第一篇:高中數學科學第一課
高中數學開學第一課
一、自我介紹
我姓x,是你們的數學老師,手機:xxxxxxxxx,QQ:xxxxxxx,因為是數學老師所以在自我介紹的時候喜歡給出自己的數字特征,也是希望通過這些方式能拓寬與大家交流的平臺,希望能與大家在課堂中相識,在生活中相知,不僅能成為你們知識的傳授者,方法的指引者,更希望成為你們情感上的依賴者。
二、相信大家對于高中學習都充滿著好奇,和初中相比,高中課程與初中課程有很大的不同。
今天這節課我們不急于上新課,我想和大家聊一聊數學,一起來思考為什么要學習數學及如何學好數學這兩個問題。
(一)為什么要學習數學
相信高一的第一節課是各位科任老師各顯神通的時候,通過各種有趣的方式來突出每門課的重要性,作為數學老師我表達上不如文科老師迂回婉轉和風趣幽默,我們更喜歡用數字說明問題。大家知道北大最著名的院系是什么系嗎?早在蔡元培先生任北大校長時,就列數學系為北大第一系,這種傳統一直保持到現在。為什么數學系在高校中有如此重要的地位?課本主編寄語是這樣描述的:數學是有用的,數學有助于提高能力。著名數學家華羅庚在《人民日報》精彩描述了數學在“宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁”等方面無處不有重要貢獻。
問題1:大家知道海王星是怎么發現的,冥王星又是怎么被請出十大行星行列的? 海王星的發現是在數學計算過程中發現的,天文望遠鏡的觀測只是驗證了人們的推論。
1812年,法國人布瓦德在計算天王星的運動軌道時,發現理論計算值同觀測資料發生了一系列誤差。這使許多天文學家紛紛致力這個問題的研究,進而發現天王星的脫軌與一個未知的引力的存在相關。也就是說有一個未知的天體作用于天王星。1846年9月23日。柏林天文臺收到來自法國巴黎的一封快信。發信人就是勒威耶。信中,勒威耶預告了一顆以往沒有發現的新星:在摩羯座8星東約5度的地方,有一顆8等小星,每天退行69角秒。當夜,柏林天文臺的加勒把巨大的天文望遠鏡對準摩羯座,果真在那里發現了一顆新的8等星。又過了—天,再次找到了這顆 8等星,它的位置比前一天后退了70角秒。這與勒威耶預告的相差甚微。全世界都震動了。人們依照勒威耶的建議,按天文學慣例,用神話里的名字把這顆星命名為“海王星”。
1930年美國天文學家湯博發現冥王星,當時錯估了冥王星的質量,以為冥王星比地球還大,所以命名為大行星。然而,經過近30年的進一步觀測和計算,發現它的直徑只有2300公里,比月球還要小,等到冥王星的大小被確認,“冥王星是大行星”早已
被寫入教科書,以后也就將錯就錯了。經過多年的爭論,國際天文學聯合會通過投票表決做出最終決定,取消冥王星的行星資格。8月24日據國際天文學聯合會宣布,冥王星將被排除在行星行列之外,從而太陽系行星的數量將由九顆減為八顆。事實上,位居太陽系九大行星末席70多年的冥王星,自發現之日起地位就備受爭議。
馬克思說:“一種科學只有在成功運用數學時,才算達到了真正完善的地步。”正
因為數學是日常生活和進一步學習必不可少的基礎和工具,一切科學到了最后都歸結為數學問題。其實在我們的周圍有很多事情都是可以用數學可以來解決的,無非很多人都沒有用數學的眼光來看待。
問題2:基督教徒認為上帝是萬能的。你們認為呢?如何來證明你的結論呢?(讓同學發言)我的觀點:上帝不是萬能的。為什么呢?仔細聽我講來。
證明:(反證法)假如上帝是萬能的那么他能夠制作出一塊無論什么力量都搬不動的石頭
根據假設,既然上帝是萬能的,那么他一定能夠搬的動他自己制造的那石頭這與“無論什么力量都搬不動的石頭”相矛盾
所以假設不成立
所以上帝不是萬能的。
問題3:抓鬮對個人來說公平嗎?5張票中有一張獎票,那么先抽還是后抽對個人
還說公平嗎?
