久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

平面向量基本定理教案

時(shí)間:2019-05-12 18:44:01下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《平面向量基本定理教案》,但愿對你工作學(xué)習(xí)有幫助,當(dāng)然你在寫寫幫文庫還可以找到更多《平面向量基本定理教案》。

第一篇:平面向量基本定理教案

§2.3.1平面向量基本定理教學(xué)設(shè)計(jì)

教學(xué)目的:

(1)了解平面向量基本定理;

(2)理解平面里的任何一個(gè)向量都可以用兩個(gè)不共線的向量來表示,初步掌握應(yīng)用向量解決實(shí)際問題的重要思想方法;(3)能夠在具體問題中適當(dāng)?shù)剡x取基底,使其他向量都能夠用基底來表達(dá).教學(xué)重點(diǎn):平面向量基本定理.教學(xué)難點(diǎn):平面向量基本定理的理解與應(yīng)用.授課類型:新授課 教學(xué)過程:

一、復(fù)習(xí)引入:

??1.實(shí)數(shù)與向量的積:實(shí)數(shù)λ與向量a的積是一個(gè)向量,記作:λa

??(1)|λa|=|λ||a|;

?????(2)λ>0時(shí)λa與a方向相同;λ<0時(shí)λa與a方向相反;λ=0時(shí)λa=0

2.運(yùn)算定律

??結(jié)合律:λ(μa)=(λμ)a ;

???????分配律:(λ+μ)a=λa+μa,λ(a+b)=λa+λb

??3.向量共線定理 向量b與非零向量a共線的充要條件是:有且只有一個(gè)非零??實(shí)數(shù)λ,使b=λa.二、講解新課:

1.提出問題:由平行四邊形想到:

(1)是不是每一個(gè)向量都可以分解成兩個(gè)不共線向量?且分解是唯一?(2)對于平面上兩個(gè)不共線向量e1,e2是不是平面上的所有向量都可以用它們來表示?

2.設(shè)e1,e2是不共線向量,a是平面內(nèi)任一向量,e1 a

MC

N B e2

O OA=e1,OM=λ

1e2; OB=e2,ON=λe2

21OC=a=OM+ON=λ

e1+λe2,2平面向量基本定理:如果e1,e2是同一平面內(nèi)的兩個(gè)不共線向量,那么對

??于這一平面內(nèi)的任一向量a,有且只有一對實(shí)數(shù)λ1,λ2使a=λ1e1+λ2e2.探究:

(1)我們把不共線向量e1、e2叫做表示這一平面內(nèi)所有向量的一組基底;(2)基底不惟一,關(guān)鍵是不共線;

(3)由定理可將任一向量a在給出基底e1、e2的條件下進(jìn)行分解;

?(4)基底給定時(shí),分解形式惟一.λ1,λ2是被a,e1,e2唯一確定的數(shù)量

3、兩個(gè)非零向量的夾角:

???????????? 如圖所示,已知兩個(gè)非零向量a,b,在平面上任取一點(diǎn)O,作OA?aO ,B?b,??則?AOB???0?????叫做向量a與b的夾角,ba BAO θbθ bAOB aa【說明】(1)研究兩個(gè)非零向量的夾角時(shí),必須先將這兩個(gè)向量的起點(diǎn)移至同一個(gè)點(diǎn);但是當(dāng)兩個(gè)向量的終點(diǎn)重合時(shí),表示向量的這兩條線段所成的?0,??范圍內(nèi)的角也等于這兩個(gè)向量之間的夾角。(2)只有非零向量之間才存在夾角;

??(3)如果∠AOB=0°a與b同向;

????(4)如果∠AOB=90°,我們就說向量a與b垂直,記作:a?b;

??(5)如果∠AOB=180°a與b反向。

三、講解范例:

例1 已知向量e1,e2 求作向量?2.5e1+3e2.作法:見教材

四、課堂練習(xí):

