓學(xué)生做例題,學(xué)生能自己評判對與錯,優(yōu)與劣,是獲取知識的一個很好的途徑.
測試反饋,鞏固練習(xí)
(出示投影4)
1.計算底,高 的三角形面積
2.已知長方形的長是寬的1.6倍,如果用a表示寬,那么這個長方形的周長 是多少?當(dāng) 時,求t
3.已知圓的半徑,求圓的周長C和面積S
4.從A地到B地有20千米上坡路和30千米下坡路,某車上坡時每小時走 千米,下坡時每小時走 千米。
(1)求A地到B地所用的時間公式。
(2)若 千米/時,千米/時,求從A地到B地所用的時間。
學(xué)生活動:分兩次完成,每次兩題,兩人板演,其他同學(xué)在練習(xí)本上完成,做好后同桌交換評判,第一次可請兩位基礎(chǔ)較差的同學(xué)板演,第二次請中等層次的學(xué)生板演.
【教法說明】面向全體,分層教學(xué),能照顧兩極,使所有的同學(xué)有所發(fā)展.
師:公式本身是用等號聯(lián)接起來的代數(shù)式,許多公式在實際中都有重要的用處,可以用公式直接計算還可以利用公式推導(dǎo)出新的公式.
七、隨堂練習(xí)
(一)填空
1.圓的半徑為R,它的面積 ________,周長 _____________
2.平行四邊形的底邊長是,高是,它的面積 _____________;如果,那么 _________
3.圓錐的底面半徑為,高是,那么它的體積 __________如果,那么 _________
(二)一種塑料三角板形狀,尺寸如圖,它的厚度是,求它的體積V,如果,,V是多少?
八、布置作業(yè)
(一)必做題課本第22頁1、2、3第23頁B組1
(二)選做題課本第22頁5B組2
第四篇:三角形相似教學(xué)設(shè)計
三角形相似教學(xué)設(shè)計
一、學(xué)習(xí)目標(biāo)
知識與技能方面:
探索相似三角形、相似多邊形的性質(zhì),會運用相似三角形、相似多邊形的性質(zhì)解決有關(guān)問題;
過程與方法方面:
培養(yǎng)學(xué)生提出問題的能力,并能在提出問題的基礎(chǔ)上確定研究問題的基本方向及研究方法,滲透從特殊到一般的拓展研究策略,同時發(fā)展學(xué)生合情推理及有條理地表達能力。情感態(tài)度與價值觀方面:
讓學(xué)生在探求知識的活動過程中體會成功的喜悅,從而增強其學(xué)好數(shù)學(xué)的信心。
二、教學(xué)過程:
(一)類比研究,明確目標(biāo)
師:同學(xué)們,回顧我們以往對全等三角形的研究過程,大家會發(fā)現(xiàn),我們對一個幾何對象的研究,往往從定義、判定和性質(zhì)三方面進行。類似的我們對相似三角形的研究也是如此。而到目前為止,我們已經(jīng)對相似形進行了哪些方面的研究呢? 生:已經(jīng)研究了相似三角形的定義、判別條件。師:那么我們今天該研究什么了? 生:相似三角形的性質(zhì)。
(二)提出問題,感受價值,探究解決
師:就你目前掌握的知識,你能說出相似三角形的1-2條性質(zhì)嗎?并說明你的依據(jù)。生:相似三角形的對應(yīng)角相等,對應(yīng)邊成比例。根據(jù)是相似三角形的定義。
師:對于相似三角形而言,邊和角的性質(zhì)我們已經(jīng)得到,除邊角外你認(rèn)為還有哪些量之間的性質(zhì)值得我們研究呢? 設(shè)計意圖:
我們常常會說:提出問題比解決問題更重要。但是作為教師,我們應(yīng)該清醒地認(rèn)識到,學(xué)生提出問題的能力是需要逐步培養(yǎng)的。此處設(shè)問就是要培養(yǎng)學(xué)生提出問題的能力。我希望學(xué)生能提出周長、面積、對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線之間的關(guān)系來研究,甚至于我更希望學(xué)生能提出所有對應(yīng)線段之間的關(guān)系來研究。估計學(xué)生能提出這其中的一部分問題。如果學(xué)生能提出這些問題(如相似三角形周長之比等于相似比等),就說明他的生活經(jīng)驗的直覺已經(jīng)在起作用了。如果學(xué)生提不出這些問題,說明他的生活直覺經(jīng)驗還沒有得到激發(fā),我可以利用前面提到的放大鏡問題、大小兩幅地圖問題等逐步啟發(fā),激發(fā)學(xué)生的一些源自生活化的思考,從而回到預(yù)設(shè)的教學(xué)軌道。
師:對于同學(xué)們提出的一系列有價值的問題,我們不可能在一節(jié)課內(nèi)全部完成對它們的研究,所以我們從中挑出一部分內(nèi)容先行研究。比如我們來研究周長之比,面積之比,對應(yīng)高之比的問題。
師:為了讓同學(xué)們感受到我們研究問題的實際價值。我們來看一個生活中的素材: 給形狀相同且對應(yīng)邊之比為1:2的兩塊標(biāo)牌的表面涂漆。如果小標(biāo)牌用漆半聽,那么大標(biāo)牌用漆多少聽?