當然,我們學習的數學只是數學學科體系中很基礎,很小的一部分。現在課本上學的未必能直接應用于生活,主要是為以后學習更高層次的理科打好基礎,同時,也為了掌握一些數學的思考方法以及分析問題解決問題的思維方式。哲學家培根說過:“讀詩使人靈秀,讀歷史使人明智,學邏輯使人周密,學哲學使人善辯,學數學使人聰明?”,也有人形象地稱數學是思維的體操。下面我們通過具體的例子來體驗一下某些數學思想方法和思維方式。
故事一:據說國際象棋是古印度的一位宰相發明的。國王很欣賞他的這項發明,問他的宰相要什么賞賜。聰明的宰相說,“我所要的從一粒谷子(沒錯,是1粒,不是1兩或1斤)開始。在這個有64格的棋盤上,第一格里放1粒谷子,第二格里放2粒,第三格里放4粒,即每下一
格粒數加倍,??如此下去,一直放滿到棋盤上的64格。這就是我所要的賞賜。” 國王覺得宰相要的實在不多,就叫人按宰相的要求賞賜。但后來發現即使把全國所有的谷子抬來也遠遠不夠。
人們通常憑借自己掌握的數學知識耍些小聰明,使問題妙不可言。
數學游戲:兩人相繼輪流往長方形桌子上放同樣大小的硬幣,硬幣一定要平放在桌面上,后放的硬幣不能壓在先放的硬幣上,放最后一顆的硬幣的人算贏。應該先放還是后放才有必勝的把握。
數學思想:退到最簡單、最特殊的地方。
故事二:聰明的渡邊:20世紀40年代末,手寫工具突破性進展—圓珠筆問世,它以價廉、方便、書寫流利在社會上廣泛流傳,但寫到20萬字時就會因圓珠磨小而漏油,影響了銷售。工程師們從圓珠質量入手,從改進油墨性能入手進行改良,但收效甚微。于是廠家打出廣告:解決此問題獲獎金50萬元。當時山地制筆廠的青年工人渡邊看到女兒把圓珠筆用到快漏油時就德育不用這一現象中受到啟發,很好地解決了這一問題,你認為他會怎么做呢?
渡邊的成功之處就在于思維角度新,從問題的側面輕巧取勝。也正體現了數學學習中經常用到的發散式思維。在數學學習中,既要有集中式思維又要有發散式思維。集中式思維是一種常用思維渠道,即為對問題的歸納,聯系思維方式,表現為對解題方法的模仿和繼承;而發散式思維即對問題開拓、創新,表現為對問題舉一反三,觸類旁通。在解決具體問題中,我們應該將兩種思維方式相結合。
學數學有利于培養人的思維品質:結構意識、整體意識、抽象意識、化歸意識、優化意識、反思意識,盡管數學在培養學生的這些思維品質方面和其他學科存在著交集,但數學在其中的地位是無法被代替的。總之,學習數學可以使人思考問題更合乎邏輯,更有條理,更嚴密精確,更深入簡潔,更善于創造??
(二)如何學好數學
高中數學的內容多,抽象性、理論性強,高中很注重自學能力的培養的,高中不會像初中那樣老師一天到晚盯著你,在高中一定要注重自學能力的培養,誰的自學能力強,那么在一定的程度上影響著你的成績以及你將來你發展的前途。同時要注意以下幾點:
第一:對數學學科特點有清楚的認識
主編寄語里是這樣描述數學的特征的:數學是自然的。數學的概念、方法、思想都是人類長期實踐中自然發展形成的,以數域的發展為例,從自然數到有理數到實數再到復數,都是由自然的認知沖突引起的。因此,在學習過程中我們有必要了解知識產生的背景,它的形成過程以及它的應用,讓數學顯得合情合理,渾然天成。數學中沒有含糊不清的詞,對錯分明,凡事都要講個為什么,只要按照數學規則去學去想就能融會貫通,但是如果不把來龍去脈想清楚而是“想當然”的話,那就學不下去了。
第二:要改變一個觀念。
