第一篇:高一不等式解法及放縮法證明練習(xí)
不等式
1.設(shè)a,b,c,d是任意正數(shù),求證:1?
2.已知x,y,z
3.求證:?1)?1?
4.已知a,b,c?R,求證:a?b?c?ab?bc?ca。222aa?b?d?bb?c?a?cc?d?b?dd?a?c?2。??32(x?y?z)。????n?N*)。
225.(1)不等式?x?3x?10?0的解集是___________;(2)不等式?5??x?3x?1?1的解集是_________;
(3)不等式2x
x?1?1的解集是___________________。
6.不等式?0的解集是 3x?
1111111A.{x|x??或x?B.{x|??x?C.{x|x?D.{x|x?? 32322
3117.不等式?的解集是 x
2A.(??,2)B.(2,??)C.(0,2)D.(??,2)?(2,??)2x?1
8.不等式x?
5(x?1)2≥2的解集是
A.?3?
??1??1??1??1?B.?,C.D.3,1?1,31???1,3? ???2??2???2,2????????
x?8x?202
9.不等式mx2?2(m?1)x?9m?4?0的解集為R,求實(shí)數(shù)m的取值范圍。
10.不等式|2x?1
x|?3的解集是()
A、{x|x??1,或x?5};B、{x|x?
15,或x??1};C、{x|?1?x?
15;D、{x|?1?x?5}。
11.若不等式|ax?2|?6的解集為{x|?1?x?2},則實(shí)數(shù)a等于()
A、8;B、2;C、-4;D、-8。
12.不等式
A、a?
axx?112?1的解集為{x|x?1,或x?2},則a的值為()12;C、a?;B、a?12;D、a??1
2?
1?x?2
13.不等式組?的解集是_______________________。1?|x|?3?
14.設(shè)集合A?{x||x|?4},B?{x|x
2?4x?3?0},則集合{x|x?A,且x?A?B}?__________________。
15.解不等式:
x?2x?15x?22?0。
16.求不等式|x?5|?|2x?3|?1的解集。
17.已知A?{x||2x?3|?5},B?{x|x
2?x?6?0},求A?B,A?B。
18.若A?{x|x?5x?6?0},B?{x||x?5|?a,a?0},且A?B?B,求a的取值范圍。
19.不等式ax22?bx?2?0的解集為{x|?1
2?x?1
3,則a?b?()
A、-10;B、10;C、-14;D、14。
20.已知不等式x?(a?1)x?a?0,(1)若不等式的解集為(1,3),則實(shí)數(shù)a的值是_______________;
(2)若不等式在(1,3)上有解,則實(shí)數(shù)a的取值范圍是___________;
(3)若不等式在(1,3)上恒成立,則實(shí)數(shù)a的取值范圍是_________。2
第二篇:放縮法證明不等式
放縮法證明不等式
不等式是數(shù)學(xué)的基本內(nèi)容之一,它是研究許多數(shù)學(xué)分支的重要工具,在數(shù)學(xué)中有重要的地位,也是高中數(shù)學(xué)的重要組成部分,在高考和競(jìng)賽中都有舉足輕重的地位。不等式的證明變化大,技巧性強(qiáng),它不僅能夠檢驗(yàn)學(xué)生數(shù)學(xué)基礎(chǔ)知識(shí)的掌握程度,而且是衡量學(xué)生數(shù)學(xué)水平的一個(gè)重要標(biāo)志,本文將著重介紹以下幾種不等式的初等證明方法和部分方法的例題以便理解。
一、不等式的初等證明方法
1.綜合法:由因?qū)Ч?/p>
2.分析法:執(zhí)果索因。基本步驟:要證..只需證..,只需證..(1)“分析法”證題的理論依據(jù):尋找結(jié)論成立的充分條件或者是充要條件。
(2)“分析法”證題是一個(gè)非常好的方法,但是書(shū)寫(xiě)不是太方便,所以我們可利用分析法尋找證題的途徑,然后用“綜合法”進(jìn)行表達(dá)。
3.反證法:正難則反。
4.放縮法:將不等式一側(cè)適當(dāng)?shù)姆糯蠡蚩s小以達(dá)證題目的。放縮法的方法有:
(1)添加或舍去一些項(xiàng),如
(2)利用基本不等式,如:
(3)將分子或分母放大(或縮小):
5.換元法:換元的目的就是減少不等式中變量,以使問(wèn)題
化難為易、化繁為簡(jiǎn),常用的換元有三角換元和代數(shù)換元。
二、部分方法的例題
1.換元法
換元法是數(shù)學(xué)中應(yīng)用最廣泛的解題方法之一。有些不等式通過(guò)變量替換可以改變問(wèn)題的結(jié)構(gòu),便于進(jìn)行比較、分析,從而起到化難為易、化繁為簡(jiǎn)、化隱蔽為外顯的積極效果。
2.放縮法
欲證A≥B,可將B適當(dāng)放大,即B1≥B,只需證明A≥B1。相反,將A適當(dāng)縮小,即A≥A1,只需證明A1≥B即可。
注意:用放縮法證明數(shù)列不等式,關(guān)鍵是要把握一個(gè)度,如果放得過(guò)大或縮得過(guò)小,就會(huì)導(dǎo)致解決失敗。放縮方法靈活多樣,要能想到一個(gè)恰到好處進(jìn)行放縮的不等式,需要積累一定的不等式知識(shí),同時(shí)要求我們具有相當(dāng)?shù)臄?shù)學(xué)思維能力和一定的解題智慧。
數(shù)學(xué)題目是無(wú)限的,但數(shù)學(xué)的思想和方法卻是有限的。我們只要學(xué)好了有關(guān)的基礎(chǔ)知識(shí),掌握了必要的數(shù)學(xué)思想和方法,就能順利地應(yīng)對(duì)那無(wú)限的題目。題目并不是做得越多越好,題海無(wú)邊,總也做不完。關(guān)鍵是你有沒(méi)有培養(yǎng)起良好的數(shù)學(xué)思維習(xí)慣,有沒(méi)有掌握正確的數(shù)學(xué)解題方法。當(dāng)然,題目做得多也有若干好處:一是“熟能生巧”,加快速度,節(jié)省時(shí)間,這一點(diǎn)在考試時(shí)間有限時(shí)顯得很重要;二是利用做題來(lái)鞏固、記憶所學(xué)的定義、定理、法則、公式,形成良性循環(huán)。
解題需要豐富的知識(shí),更需要自信心。沒(méi)有自信就會(huì)畏難,就會(huì)放棄;有了自信,才能勇往直前,才不會(huì)輕言放棄,才會(huì)加倍努力地學(xué)習(xí),才有希望攻克難關(guān),迎來(lái)屬于自己的春天。
第三篇:放縮法證明不等式
主備人:審核:包科領(lǐng)導(dǎo):年級(jí)組長(zhǎng):使用時(shí)間:
放縮法證明不等式
【教學(xué)目標(biāo)】
1.了解放縮法的概念;理解用放縮法證明不等式的方法和步驟。
2.能夠利用放縮法證明簡(jiǎn)單的不等式。
【重點(diǎn)、難點(diǎn)】
重點(diǎn):放縮法證明不等式。
難點(diǎn):放縮法證明不等式。
【學(xué)法指導(dǎo)】
1.據(jù)學(xué)習(xí)目標(biāo),自學(xué)課本內(nèi)容,限時(shí)獨(dú)立完成導(dǎo)學(xué)案;
2.紅筆勾出疑難點(diǎn),提交小組討論;
3.預(yù)習(xí)p18—p19,【自主探究】
1,放縮法:證明命題時(shí),有時(shí)可以通過(guò)縮?。ɑ颍┓质降姆帜福ɑ颍?,或通過(guò)放大(或縮?。┍粶p式(或)來(lái)證明不等式,這種證明不
等式的方法稱(chēng)為放縮法。
2,放縮時(shí)常使用的方法:①舍去或加上一些項(xiàng),即多項(xiàng)式加上一些正的值,多項(xiàng)式的值變大,或多項(xiàng)式減上一些正的值,多項(xiàng)式的值變小。如t2?2?t2,t2?2?t2等。
②將分子或分母放大(或縮?。悍帜缸兇螅质街禍p小,分母變小,分
式值增大。
如當(dāng)(k?N,k?1)1111,22kkk(k?1)k(k?1),③利用平均值不等式,④利用函數(shù)單調(diào)性放縮。
【合作探究】
證明下列不等式
(1)
(2),已知a>0,用放縮法證明不等式:loga
(a?1)1111??...??2(n?N?)2222123nloga(a?1)?1
(3)已知x>0, y>0,z>0求證
?x?y?z
(4)已知n?