師:(1)猜想用多少聽油漆?(2)這個實際問題與我們剛才的什么問題有著直接關(guān)聯(lián)? 生:可能猜半聽、1聽、2聽、4聽等。同時學(xué)生能感受到這是與相似三角形面積有關(guān)的問題。
設(shè)計意圖:從學(xué)習(xí)心理學(xué)來說,如果能知道自己將要研究的知識的應(yīng)用價值,則更能激發(fā)起學(xué)生學(xué)習(xí)的內(nèi)在需求與研究熱情。
師:同學(xué)們的猜測到底誰的對呢?請允許老師在這兒先賣個關(guān)子。讓我們帶著這個疑問來對下面的問題進行研究。到一定的時候自然會有結(jié)論。
情境一:如圖,ΔABC∽ΔDEF,且相似比為2:1,DE、EF、FD三邊的長度分別為4,5,6。(1)請你求出ΔABC的周長(學(xué)生只能用相似三角形對應(yīng)邊成比例求出ΔABC的三邊長,然后求其周長)
(2)如果ΔDEF的周長為20,則ΔABC的周長是多少?說出你的理由。(通過這個問題的研究,學(xué)生已經(jīng)可以得到相似三角形周長之比等于相似比的結(jié)論)
(3)如果ΔABC∽ΔDEF,相似比為k:1,且ΔDEF三邊長分別用d、e、f表示,求ΔABC與ΔDEF的周長之比。
結(jié)論:相似三角形的周長之比等于相似比。情境二:
師:相似三角形周長比問題研究完了,下面我們該研究什么內(nèi)容了? 生:面積比問題。師:那么對于相似三角形的面積比問題你打算怎樣進行研究?請你在獨立思考的基礎(chǔ)上與小組同學(xué)一起商量,給出一個研究的基本途徑與方法。
設(shè)計意圖:人類在改造自然的過程中,會遇到很多從未見過的新情境、新課題。當(dāng)我們遇到新問題的時候,確定研究方向與策略遠比研究問題本身更有價值。如果你的研究方向與研究策略選擇錯誤的話,你根本就不可能取得好的研究成果。而這種確定研究問題基本思路的能力也是我們向?qū)W生滲透教育的重要內(nèi)容。所以對于相似三角形面積比的研究,我認(rèn)為讓學(xué)生探索所研究問題的基本走向與策略遠比解題的結(jié)論與過程更有價值。
(師)在學(xué)生交流的基本研究方向與策略的基礎(chǔ)上,與學(xué)生共同活動,作出兩個三角形的對應(yīng)高,通過相似三角形對應(yīng)部分三角形相似的研究得到“相似三角形的對應(yīng)高之比等于相似比”的結(jié)論。進而解決“相似三角形的面積比等于相似比的平方”的問題。體現(xiàn)教材整合。
(三)拓展研究,形成策略,回歸生活
拓展研究一:由相似三角形對應(yīng)高之比等于相似比,類比研究相似三角形對應(yīng)中線、對應(yīng)角平分線之比等于相似比的性質(zhì);(留待下節(jié)課研究,具體過程略)拓展研究二:由相似三角形研究拓展到相似多邊形研究
師:通過上述研究過程,我們已經(jīng)得到相似三角形的周長之比等于相似比,面積之比等于相似比的平方。那么這些結(jié)論對一般地相似多邊形還成立嗎?下面請大家結(jié)合相似五邊形進行研究。
情境三:如圖,五邊形ABCDE∽五邊形A/B/C/D/E/,相似比為k,求其周長比與面積之比。
說明:對于周長之比,可由學(xué)生自行研究得結(jié)論。對于面積之比問題,與前面一樣,先由學(xué)生討論出研究問題的基本方向與策略——轉(zhuǎn)化為三角形——來研究。然后通過師生活動合作研究得結(jié)論。
拓展結(jié)論1:相似多邊形的周長之比等于相似比; 相似多邊形的面積之比等于相似比的平方。