有人會說自己的基礎不好。那我問下什么是基礎?今天所學的知識就是明天的基礎。明天學習的知識就是后天的基礎。所以要學好每一天的內容,那么你打的基礎就是最扎實的了。所以現在你們是在同一個起跑線上的,無所謂基礎好不好。過去的幾年里我分別帶過五十一中和一中的學生,兩邊學生的課堂感覺差不多,應該說接受能力不相上下,有的時候我會選擇在五十一中開公開課,因為課堂氣氛活躍、輕松,但是成績差異卻是很大,原因在于我們同學外課自主時間的投入太少,學習習慣不太好。
第三:學數學要摸索自己的學習方法
學習、掌握并能靈活應用數學的途徑有千萬條,每個人都可以有與眾不同的數學學習
方法。做習題、用數學解決各種問題是必需的,理解、學會證明、領會思想、掌握方法也是必需的。此外,還要發揮問題的作用,學會提問,熱心幫助別人解決問題,用自己的問題和別人的問題帶動自己的學習。同時,注意前后知識的銜接,類比地學、聯系地學,既要從概念中看到它的具體背景,又要在具體的例子中想到它蘊含的一般概念。
第四:養成良好的學習習慣(與一中學生相比較)
㈠課前預習。怎樣預習呢?就是自己在上課之前把內容先看一邊,把自己不懂的地方做個記號或者打個問號,以至于上課的時候重點聽,這樣才能夠很快提高自己的水平。但是預習不是很隨便的把課本看一邊,預習有個目標,那就是通過預習可以把書本后面的練習題可以自己獨立的完成。一中的同學預習就已經有好幾個層次了,先是課本,再是精編,再是高考題典,上課對于他們來說是第一輪高考復習。
㈡上課認真聽講。上課的時候準備課本,一只筆,一本草稿。做不做筆記你們自己決定,不過我不大提倡數學課做筆記的。不過有一點,有些知識點比較重要,課本上又沒有的,我要求你們把它寫在課本上的相應的空白地方。還有如果你覺得某個例題比較新或者比較重要,也可以把它記在書本的相應位置上,這樣以后復習起來就一目了然了。那么草稿要來干什么的呢?課堂上你可以自己演算還有做課堂練習。
㈢關于作業。絕對不允許有抄作業的情況發生。如果我發現有誰抄作業,那么既然他這樣喜歡抄,我就要你把當天的作業多抄幾遍給我。那有人會問,碰到不會做的題目怎么辦?有兩個辦法:
一、向同學請教,請教做題目的思路,而不是整個過程和答案。同學之間也要相互幫助,如果你讓他抄襲你的作業這樣不是幫助他而是害他,這個道理大家應該明白吧。我非常提倡同學之間的相互討論問題的,這樣才能夠相互促進提高。
二、向老師請教,要養成多想多問的習慣。我的辦公室在二樓二號,歡迎大家前來交流
㈣準備一本筆記本,作為自己的問題集。把平時自己不懂的和不大理解的還有易錯的記錄下來,并且要及時的消化,不懂的地方問老師。這是一個很好的辦法,到考試的時候就可以有重點、有針對性的自己復習了。我高中的時候就是采用這樣的方法把數學成績提高。
好的開始是成功的一半,新的學期開始了,請大家調整好自己的思想,找到學習的原動力。播種一種思想,收獲一種行為;播種一種行為,收獲一種習慣;播種一種習慣,收獲一種性格;播種一種性格,收獲一種命運。愿每位同學都有個好的開始。
(2)某人在屋檐下躲雨,看見觀音正撐傘走過。這人說:“觀音菩薩,普度一下眾生吧,帶我一段如何?”
觀音說:“我在雨里,你在檐下,而檐下無雨,你不需要我度。”這人立刻跳出檐下,站在雨中:“現在我也在雨中了,該度我了吧?”觀音說:“你在雨中,我也在雨中,我不被淋,因為有傘;你被雨淋,因為無傘。所以不是我度自己,而是傘度我。你要想度,不必找我,請自找傘去!”說完便走了。
第二天,這人遇到了難事,便去寺廟里求觀音。走進廟里,才發現觀音的像前也有一個人在拜,那個人長得和觀音一模一樣,絲毫不差。
這人問:“你是觀音嗎?”
那人答道:“我正是觀音。”
這人又問:“那你為何還拜自己?”