1.設(shè)e1、e2是同一平面內(nèi)的兩個(gè)向量,則有()A.e1、e2一定平行

e2e1B.e1、e2的模相等

C.同一平面內(nèi)的任一向量a都有a =λe1+μe2(λ、μ∈R)D.若e1、e2不共線,則同一平面內(nèi)的任一向量a都有a =λe1+ue2(λ、u∈R)2.已知矢量a = e1-2e2,b =2e1+e2,其中e1、e2不共線,則a+b與c =6e1-2e2的關(guān)系

A.不共線 B.共線 C.相等 D.無法確定

3.已知向量e1、e2不共線,實(shí)數(shù)x、y滿足(3x-4y)e1+(2x-3y)e2=6e1+3e2,則x-y的值等于()A.3 B.-3 C.0 D.2

五、小結(jié):平面向量基本定理,其實(shí)質(zhì)在于:同一平面內(nèi)任一向量都可以表示為兩個(gè)不共線向量的線性組合.

六、課后作業(yè):課本:101頁1,2 板書設(shè)計(jì):略

第二篇:《平面向量基本定理》教案

一、教學(xué)目標(biāo):

1.知識與技能:

了解平面向量基本定理及其意義, 理解平面里的任何一個(gè)向量都可以用兩個(gè)不共線的向量來表示;能夠在具體問題中適當(dāng)?shù)剡x取基底,使其他向量都能夠用基底來表示。

2.過程與方法:

讓學(xué)生經(jīng)歷平面向量基本定理的探索與發(fā)現(xiàn)的形成過程,體會由特殊到一般和數(shù)形結(jié)合的數(shù)學(xué)思想,初步掌握應(yīng)用平面向量基本定理分解向量的方法,培養(yǎng)學(xué)生分析問題與解決問題的能力。

3.情感、態(tài)度和價(jià)值觀

通過對平面向量基本定理的學(xué)習(xí),激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動學(xué)習(xí)積極性,增強(qiáng)學(xué)生向量的應(yīng)用意識,并培養(yǎng)學(xué)生合作交流的意識及積極探索勇于發(fā)現(xiàn)的學(xué)習(xí)品質(zhì).二、教學(xué)重點(diǎn):平面向量基本定理.三、教學(xué)難點(diǎn):平面向量基本定理的理解與應(yīng)用.四、教學(xué)方法:探究發(fā)現(xiàn)、講練結(jié)合五、授課類型:新授課

六、教 具:電子白板、黑板和課件

七、教學(xué)過程:

(一)情境引課,板書課題

由導(dǎo)彈的發(fā)射情境,引出物理中矢量的分解,進(jìn)而探究我們數(shù)學(xué)中的向量是不是也可以沿兩個(gè)不同方向的向量進(jìn)行分解呢?

(二)復(fù)習(xí)鋪路,漸進(jìn)新課

在共線向量定理的復(fù)習(xí)中,自然地、漸進(jìn)地融入到平面向量基本定理的師生互動合作的探究與發(fā)現(xiàn)中去,感受著從特殊到一般、分類討論和數(shù)形結(jié)合的數(shù)學(xué)思想碰撞的火花,體驗(yàn)著學(xué)習(xí)的快樂。

(三)歸納總結(jié),形成定理

讓學(xué)生在發(fā)現(xiàn)學(xué)習(xí)的過程中歸納總結(jié)出平面向量基本定理,并給出基底的定義。

(四)反思定理,解讀要點(diǎn)

反思平面向量基本定理的實(shí)質(zhì)即向量分解,思考基底的不共線、不惟一和非零性及實(shí)數(shù)對的存在性和唯一性。

(五)跟蹤練習(xí),反饋測試

及時(shí)跟蹤練習(xí),反饋測試定理的理解程度。

(六)講練結(jié)合,鞏固理解

即講即練定理的應(yīng)用,講練結(jié)合,進(jìn)一步鞏固理解平面向量基本定理。

(七)夾角概念,順勢得出

不共線向量的不同方向的位置關(guān)系怎么表示,夾角概念順勢得出。然后數(shù)形結(jié)合,講清本質(zhì):夾角共起點(diǎn)。再結(jié)合例題鞏固加深。