(結(jié)合相似五邊形研究過程)
拓展結(jié)論2:相似多邊形中對應(yīng)三角形相似,相似比等于相似多邊形的相似比; 相似多邊形中對應(yīng)對角線之比等于相似比;
進而拓展到:相似多邊形中對應(yīng)線段之比等于相似比等。
(四)操作應(yīng)用,形成技能
2.在一張比例尺為1:2000的地圖上,一塊多邊形地區(qū)的周長為72cm,面積為200cm2,求這個地區(qū)的實際周長和面積。設(shè)計意圖:落實雙基,形成技能
(五)習(xí)題拓展,發(fā)展能力
設(shè)計意圖:將課本基本習(xí)題改造成發(fā)展學(xué)生能力的開放型問題研究,體現(xiàn)了課程整合的價值。
(六)作業(yè)(略)
另外值得一提的是:本節(jié)課對學(xué)生的評價,更多的應(yīng)關(guān)注對學(xué)生學(xué)習(xí)的過程性評價。在整個教學(xué)過程中,我都將尊重學(xué)生在解決問題過程中所表現(xiàn)出的不同水平,盡可能地讓所有學(xué)生都能主動參與,并引導(dǎo)學(xué)生在與他人的交流中提高思維水平。在學(xué)生回答時,我通過語言、目光、動作給予鼓勵與表揚,發(fā)揮評價的積極功能。尤其注意鼓勵學(xué)有困難的學(xué)生主動參與學(xué)習(xí)活動,發(fā)表自己看法,肯定他們的點滴進步。
第五篇:相似三角形教學(xué)設(shè)計
《相似三角形》教學(xué)設(shè)計
教者:廖德虎
一、知識結(jié)構(gòu)
本節(jié)首先給出了相似三角形的定義和表示方法,在此基礎(chǔ)上給出相似比的概念,并利用探究法得出三角形相似的預(yù)備定理。
二、重難點分析
相似三角形的概念是本節(jié)的重點也是本節(jié)的難點.相似三角形是研究相似形的最重要和最基本的圖形,是在全等三角形知識的基礎(chǔ)上的拓廣和發(fā)展,全等形是相似形的特殊情況,研究相似三角形比研究全等三角形更具有一般性.對應(yīng)邊和對應(yīng)角子相似三角形中占有重要地位,學(xué)生在找對應(yīng)邊及對應(yīng)角時常常出現(xiàn)錯誤。
三、教法分析
1.從知識的邏輯體系出發(fā),在知識的引入時可考慮先給出相似形的概念,在給出相似三角形的概念
2.在知識的引入上,可以從生活實例的角度出發(fā),在生活中找?guī)讉€相似三角形的例子,在此基礎(chǔ)上給出相似三角形的概念,還可以從知識的建構(gòu)模式入手,給出幾組圖形,告訴學(xué)生這幾組圖形都是相似三角形,由學(xué)生研究這些圖形的邊角關(guān)系,從而得到對相似三角形的本質(zhì)認(rèn)識。
4.在相似三角形概念的鞏固中,應(yīng)注意反例的作用,要適當(dāng)給出或由學(xué)生舉出不是相似三角形的例子來加深對概念的理解。
5.在概念的理解過程中,要注意給出不同層次的圖形,要求學(xué)生從中找出相似三角形,既增加學(xué)生的參與又加深學(xué)生對概念的理解。
三、教學(xué)設(shè)計
(一)教學(xué)目標(biāo)
1.使學(xué)生理解并掌握相似三角形的概念,理解相似比的概念.2.使學(xué)生掌握預(yù)備定理,并了解它的承上啟下的作用.3.通過預(yù)備定理的條件所構(gòu)成的圖形的三種情況,教給學(xué)生對一致性問題的思考方法.4.通過學(xué)習(xí),培養(yǎng)由特殊到一般的唯物辯證法觀點.