觀音笑道:“我也遇到了難事,但我知道,求人不如求己。”
(是的,求人不如求己。遇到問題,不要總是把希望寄托在別人身上,記住:成功者自救。)
燃繩計時
一根繩子,從一端開始燃燒,燒完需要1小時。現在你需要在不看表的情況下,僅借助這根繩子和一盒火柴測量出半小時的時間。你可能認為這很容易,你只要在繩子中間做個標記,然后測量出這根繩子燃燒完一半所用的時間就行了。然而不幸的是,這根繩子并不均勻,有些地方比較粗,有些地方卻很細,因此這根繩子不同地方的燃燒率不同。也許其中一半繩子燃燒完僅需5分鐘,而另一半燃燒完卻需要55分鐘。面對這種情況,似乎想利用上面的繩子準確測出30分鐘時間根本不可能,但是事實并非如此,因此大家可以利用一種創新方法解決上述問題,這種方法是同時從繩子兩頭點火。繩子燃燒完所用的時間一定是30分鐘。
火車相向而行問題
兩輛火車沿相同軌道相向而行,每輛火車的時速都是50英里。兩車相距100英里時,一只蒼蠅以每小時60英里的速度從火車A開始向火車B方向飛行。它與火車B相遇后,馬上掉頭向火車A飛行,如此反復,直到兩輛火車相撞在一起,把這只蒼蠅壓得粉碎。蒼蠅在被壓碎前一共飛行了多遠?
我們知道兩車相距100英里,每輛車的時速都是50英里。這說明每輛車行駛50英里,即一小時后兩車相撞。在火車出發到相撞的這一小時間,蒼蠅一直以每小時60英里的速度飛行,因此在兩車相撞時,蒼蠅飛行了60英里。不管蒼蠅是沿直線飛行,還是沿”z”型線路飛行,或者在空中翻滾著飛行,其結果都一樣。
擲硬幣并非最公平
拋硬幣是做決定時普遍使用的一種方法。人們認為這種方法對當事人雙方都很公平。因為他們認為錢幣落下后正面朝上和反面朝上的概率都一樣,都是50%。但是有趣的是,這種非常受歡迎的想法并不正確。
首先,雖然硬幣落地時立在地上的可能性非常小,但是這種可能性是存在的。其次,即使我們排除了這種很小的可能性,測試結果也顯示,如果你按常規方法拋硬
幣,即用大拇指輕彈,開始拋時硬幣朝上的一面在落地時仍朝上的可能性大約是51%。
之所以會發生上述情況,是因為在用大拇指輕彈時,有些時候錢幣不會發生翻轉,它只會像一個顫抖的飛碟那樣上升,然后下降。如果下次你要選出將要拋錢幣的人手上的錢幣在落地后哪面會朝上,你應該先看一看哪面朝上,這樣你猜對的概率要高一些。但是如果那個人是握起錢幣,又把拳頭調了一個個兒,那么,你就應該選擇與開始時相反的一面。
同一天過生日的概率
假設你在參加一個由50人組成的婚禮,有人或許會問:“我想知道這里兩個人的生日一樣的概率是多少?此處的一樣指的是同一天生日,如5月5日,并非指出生時間完全相同。”
也許大部分人都認為這個概率非常小,他們可能會設法進行計算,猜想這個概率可能是七分之一。然而正確答案是,大約有兩名生日是同一天的客人參加這個婚禮。如果這群人的生日均勻地分布在日歷的任何時候,兩個人擁有相同生日的概率是97%。換句話說就是,你必須參加30場這種規模的聚會,才能發現一場沒有賓客出生日期相同的聚會。
人們對此感到吃驚的原因之一是,他們對兩個特定的人擁有相同的出生時間和任意兩個人擁有相同生日的概率問題感到困惑不解。兩個特定的人擁有相同出生時間的概率是三百六十五分之一。回答這個問題的關鍵是該群體的大小。隨著人數增加,兩個人擁有相同生日的概率會更高。因此在10人一組的團隊中,兩個人擁有相同生日的概率大約是12%。在50人的聚會中,這個概率大約是97%。然而,只有人數升至366人(其中有一人可能在2月29日出生)時,你才能確定這個群體中一定有兩個人的生日是同一天。
第二篇:高中數學開學第一課
高中數學開學第一課
自我介紹:
我姓鞠,今后我將和大家一起學習高中數學課程,手機:????,QQ:????。告訴我的通訊方式是希望能拓寬與大家交流的平臺。希望能與大家在課堂中相識,在生活中相知,不僅能成為你們知識的傳授者,方法的指引者,更希望成為你們情感上的依賴者,成為朋友。
討論數學:
相信大家對于高中學習都充滿著好奇,和初中相比,高中課程與初中課程有很大的不同。今天這節課
我們不急于上新課,我想和大家聊一聊數學,一起來思考為什么要學習數學及如何學好數學這兩個問題。
一、為什么要學習數學?