(八)課堂小結(jié),畫龍點(diǎn)睛

回顧本節(jié)的學(xué)習(xí)過程,小結(jié)學(xué)習(xí)要點(diǎn)及數(shù)學(xué)思想方法,老師的“教 ”與學(xué)生的“學(xué)”渾然一體,一氣呵成。

(九)作業(yè)布置,回味思考。

布置課后作業(yè),檢驗(yàn)教學(xué)效果。回味思考,更加理解定理的實(shí)質(zhì)。

七、板書設(shè)計(jì):

1.平面向量基本定理:如果

是同一平面內(nèi)的兩個(gè)不共線向量,那么對于這一平面內(nèi)的任意向量,有且只有一對實(shí)數(shù),使

.2.基底:

(1)不共線向量

叫做表示這一平面內(nèi)所有向量的一組基底;

(2)基底:不共線,不唯一,非零

(3)基底給定,分解形式唯一,實(shí)數(shù)對

存在且唯一;

(4)基底不同,分解形式不唯一,實(shí)數(shù)對

可同可異。

例1 例2

3.夾角

(1)兩向量共起點(diǎn);

(2)夾角范圍:

例3

4.小結(jié)

5.作業(yè)

第三篇:2.3.1平面向量基本定理教案

2.3.1平面向量的基本定理

教學(xué)目的:

要求學(xué)生掌握平面向量的基本定理,能用兩個(gè)不共線向量表示一個(gè)向量;或一個(gè)向量分解為兩個(gè)向量.

教學(xué)重點(diǎn):

平面向量的基本定理及其應(yīng)用.

教學(xué)難點(diǎn):

平面向量的基本定理.

教學(xué)過程:

一.復(fù)習(xí)引入:

1.實(shí)數(shù)與向量的積:實(shí)數(shù)λ與向量a的積是一個(gè)向量,記作:λa

(1)|λa|=|λ||a|;(2)λ>0時(shí)λa與a方向相同;λ<0時(shí)λa與a方向相反;λ=0時(shí)λ

?????????a=0

2.運(yùn)算定律

?????????結(jié)合律:λ(μa)=(λμ)a ;分配律:(λ+μ)a=λa+μa,λ(a+b)=λa+λb

??3.向量共線定理

向量b與非零向量a共線的充要條件是:有且只有一個(gè)非零實(shí)數(shù)λ,??使b=λa.二、新課:

1.提出問題:由平行四邊形想到:

(1)是不是每一個(gè)向量都可以分解成兩個(gè)不共線向量?且分解是唯一?(2)對于平面上兩個(gè)不共線向量e1,e2是不是平面上的所有向量都可以用它們來表示? 2.新課

e1,e2是不共線向量,a是平面內(nèi)任一向量,e1 a

MC

N

1e2

1O B 2OA=e1,OM=λe2,OC=a=OM+ON=λe1+λe2,e2. OB=e2,ON=λ

2得平面向量基本定理:

如果1,e2是同一平面內(nèi)的兩個(gè)不共線向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實(shí)數(shù)λ1,λ2使a=λ

1ee1+λe2.

2注意幾個(gè)問題:

(1)e1,e2必須不共線,且它是這一平面內(nèi)所有向量的一組基底;(2)這個(gè)定理也叫共面向量定理;

(3)λ1,λ2是被a,e1,e2唯一確定的數(shù)量. 例1

已知向量e1,e2,求作向量?2.5e1+3e2. 作法:(1)取點(diǎn)O,作OA=?2.5e1,OB=3e2,(2)作平行四邊形OACB,OC即為所求.

已知兩個(gè)非零向量a、b,作OA?a,OB?b,則∠AOB=θ(0°?θ?180°),叫做向量a與b的夾角.

當(dāng)θ=0°,a與b同向;當(dāng)θ=180°時(shí),a與b反向,如果a與b的夾角為90°,我們說a與b垂直,記作:a⊥b.