N?,求證:1
【鞏固提高】
已知a,b,c,d都是正數(shù),s?
【能力提升】
求證: ?...?abcd???求證:1
1?a?b?a
1?a?b
1?b
本節(jié)小結(jié):
第四篇:放縮法證明不等式
放縮法證明不等式
在學(xué)習(xí)不等式時(shí),放縮法是證明不等式的重要方法之一,在證明的過(guò)程如何合理放縮,是證明的關(guān)鍵所在?,F(xiàn)例析如下,供大家討論。例1:設(shè)a、b、c是三角形的邊長(zhǎng),求證
abc≥3 ??b?c?ac?a?ba?b?c證明:由不等式的對(duì)稱(chēng)性,不妨設(shè)a≥b≥c,則b?c?a≤c?a?b≤a?b?c
且2c?a?b≤0,2a?b?c≥0
∴
? ∴abcabc???3??1??1??1
b?c?ac?a?ba?b?cb?c?ac?a?ba?b?c2a?b?c2b?a?c2c?a?b2a?b?c2b?c?a2c?a?b≥?????0
b?c?ac?a?ba?b?cc?a?bc?a?bc?a?babc≥3 ??b?c?ac?a?ba?b?c2b?a?c無(wú)法放縮。所以在運(yùn)用放
c?a?b[評(píng)析]:本題中為什么要將b?c?a與a?b?c都放縮為c?a?b呢?這是因?yàn)?c?a?b≤0,2a?b?c≥0,而2b?a?c無(wú)法判斷符號(hào),因此縮法時(shí)要注意放縮能否實(shí)現(xiàn)及放縮的跨度。
例2:設(shè)a、b、c是三角形的邊長(zhǎng),求證
abc(b?c)2?(c?a)2?(a?b)2≥ b?cc?aa?b1 [(a?b)2?(b?c)2?(c?a)2]
3證明:由不等式的對(duì)稱(chēng)性,不防設(shè)a≥b≥c,則3a?b?c?0,3b?c?a≥b?c?c?c?a?
b?c?a?0
左式-右式?3a?b?c3b?c?a3c?a?b(b?c)2?(c?a)2?(a?b)2 b?ca?ca?b3b?c?a3c?a?b(c?a)2?(a?b)2 a?ba?b2(b?c?a)3b?c?a3c?a?b(a?b)2?(a?b)2?(a?b)2≥0 a?ba?ba?b ≥ ≥[評(píng)析]:本題中放縮法的第一步“縮”了兩個(gè)式了,有了一定的難度。由例
1、例2也可知運(yùn)用放縮法前先要觀察目標(biāo)式子的符號(hào)。
例3:設(shè)a、b、c?R?且abc?1求證
111≤1 ??1?a?b1?b?c1?c?a證明:設(shè)a?x3,b?y3,c?z3.且 x、y、z?R?.由題意得:xyz?1。
∴1?a?b?xyz?x3?y3
∴x3?y3?(x2y?xy2)?x2(x?y)?y2(y?x)?(x?y)2(x?y)≥0 ∴x3?y3≥x2y?xy2
∴1?a?b?xyz?x3?y3≥xyz?xy(x?y)?xy(x?y?z)
∴
1z1?≤
xy(x?y?z)x?y?z1?a?byx11≤,≤ ∴命題得證.x?y?zx?y?z1?b?c1?c?a同理:由對(duì)稱(chēng)性可得[評(píng)析]:本題運(yùn)用了排序不等式進(jìn)行放縮,后用對(duì)稱(chēng)性。
39例4:設(shè)a、b、c≥0,且a?b?c?3,求證a2?b2?c2?abc≥
22證明:不妨設(shè)a≤b≤c,則a≤1?又∵(44?!郺??0。33a?b23?a23434)≥bc,即()≥bc,也即bc(a?)≥(3?a)2(a?)。2223833∴左邊?(a?b?c)2?2(ab?bc?ca)?abc
23434 ?9?2a(b?c)?bc(a?)≥9?2a(3?a)?(3?a)2(a?)