數學是科學的大門和鑰匙。
馬克思說:一種科學只有在成功地運用數學時,才算達到完善的地步。
著名數學家華羅庚在《人民日報》精彩描述:數學在“宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁”等方面無處不有重要貢獻。
大家知道海王星是怎么發現的,冥王星又是怎么被請出十大行星行列的???
其實在我們的周圍有很多事情都是可以用數學可以來解決的,無非很多人都沒有用數學的眼光來看待。
當然,我們學習的數學只是數學學科體系中很基礎,很小的一部分。現在課本上學的未必能直接應用于生活,主要是為以后學習更高層次的理科打好基礎,同時,也為了掌握一些數學的思考方法以及分析問題解決問題的思維方式。哲學家培根說過:“讀詩使人靈秀,讀歷史使人明智,學邏輯使人周密,學哲學使人善辯,學數學使人聰明?”,也有人形象地稱數學是思維的體操。下面我們通過具體的例子來體驗一下某些數學思想方法和思維方式。
故事一:據說國際象棋是古印度的一位宰相發明的。國王很欣賞他的這項發明,問他的宰相要什么賞賜。聰明的宰相說,“我所要的從一粒谷子(沒錯,是1粒,不是1兩或1斤)開始。在這個有64格的棋盤上,第一格里放1粒谷子,第二格里放2粒,第三格里放4粒,即每下一格粒數加倍,??如此下去,一直放滿到棋盤上的64格。這就是我所要的賞賜。” 國王覺得宰相要的實在不多,就叫人按宰相的要求賞賜。但后來發現即使把全國所有的谷子抬來也遠遠不夠。
數學游戲:兩人相繼輪流往長方形桌子上放同樣大小的硬幣,硬幣一定要平放在桌面上,后放的硬幣不能壓在先放的硬幣上,放最后一顆的硬幣的人算贏。應該先放還是后放才有必勝的把握。
數學思想:退到最簡單、最特殊的地方。
故事二:聰明的渡邊:20世紀40年代末,手寫工具突破性進展—圓珠筆問世,它以價廉、方便、書寫流利在社會上廣泛流傳,但寫到20萬字時就會因圓珠磨小而漏油,影響了銷售。工程師們從圓珠質量入手,從改進油墨性能入手進行改良,但收效甚微。于是廠家打出廣告:解決此問題獲獎金50萬元。當時山地制筆廠的青年工人渡邊看到女兒把圓珠筆用到快漏油時就不用這一現象中受到啟發,很好地解決了這一問題,你認為他會怎么做呢?
渡邊的成功之處就在于思維角度新,從問題的側面輕巧取勝。也正體現了數學學習中經常用到的發散式思維。在數學學習中,既要有集中式思維又要有發散式思維。集中式思維是一種常用思維渠道,即為對問題的歸納,聯系思維方式,表現為對解題方法的模仿和繼承;而發散式思維即對問題開拓、創新,表現為對問題舉一反三,觸類旁通。在解決具體問題中,我們應該將兩種思維方式相結合。
學數學有利于培養人的思維品質:結構意識、整體意識、抽象意識、化歸意識、優化意識、反思意識,盡管數學在培養學生的這些思維品質方面和其他學科存在著交集,但數學在其中的地位是無法被代替的。總之,學習數學可以使人思考問題更合乎邏輯,更有條理,更嚴密精確,更深入簡潔,更善于創造??