(二)課時安排
1課時
(三)教具學(xué)具準(zhǔn)備
投影儀、膠片、常用畫圖工具.
(四)教學(xué)步驟
【復(fù)習(xí)提問】
1.什么叫做全等三角形?它在形狀上、大小上有何特征?
2.兩個全等三角形的對應(yīng)也和對應(yīng)角有什么關(guān)系?
【講解新課】
1.相似三角形
相似三角形的本質(zhì)特征是“具有相同形狀”,它們的大小不一定相等,這是和全等三角形的重要區(qū)別.為加深學(xué)生對相似三角形概念的本質(zhì)的認(rèn)識,教學(xué)時可預(yù)先準(zhǔn)備幾對相似三角形,讓學(xué)生觀察或測量對應(yīng)元素的關(guān)系,然后直觀地得出:兩個三角形形狀相同,就是他們的對應(yīng)角相等,對應(yīng)邊成比例.
定義:對應(yīng)角相等,對應(yīng)邊成比例的三角形,叫做相似三角形
符號“∽”,讀作:“相似于”,記作: ∽,如圖所示.∴ ∽
反之亦然.即相似三角形對應(yīng)角相等,對應(yīng)邊成比例(性質(zhì)).
∵
∴ ∽
,另外,相似三角形具有傳遞性(性質(zhì)).
注:在證兩個三角形相似時,通常把表示對應(yīng)頂點的字母寫在對應(yīng)位置上.
思考問題:(l)所有等腰三角形都相似嗎?所有等邊三角形呢?為什么?
(2)所有直角三角形都相似嗎?所有等腰直角三角形呢?為什么?
2.相似比的概念
相似三角形對應(yīng)邊的比K,叫做相似比(或相似系數(shù)).
注:①兩個相似三角形的相似比具有順序性.
如果 與
那么 的相似比是K,與
的相似比是
.②全等三角形的相似比為1,這也說明了全等三角形是相似三角形的特殊情形.
3.預(yù)備定理:平行三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似.∽
,如圖所示.
教材通過探討的方法,根據(jù)題設(shè)中有平行線的條件,結(jié)合5.2節(jié)例6定理的結(jié)論,再根據(jù)三角形的定義,從而得出了這兩個三角形相似的結(jié)論,這里要強調(diào)的是:
(1)本定理的導(dǎo)出不僅讓學(xué)生復(fù)習(xí)了相似三角形的定義,而且為后面的證明打下了基礎(chǔ),它的重要性是顯而易見的.
(2)由本定理的題設(shè)所構(gòu)成的三角形有三種可能,除教材中兩種情況外還有如左圖所示的情形,它可以看成 BC截,本質(zhì)上與右圖是一致的.
兩邊所得,其中
(3)根據(jù)兩個三角形相似寫對應(yīng)邊的比例式時,每個比的前項是同一個三角形的三邊,而比的后項是另一個三角形的三條對應(yīng)邊,它們的位置不能寫錯,作題時務(wù)必要認(rèn)真仔細,如本定理的比例式,防止出現(xiàn)
的錯誤,如出現(xiàn)錯誤,教師要及時予以糾正.
(4)根據(jù)兩個三角形相似寫對應(yīng)邊的比例式時,還應(yīng)給學(xué)生強調(diào),這兩個三角形中相等的角所對的邊就是對應(yīng)邊,對應(yīng)邊應(yīng)寫在對應(yīng)位置.
(5)建議教師在教學(xué)中經(jīng)常采用一些形象性語言,如:有平行就有成比例線段,有平行就有相似三角形.
【小結(jié)】
1.本節(jié)學(xué)習(xí)了相似三角形的概念.
2.正確理解相似比的概念,為以后學(xué)習(xí)相似三角形的性質(zhì)打下基礎(chǔ).
3.重點學(xué)習(xí)了預(yù)備定理及注意的問題.
【布置作業(yè)】
教材課后練習(xí)題中2,3.【板書設(shè)計】