三、小結(jié):

平面向量基本定理,其實(shí)質(zhì)在于:同一平面內(nèi)任一向量都可以表示為兩個(gè)不共線向量的線性組合.

e2 e1

第四篇:平面向量基本定理(教學(xué)設(shè)計(jì))

平面向量基本定理

教學(xué)設(shè)計(jì)

平面向量基本定理教學(xué)設(shè)計(jì)

一、教材分析

本節(jié)課是在學(xué)習(xí)了共線向量基本定理的前提下,進(jìn)一步研究平面內(nèi)任一向量的表示,為今后平面向量的坐標(biāo)運(yùn)算打下堅(jiān)實(shí)的基礎(chǔ)。所以,本節(jié)在本章中起到承上啟下的作用。

平面向量基本定理揭示了平面向量之間的基本關(guān)系,是向量解決問題的理論基礎(chǔ)。平面向量基本定理提供了一種重要的數(shù)學(xué)思想—轉(zhuǎn)化思想。

二、教學(xué)目標(biāo)

知識與技能: 理解平面向量基本定理,學(xué)會利用平面向量基本定理解決問題,掌握基向量表示平面上的任一向量.過程與方法:通過學(xué)習(xí)習(xí)近平面向量基本定理,讓學(xué)生體驗(yàn)數(shù)學(xué)的轉(zhuǎn)化思想,培養(yǎng)學(xué)生發(fā)現(xiàn)問題的能力.情感態(tài)度與價(jià)值觀:通過學(xué)習(xí)習(xí)近平面向量基本定理,培養(yǎng)學(xué)生敢于實(shí)踐的創(chuàng)新精神,在解決問題中培養(yǎng)學(xué)生的應(yīng)用意識。

教學(xué)重點(diǎn):平面向量基本定理的應(yīng)用; 教學(xué)難點(diǎn):平面向量基本定理的理解.三、教學(xué)教法

1.學(xué)情分析: 學(xué)生已經(jīng)學(xué)習(xí)了向量的基本知識,并且對向量的物理背景有了初步的了解.2.教學(xué)方法:采用“問題導(dǎo)學(xué)—討論探究—展示演練”的教學(xué)方法,完成教學(xué)目標(biāo).3.教學(xué)手段:有效使用多媒體和視頻輔助教學(xué),直觀形象.四、學(xué)法指導(dǎo)

1.導(dǎo)學(xué):設(shè)置問題情境,激發(fā)學(xué)生學(xué)習(xí)的求知欲,引發(fā)思考.2.探究:引導(dǎo)學(xué)生合作探究,解決問題,注重知識的形成過程.3.應(yīng)用:在解決問題中培養(yǎng)學(xué)生的應(yīng)用意識與學(xué)以致用的能力.五、教學(xué)過程

針對以上情況,結(jié)合我校“學(xué)本課堂”模式,我設(shè)計(jì)了如下教學(xué)過程,分為六個(gè)環(huán)節(jié)。第一環(huán)節(jié):問題導(dǎo)學(xué) 自主學(xué)習(xí)

首先是課前預(yù)習(xí),預(yù)習(xí)學(xué)案分為問題導(dǎo)學(xué)、典例精析、鞏固拓展三大部分。通過預(yù)習(xí)學(xué)案,可以幫助學(xué)生完成課前預(yù)習(xí)。設(shè)計(jì)意圖:通過預(yù)習(xí)學(xué)案讓學(xué)生預(yù)習(xí)新知識,發(fā)現(xiàn)問題,使學(xué)習(xí)更具針對性,培養(yǎng)學(xué)生的自學(xué)與探索能力.第二環(huán)節(jié):創(chuàng)設(shè)情境 導(dǎo)入課題