二、如何學好高中數學
與初中數學相比,高中數學更注重提高數學思維能力,要求同學們在學習數學和運用數學解決問題時,不斷地經歷直觀感知、觀察發現、歸納類比、空間想象、抽象概括、符號表示、運算求解、數據處理、演繹證明、反思與建構等思維過程。高一數學一開始便在必修1中觸及集合語言、函數模型,在必修2中涉及空間立體圖形、坐標法、文字符號圖形語言的轉換,相對初中數學而言,抽象程度高,邏輯推理強,知識難度大,同學們會感到難學,認為數學神秘莫測,有些章節如聽天書,從而可能會產生畏懼感。我認為學好高中數學要注意以下幾點:
第一:培養數學興趣
只有愛好某項事業或專業才能對它產生興趣,才能激發學習、工作和自覺性與積極性;很難說哪個人天生愛好數學,愛好都是在生活和學習中逐漸產生的。如果你認為數學枯燥、乏味,那么你不可能真正學好數學,只有在學習中,逐漸發現數學的簡單美、對稱美以及數學高度的嚴謹與和諧,才能在學習過程中喜歡這門學科,才能產生興趣。愛因斯坦說:興趣是最好的老師;在諸多非智力因素中,興趣處于一種特殊的地位,她可以激發一定的情感,喚起某種動機,培養人的意志,也可以改變人的態度。
第二:要改變一個觀念。
有人會說自己的基礎不好。那我問下什么是基礎?今天所學的知識就是明天的基礎。明天學習的知識就是后天的基礎。所以要學好每一天的內容,那么你打的基礎就是最扎實的了。所以現在你們是在同一個起跑線上的,無所謂基礎好不好。今后的學習中,我會照顧大多數同學的數學基礎。
第三:養成良好的學習習慣
㈠課前預習。怎樣預習呢?就是自己在上課之前把內容先看一邊,把自己不懂的地方做個記號或者打個問號,以至于上課的時候重點聽,這樣才能夠很快提高自己的水平。但是預習不是很隨便的把課本看一邊,預習有個目標,那就是通過預習可以把書本后面的練習題可以自己獨立的完成。一中的同學預習就已經有好幾個層次了,先是課本,再是精編,再是高考題典,上課對于他們來說是第一輪高考復習。
㈡上課認真聽講。上課的時候準備課本,一只筆,一本草稿。做不做筆記你們自己決定,不過我不大提倡數學課做筆記的。不過有一點,有些知識點比較重要,課本上又沒有的,我要求你們把它寫在課本上的相應的空白地方。還有如果你覺得某個例題比較新或者比較重要,也可以把它記在書本的相應位置上,這樣以后復習起來就一目了然了。那么草稿要來干什么的呢?課堂上你可以自己演算還有做課堂練習。
㈢關于作業。絕對不允許有抄作業的情況發生。如果我發現有誰抄作業,那么既然他這樣喜歡抄,我就要你把當天的作業多抄幾遍給我。那有人會問,碰到不會做的題目怎么辦?有兩個辦法:
一、向同學請教,請教做題目的思路,而不是整個過程和答案。同學之間也要相互幫助,如果你讓他抄襲你的作業這樣不是幫助他而是害他,這個道理大家應該明白吧。我非常提倡同學之間的相互討論問題的,這樣才能夠相互促進提高。
二、向老師請教,要養成多想多問的習慣。
㈣準備一本筆記本,作為自己的問題集。把平時自己不懂的和不大理解的還有易錯的記錄下來,并且要及時的消化,不懂的地方問老師。這是一個很好的辦法,到考試的時候就可以有重點、有針對性的自己復習了。我高中的時候就是采用這樣的方法把數學成績提高。
好的開始是成功的一半,新的學期開始了,請大家調整好自己的思想,找到學習的原動力。播種一種思想,收獲一種行為;播種一種行為,收獲一種習慣;播種一種習慣,收獲一種性格;播種一種性格,收獲一種命運。愿每位同學都有個好的開始。
第三篇:高中數學開學第一課教案
高中數學開學第一課教案
(一)一、自我介紹
我姓x,是你們的數學老師,手機:xxxxxxxxx,QQ:xxxxxxx,因為是數學老師所以在自我介紹的時候喜歡給出自己的數字特征,也是希望通過這些方式能拓寬與大家交流的平臺,希望能與大家在課堂中相識,在生活中相知,不僅能成為你們知識的傳授者,方法的指引者,更希望成為你們情感上的依賴者。
二、相信大家對于高中學習都充滿著好奇,和初中相比,高中課程與初中課程有很大的不同。今天這節課我們不急于上新課,我想和大家聊一聊數學,一起來思考為什么要學習數學及如何學好數學這兩個問題。
(一)為什么要學習數學
相信高一的第一節課是各位科任老師各顯神通的時候,通過各種有趣的方式來突出每門課的重要性,作為數學老師我表達上不如文科老師迂回婉轉和風趣幽默,我們更喜歡用數字說明問題。大家知道北大最著名的院系是什么系嗎?早在蔡元培先生任北大校長時,就列數學系為北大第一系,這種傳統一直保持到現在。為什么數學系在高校中有如此重要的地位?課本主編寄語是這樣描述的:數學是有用的,數學有助于提高能力。
著名數學家華羅庚在《人民日報》精彩描述了數學在“宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁”等方面無處不有重要貢獻。
問題1:大家知道海王星是怎么發現的,冥王星又是怎么被請出十大行星行列的?