2383
341633?9?(3?a)[(3?a)(a?)?a]?9?(3?a)[a2?a?4]?9?(?a3?2a2?a?12)83388?99393?a(a2?2a?1)??a(a?1)2≥
2282893 ∴a2?b2?c2?abc≥
22[評(píng)析]:本題運(yùn)用對(duì)稱(chēng)性確定符號(hào),在使用基本不等式可以避開(kāi)討論。
例5:設(shè)a、b、c?R?,p?R,求證:
abc(ap?bp?cp)≥ap?2(?a?b?c)?bp?2(a?b?c)?cp?2(a?b?c)
證明:不妨設(shè)a≥b≥c>0,于是
左邊-右邊?ap?1(bc?a2?ab?ca)?bp?1(ca?b2?bc?ab)?cp?1(ab?c2?ca?bc)
?ap?1(a?b)[(a?b)?(b?c)]?bp?1(a?b)(b?c)?cp?1[(a?b)?(b?c)](b?c)?ap?1(a?b)2?(a?b)(b?c)(ap?1?bp?1?cp?1(b?c)2
≥(a?b)(b?c)(ap?1?bp?1?cp?1)如果p?1≥0,那么ap?1?bp?1≥0;如果p?1<0,那么cp?1?bp?1≥0,故有(a?b)(b?c)(ap?1?bp?1?cp?1)≥0,從而原不等式得證.例6:設(shè)0≤a≤b≤c≤1,求證:
abc???(1?a)(1?b)(1?c)≤1
b?c?1c?a?1a?b?1abca?b?c≤,再證明以 ??b?c?1c?a?1a?b?1a?b?1證明:設(shè)0≤a≤b≤c≤1,于是有下簡(jiǎn)單不等式
a?b?ca?b?1c?1?(1?a)(1?b)(1?c)≤1,因?yàn)樽筮???(1?a)(1?b)(1?c)
a?b?1a?b?1a?b?1
?1?1?c[1?(1?a?b)(1?a)(1?b)],再注意(1?a?b)(1?a)(1?b)≤(1?a?b?ab)
a?b?1(1?a)(1?b)?(1?a)(1?b)(1?a)(1?b)?(1?a2)(1?b2)≤1得證.在用放縮法證明不等式A≤B,我們找一個(gè)(或多個(gè))中間量C作比較,即若能斷定A ≤C與C≤B同時(shí)成立,那么A≤B顯然正確。所謂的“放”即把A放大到C,再把C放大到B,反之,所謂的“縮”即由B縮到C,再把C縮到A。同時(shí)在放縮時(shí)必須時(shí)刻注意放縮的跨度,放不能過(guò)頭,縮不能不及。
第五篇:放縮法證明不等式例證
例談“放縮法”證明不等式的基本策略
江蘇省蘇州市木瀆第二高級(jí)中學(xué)母建軍 21510
1近年來(lái)在高考解答題中,常滲透不等式證明的內(nèi)容,而不等式的證明是高中數(shù)學(xué)中的一個(gè)難點(diǎn),它可以考察學(xué)生邏輯思維能力以及分析問(wèn)題和解決問(wèn)題的能力。特別值得一提的是,高考中可以用“放縮法”證明不等式的頻率很高,它是思考不等關(guān)系的樸素思想和基本出發(fā)點(diǎn), 有極大的遷移性, 對(duì)它的運(yùn)用往往能體現(xiàn)出創(chuàng)造性?!胺趴s法”它可以和很多知識(shí)內(nèi)容結(jié)合,對(duì)應(yīng)變能力有較高的要求。因?yàn)榉趴s必須有目標(biāo),而且要恰到好處,目標(biāo)往往要從證明的結(jié)論考察,放縮時(shí)要注意適度,否則就不能同向傳遞。下面結(jié)合一些高考試題,例談“放縮”的基本策略,期望對(duì)讀者能有所幫助。
1、添加或舍棄一些正項(xiàng)(或負(fù)項(xiàng))
例
1、已知an?2?1(n?N).求證:n*an1a1a2????...?n(n?N*).23a2a3an?