進(jìn)入新課,引入課題采用問題情境的辦法。通過導(dǎo)彈的飛行方向和力的分解兩個(gè)實(shí)例,將問題類比,引入本節(jié)問題-向量的分解。為了幫助學(xué)生理解,提供了兩段直觀的視頻,直觀形象。設(shè)計(jì)意圖:借助實(shí)際與物理問題設(shè)置情境,引發(fā)學(xué)生思考與想象,將問題類比,引入本節(jié)課題。

第三環(huán)節(jié):分組討論 合作探究

提出問題,進(jìn)入探究階段。采用分組討論,合作探究的方法,先讓學(xué)生回顧知識-向量加法的平行四邊形法則。進(jìn)入小組討論,共同討論兩個(gè)問題。

問題1:向量a與向量e1,e2共起點(diǎn),向量a是同一平面內(nèi)任一向量,e1與e2不共線,探究向量a與e1,e2之間的關(guān)系.問題2:向量e1與e2是同一平面內(nèi)不共線的兩個(gè)向量,向量a是同一平面內(nèi)任一向量,探究向量a與e1,e2之間的關(guān)系.設(shè)計(jì)意圖:各小組成員討論交流,合作學(xué)習(xí),共同探討問題,尋求結(jié)果,展示結(jié)果.第四環(huán)節(jié):成果展示 歸納總結(jié)

小組討論完畢,由幾個(gè)小組展示研究成果。結(jié)合小組展示成果,借助多媒體展示,由師生共同探究向量的分解。展示過程中,要重點(diǎn)強(qiáng)調(diào)平移共起點(diǎn),借助平行四邊形法則解說分解過程,加深學(xué)生的直觀映像,完成向量的分解。通過向量的分解,由學(xué)生小組討論,共同歸納本節(jié)的核心知識—平面向量基本定理。在定理中重點(diǎn)補(bǔ)充強(qiáng)調(diào)以下幾點(diǎn)說明:(1)基底e1,e2不共線,零向量不能做基底;(2)定理中向量a是任一向量,實(shí)數(shù)?1,?2唯一;(3)?1e1??e2叫做向量a關(guān)于基底e1,e2的分解式.第五環(huán)節(jié):問題解決 鞏固訓(xùn)練

引入定理后,應(yīng)用定理解決學(xué)案例題與練習(xí)。例題1重在考查基底的概念,引導(dǎo)學(xué)生思考向量作為基底的條件,將問題轉(zhuǎn)化為兩個(gè)向量的共線問題。講解完例題1之后,通過一個(gè)練習(xí),鞏固所學(xué)。通過兩個(gè)問題,讓學(xué)生認(rèn)識理解基底的概念,把握基底的本質(zhì),突出重點(diǎn)——平面向量基本定理的應(yīng)用。在例題2中繼續(xù)強(qiáng)化對基底概念的理解,采用分組討論,合作探究的教學(xué)方法,共同探討解法,并由小組板演解題過程,最后強(qiáng)調(diào)解題步驟;此后,給出例2的一個(gè)變式題,讓學(xué)生進(jìn)一步深刻理解基底,體會基底的重要作用。解決本節(jié)難點(diǎn)——平面向量基本定理的理解,通過例題3對平面向量基本定理綜合應(yīng)用,解決三點(diǎn)共線問題。采用先啟發(fā)引導(dǎo)后學(xué)生探究的方法,解決學(xué)生的困惑。例題講解完畢后,對本題結(jié)論適當(dāng)拓展,得到“當(dāng)t?11,點(diǎn)P是AB的中點(diǎn),OP=(OA?OB)”的重要結(jié)論。通過探究22本題,可以使學(xué)生深化對平面向量基本定理的理解,培養(yǎng)學(xué)生綜合運(yùn)用知識的能力.為了加強(qiáng)對定理的應(yīng)用,在學(xué)案中設(shè)計(jì)了幾個(gè)鞏固練習(xí),在課堂上當(dāng)場完成,并及時(shí)糾錯(cuò),鞏固本節(jié)所學(xué)。

第六環(huán)節(jié):拓展演練 反饋檢測

為了攻克難點(diǎn),檢測效果,最后設(shè)計(jì)了幾道課后習(xí)題進(jìn)行拓展延伸,培養(yǎng)學(xué)生的綜合能力。通過這些設(shè)計(jì),可以增強(qiáng)教學(xué)的針對性,提高教學(xué)效果。在本節(jié)尾聲,讓學(xué)生回顧本節(jié)主要內(nèi)容,完成小結(jié),并在小結(jié)中強(qiáng)調(diào)轉(zhuǎn)化的數(shù)學(xué)思想及方法。最后是布置課后作業(yè)及時(shí)間分配與板書設(shè)計(jì)。

六、評價(jià)感悟

本節(jié)教學(xué)設(shè)計(jì)在“學(xué)本課堂”的教學(xué)模式下,采用“問題導(dǎo)學(xué)—討論探究—展示演練”的教學(xué)方法,引導(dǎo)學(xué)生自主學(xué)習(xí),發(fā)現(xiàn)問題,小組討論,合作探究,解決問題。在教學(xué)過程中,學(xué)生處于主體地位,教師充分發(fā)揮學(xué)生的積極性,力求打造高效課堂。

以平面向量基本定理為主題,從預(yù)習(xí)知識到探究定理,學(xué)生始終參與學(xué)習(xí),參與探究,主觀性與積極性得到了充分發(fā)揮,學(xué)習(xí)與探求知識的能力得到了極大的提升;應(yīng)用定理解決問題,培養(yǎng)了學(xué)生的應(yīng)用意識;通過學(xué)習(xí)定理,讓學(xué)生體會了轉(zhuǎn)化思想,提高了學(xué)習(xí)的綜合能力。

第五篇:平面向量基本定理及相關(guān)練習(xí)(含答案)

平面向量2 預(yù)習(xí):

1.兩個(gè)非零向量夾角的概念:已知非零向量a和b,作OA?a,OB?b,則?AOB??(0????)叫做向量a和b的夾角。

(1)??0時(shí),a和b同向;(2)???時(shí),a和b反向;(3)??時(shí),a?b; 2(4)注意兩向量的夾角定義,兩向量必須是同起點(diǎn)的,范圍是0????。2.兩向量共線的判定

設(shè)a?(x1,y1),b?(x2,y2),其中b?0。3.我們都學(xué)過向量有關(guān)的哪些運(yùn)算? 4.力做的功:

W?|F|?|s|cos?,?是F與s的夾角。講授新課:

1.平面向量的數(shù)量積(內(nèi)積)的定義:

已知兩個(gè)非零向量a和b,他們的夾角為?,我們把數(shù)量|a|?|b|cos?叫做a與b 的數(shù)量積(內(nèi)積)。

記為:a?b,即a?b?|a||b|cos?

規(guī)定:零向量與任一向量的數(shù)量積為0,即a?0?0。2.投影的概念:

|b|co?s叫做b在a方向上的投影,投影也是一個(gè)數(shù)量,不是向量。3.向量數(shù)量積(內(nèi)積)的幾何意義:

數(shù)量積a?b等于a的長度|a|與|b|在a方向上的投影|b|cos?的乘積。4.兩個(gè)向量數(shù)量積的性質(zhì):

設(shè)a、b為兩個(gè)非零向量(1)a?b??a?b=0(2)當(dāng)a和b同向時(shí),a?b=|a||b|

當(dāng)a和b反向時(shí),a?b=-|a||b| ? 1

特別地,a?a?|a|2或|a|?a?a(3)|a?b|?|a||b|(4)cos??a?b|a||b|(5)平面向量數(shù)量積的運(yùn)算律:

已知向量a、b、c和實(shí)數(shù)?,則

①a?b=b?a(交換律)

②(?a)?b??(a?b)?a?(?b)(數(shù)乘結(jié)合律)

③(a?b)?c?a?c?b?c(分配律)5.平面兩向量數(shù)量積的坐標(biāo)表示:

已知兩個(gè)非零向量a?(x1,y1),b?(x2,y2)