1ak2k?11111111?k?1??????.,k?1,2,...,n, 證明: ?ak?12?122(2k?1?1)23.2k?2k?2232k
?aa1a2n1111n11n1??...?n??(?2?...?n)??(1?n)??, a2a3an?1232222322
3an1aan???1?2?...?n?(n?N*).23a2a3an?1
2若多項(xiàng)式中加上一些正的值,多項(xiàng)式的值變大,多項(xiàng)式中加上一些負(fù)的值,多項(xiàng)式的值變小。由于證明不等式的需要,有時(shí)需要舍去或添加一些項(xiàng),使不等式一邊放大或縮小,利用不等式的傳遞性,達(dá)到證明的目的。本題在放縮時(shí)就舍去了2k?2,從而是使和式得到化簡(jiǎn).2、先放縮再求和(或先求和再放縮)
例
2、函數(shù)f(x)=4x
1?4x,求證:f(1)+f(2)+…+f(n)>n+12n?11?(n?N*).2證明:由f(n)= 4n
1?4n=1-11?1? nn1?42?2
2?21得f(1)+f(2)+…+f(n)>1??1?
12?22???1?1
2?2n
111111?n?(1?????n?1)?n?n?1?(n?N*).424222
此題不等式左邊不易求和,此時(shí)根據(jù)不等式右邊特征, 先將分子變?yōu)槌?shù),再對(duì)分母進(jìn)
行放縮,從而對(duì)左邊可以進(jìn)行求和.若分子, 分母如果同時(shí)存在變量時(shí), 要設(shè)法使其中之一變?yōu)槌A?,分式的放縮對(duì)于分子分母均取正值的分式。如需放大,則只要把分子放大或分母縮小即可;如需縮小,則只要把分子縮小或分母放大即可。
3、先放縮,后裂項(xiàng)(或先裂項(xiàng)再放縮)
例
3、已知an=n,求證:∑ 證明:∑
k=
1nn
nk=1ak
k
n
<3.
(k-1)k(k+1)
=1?k?2n
ak
2=∑
k=
1n
<1+∑
k=2
<1+∑
k=2
(k-1)(k+1)(k+1 +k
-1)
=1+ ∑(k=2
n
-)
(k-1)
(k+1)
1=1+1+- <2+<3.
(n+1)2
2本題先采用減小分母的兩次放縮,再裂項(xiàng),最后又放縮,有的放矢,直達(dá)目標(biāo).4、放大或縮小“因式”;
n
1.例
4、已知數(shù)列{an}滿足an?1?a,0?a1?,求證:?(ak?ak?1)ak?2?322k?
1n
證明 ?0?a1?
n
11112,an?1?an,?a2?a12?,a3??.?當(dāng)k?1時(shí),0?ak?2?a3?, 2416161n11??(ak?ak?1)?(a1?an?1)?.16k?116
32??(ak?ak?1)ak?2
k?1
本題通過(guò)對(duì)因式ak?2放大,而得到一個(gè)容易求和的式子
5、逐項(xiàng)放大或縮小
?(a
k?
1n
k
?ak?1),最終得出證明.n(n?1)(n?1)
2?an?例
5、設(shè)an??2?2?3??4???n(n?1)求證 22122n?1
2證明:∵ n(n?1)?n?nn(n?1)?(n?)?
2n?