兩個(gè)向量數(shù)量積等于他們對應(yīng)坐標(biāo)的乘積的和,即a?b?x1y1?x2y2。6.平面內(nèi)兩點(diǎn)間的距離公式:

(1)設(shè)a?(x,y),則|a|2?x2?y2或|a|?x2?y2;

(2)如果表示向量a的有向線段的起點(diǎn)和終邊的坐標(biāo)分別為(x1,y1)、(x2,y2),|a|?(x21?x2)2?(y1?y2)(平面間兩點(diǎn)的距離公式)。

7.向量垂直的判定:

設(shè)a?(x1,y1),b?(x2,y2)則a?b??x1x2?y1y2?0 8.兩向量夾角的余弦:(0????)

cos??a?b1x2?y1y2|a||b|=xx2?y222

11x2?y2例1.已知A(1,2),B(2,3),C(?2,5),試判斷?ABC的形狀,并給出證明。

那么:

例2.在?ABC中,AB?(2,3),AC?(1,k),且?ABC的一個(gè)內(nèi)角為直角,求k的值。

例3.已知a?(1,3),b?(3?1,3?1),則a與b的夾角是多少?求與a垂直的單位向量的坐標(biāo)是多少?

1例4.已知A(3,2),B(?1,?1),若點(diǎn)P(x,?)在線段AB的中垂線上,則x?

2例

5、已知a?(2,?1),b?(m,m?1),若a與b的夾角為銳角,求實(shí)數(shù)m的取值范圍。

同步練習(xí):

?3??3???

1、已知a?3,b?4,向量a?b與a?b的位置關(guān)系為()

44?A.平行 B.垂直 C.夾角為 D.不平行也不垂直

32、在?ABC中,AB?(1,1),AC?(2,k),若?ABC為直角三角形,求實(shí)數(shù)k的值。

???????????

3、已知a?1,b?2,(1)若a∥b,求a?b;(2)若a與b的夾角為60°,求a?b;(3)若a?b與a垂 3

??直,求a與b的夾角.

4、已知a?1,b?2,(a?b)?a,則a與b的夾角是

3b)?(4a?33b),(2a?3b)?(a?

5、已知(a?

??3b),a?0,b?0,求a與b的夾角。

????????????

6、已知四邊形ABCD中AB=(6,1), BC=(x,y),CD=(-2,-3), ????????(1)若BC∥DA,試探究 x與y間的關(guān)系式;

????????(2)滿足(1)問的同時(shí)又有AC⊥BD,試求x,y的值及四邊形ABCD的面積.答案: 1.B 2.(-2或0)3.4.45度

5.(arccos66)6.(1)x?2y?0(2)16

下載平面向量基本定理教案word格式文檔
下載平面向量基本定理教案.doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點(diǎn)此處下載文檔

文檔為doc格式


聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻(xiàn)自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔(dān)相關(guān)法律責(zé)任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進(jìn)行舉報(bào),并提供相關(guān)證據(jù),工作人員會在5個(gè)工作日內(nèi)聯(lián)系你,一經(jīng)查實(shí),本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

相關(guān)范文推薦

    平面向量基本定理(教學(xué)設(shè)計(jì))5篇

    平面向量基本定理 教學(xué)設(shè)計(jì) 教材分析: 分析基本定理在教材中的作用,讓學(xué)生有目標(biāo)性地學(xué)習(xí). 教學(xué)目標(biāo): 1.通過作圖法理解并掌握平面向量基本定理的內(nèi)容及含義. 2.深刻理解向量的基底......

    《平面向量的分解定理》教案

    8.3平面向量的分解定理 翁旭宇 一、教學(xué)目標(biāo) 1.理解和掌握平面向量的分解定理; 2.掌握平面內(nèi)任一向量都可以用兩個(gè)不平行向量來表示;掌握基的概念,并能夠用基表示平面內(nèi)的向量; 3.......