1n(n?1)(n?1)21?3???(2n?1)
∴ 1?2?3???n?an?,∴
?an?
222
2n?1
本題利用n??,對(duì)an中每項(xiàng)都進(jìn)行了放縮,從而得到可以求和的∴ n?
n(n?1)?
數(shù)列,達(dá)到化簡(jiǎn)的目的。
6、固定一部分項(xiàng),放縮另外的項(xiàng); 例
6、求證:
11117?????? 2222123n
4證明:?
1???
2nn(n?1)n?1n
?
1111111115117??????1??(?????)??(?)?.22222123n223n?1n42n4
此題采用了從第三項(xiàng)開(kāi)始拆項(xiàng)放縮的技巧,放縮拆項(xiàng)時(shí),不一定從第一項(xiàng)開(kāi)始,須根據(jù)具體題型分別對(duì)待,即不能放的太寬,也不能縮的太窄,真正做到恰倒好處。
7、利用基本不等式放縮
例
7、已知an?5n?
4?1對(duì)任何正整數(shù)m,n都成立.?1,只要證
5amn?1?aman?因?yàn)?amn?5mn?4,aman?(5m?4)(5n?4)?25mn?20(m?n)?16,故只要證
5(5mn?4)?1?25mn?20(m?n)?16? 即只要證
20m?20n?37?
因?yàn)閍m?an?5m?5n?8?5m?5n?8?(15m?15n?29)?20m?20n?37,所以命題得證.本題通過(guò)化簡(jiǎn)整理之后,再利用基本不等式由am?an放大即可.8、先適當(dāng)組合, 排序, 再逐項(xiàng)比較或放縮
例
8、.已知i,m、n是正整數(shù),且1<i≤m<n.(1)證明:nAim<mAin;(2)證明:(1+m)>(1+n)
i
i
n
m
證明:(1)對(duì)于1<i≤m,且Aim =m·…·(m-i+1),Aimmm?1Aimnn?1m?i?1n?i?
1,?????,同理?????ii
mmmnnnmn
由于m<n,對(duì)于整數(shù)k=1,2,…,i-1,有
n?km?k,?
nm
AinAim
所以i?i,即miAin?niAim
nm
(2)由二項(xiàng)式定理有:
2n2n
(1+m)n=1+C1nm+Cnm+…+Cnm,22mm(1+n)m=1+C1mn+Cmn+…+Cmn,由(1)知
mAin
i
>nAim
i
(1<i≤m<n),而
Cim
∴miCin>niCim(1<m<n)
AimiAin
= ,Cn?i!i!
00222211
∴m0C0n=nCn=1,mCn=nCm=m·n,mCn>nCm,…,mmm+1m?1mmCmCn>0,…,mnCnn>nCm,mn>0,2n222n1mm∴1+C1nm+Cnm+…+Cnm>1+Cmn+Cmn+…+Cmn,即(1+m)n>(1+n)m成立.以上介紹了用“放縮法”證明不等式的幾種常用策略,解題的關(guān)鍵在于根據(jù)問(wèn)題的特征選擇恰當(dāng)?shù)姆椒?,有時(shí)還需要幾種方法融為一體。在證明過(guò)程中,適當(dāng)?shù)剡M(jìn)行放縮,可以化繁為簡(jiǎn)、化難為易,達(dá)到事半功倍的效果。但放縮的范圍較難把握,常常出現(xiàn)放縮后得不出結(jié)論或得到相反的現(xiàn)象。因此,使用放縮法時(shí),如何確定放縮目標(biāo)尤為重要。要想正確確定放縮目標(biāo),就必須根據(jù)欲證結(jié)論,抓住題目的特點(diǎn)。掌握放縮技巧,真正做到弄懂弄通,并且還要根據(jù)不同題目的類(lèi)型,采用恰到好處的放縮方法,才能把題解活,從而培養(yǎng)和提高自己的思維和邏輯推理能力,分析問(wèn)題和解決問(wèn)題的能力。希望大家能夠進(jìn)一步的了解放縮法的作用,掌握基本的放縮方法和放縮調(diào)整手段.