    《平面向量基本定理》教學(xué)設(shè)計(jì)(共五篇)

    《平面向量基本定理》教學(xué)設(shè)計(jì) 一、內(nèi)容和內(nèi)容解析 內(nèi)容:平面向量基本定理。 內(nèi)容解析:向量不僅是溝通代數(shù)與幾何的橋梁,還是解決許多實(shí)際問題的重要工具。從問題中抽象出向量......

    平面向量基本定理與線性規(guī)劃教學(xué)設(shè)計(jì)和反思專題

    【教材分析】向量坐標(biāo)化使平面向的學(xué)習(xí)代數(shù)化,難度降低了很多。但學(xué)生對平面向量基本定理的應(yīng)用還是不太熟練,特別是由變量求范圍問題,更是一頭霧水。所以專門安排了這一節(jié)課來......

    3.1.2空間向量基本定理學(xué)案范文

    3.1.2空間向量的基本定理 一.自學(xué)達(dá)標(biāo): 1.共線向量定理: 2.共面向量定理: 3.空間向量分解定理: ?,b?,? 4.a(chǎn)c可作空間的基底的充要條件是: 5.已知平行六面ABCD-A??????????a,AD???b,????AA? 1B1C1D1,AB1?c, 試用......

    平面向量概念教案(范文大全)

    平面向量概念教案 一.課題:平面向量概念 二、教學(xué)目標(biāo) 1、使學(xué)生了解向量的物理實(shí)際背景,理解平面向量的一些基本概念,能正確進(jìn)行平面向量的幾何表示。 2、讓學(xué)生經(jīng)歷類比方法......

    平面向量教案(精選五篇)

    平面向量教案 課 件www.tmdps.cn二、復(fù)習(xí)要求 、向量的概念; 2、向量的線性運(yùn)算:即向量的加減法,實(shí)數(shù)與向量的乘積,兩個(gè)向量的數(shù)量積等的定義,運(yùn)算律; 3、向量運(yùn)算的......

    平面向量教案(精選5篇)

    平面向量的綜合應(yīng)用 執(zhí)教人: 執(zhí)教人:易燕子 考綱要求: “從學(xué)科的整體高度和思維價(jià)值的高度考慮問題,在知識網(wǎng)絡(luò)交匯點(diǎn)設(shè)計(jì)試題,使 考綱要求: 對數(shù)學(xué)基礎(chǔ)知識的考查達(dá)到必要的深......

主站蜘蛛池模板: 国产亚洲中文日本不卡二区| 脱岳裙子从后面挺进去视频| 亚洲午夜久久久久久久久久| 久久久精品波多野结衣| 久久香蕉国产线熟妇人妻| 免费a级毛片无码免费视| 中国少妇xxxx做受| 久久综合综合久久综合| 国产国拍亚洲精品av| 国内揄拍国内精品少妇国语| 狠狠色综合久久久久尤物| 欧美国产日韩亚洲中文| 亚洲无线看天堂av| 一本之道av不卡精品| 成人亚洲欧美在线观看| 一本久道综合在线无码人妻| 久久中文精品无码中文字幕| 任你躁国产自任一区二区三区| 国产成人亚洲精品无码不卡| 国产亚洲aⅴ在线电影| 国产欧美日韩视频一区二区三区| 国产情侣一区二区| 欧美老肥熟妇多毛xxxxx| 鲁鲁鲁爽爽爽在线视频观看| 人妻无码久久精品| 国产精品人成在线播放新网站| 亚洲中文字幕无码一区在线| 波多野结衣av高清一区二区三区| 一本一本久久a久久综合精品| 亚洲人成人无码www影院| 久久久久久久久久久大尺度免费视频| 久久精品日日躁夜夜躁| 99人妻| 中文字幕有码无码人妻在线| 亚洲熟妇无码av在| 亚洲精品色在线网站| 中文字幕一区二区人妻电影| 国产午夜片无码区在线播放| 国产成人久久精品一区二区三区| 精品人体无码一区二区三区| 亚洲精品鲁一鲁一区二区三区|