海王星的發現是在數學計算過程中發現的,天文望遠鏡的觀測只是驗證了人們的推論。
1812年,法國人布瓦德在計算天王星的運動軌道時,發現理論計算值同觀測資料發生了一系列誤差。這使許多天文學家紛紛致力這個問題的研究,進而發現天王星的脫軌與一個未知的引力的存在相關。也就是說有一個未知的天體作用于天王星。1846年9月23日。柏林天文臺收到來自法國巴黎的一封快信。發信人就是勒威耶。信中,勒威耶預告了一顆以往沒有發現的新星:在摩羯座8星東約5度的地方,有一顆8等小星,每天退行69角秒。當夜,柏林天文臺的加勒把巨大的天文望遠鏡對準摩羯座,果真在那里發現了一顆新的8等星。又過了-天,再次找到了這顆8等星,它的位置比前一天后退了70角秒。這與勒威耶預告的相差甚微。全世界都震動了。人們依照勒威耶的建議,按天文學慣例,用神話里的名字把這顆星命名為“海王星”。
1930年美國天文學家湯博發現冥王星,當時錯估了冥王星的質量,以為冥王星比地球還大,所以命名為大行星。然而,經過近30年的進一步觀測和計算,發現它的直徑只有2300公里,比月球還要小,等到冥王星的大小被確認,“冥王星是大行星”早已被寫入教科書,以后也就將錯就錯了。經過多年的爭論,國際天文學聯合會通過投票表決做出最終決定,取消冥王星的行星資格。8月24日據國際天文學聯合會宣布,冥王星將被排除在行星行列之外,從而太陽系行星的數量將由九顆減為八顆。事實上,位居太陽系九大行星末席70多年的冥王星,自發現之日起地位就備受爭議。
馬克思說:“一種科學只有在成功運用數學時,才算達到了真正完善的地步。”正因為數學是日常生活和進一步學習必不可少的基礎和工具,一切科學到了最后都歸結為數學問題。
其實在我們的周圍有很多事情都是可以用數學可以來解決的,無非很多人都沒有用數學的眼光來看待。
問題2:基督教徒認為上帝是萬能的。你們認為呢?如何來證明你的結論呢?(讓同學發言)
我的觀點:上帝不是萬能的。為什么呢?仔細聽我講來。
證明:(反證法)假如上帝是萬能的
那么他能夠制作出一塊無論什么力量都搬不動的石頭
根據假設,既然上帝是萬能的,那么他一定能夠搬的動他自己制造的那石頭
這與“無論什么力量都搬不動的石頭”相矛盾
所以假設不成立
所以上帝不是萬能的。
問題3:抓鬮對個人來說公平嗎?5張票中有一張獎票,那么先抽還是后抽對個人還說公平嗎?
當然,我們學習的數學只是數學學科體系中很基礎,很小的一部分。現在課本上學的未必能直接應用于生活,主要是為以后學習更高層次的理科打好基礎,同時,也為了掌握一些數學的思考方法以及分析問題解決問題的思維方式。哲學家培根說過:“讀詩使人靈秀,讀歷史使人明智,學邏輯使人周密,學哲學使人善辯,學數學使人聰明…”,也有人形象地稱數學是思維的體操。下面我們通過具體的例子來體驗一下某些數學思想方法和思維方式。
故事一:據說國際象棋是古印度的一位宰相發明的。國王很欣賞他的這項發明,問他的宰相要什么賞賜。聰明的宰相說,“我所要的從一粒谷子(沒錯,是1粒,不是1兩或1斤)開始。在這個有64格的棋盤上,第一格里放1粒谷子,第二格里放2粒,第三格里放4粒,即每下一格粒數加倍,……如此下去,一直放滿到棋盤上的64格。這就是我所要的賞賜。”國王覺得宰相要的實在不多,就叫人按宰相的要求賞賜。但后來發現即使把全國所有的谷子抬來也遠遠不夠。
人們通常憑借自己掌握的數學知識耍些小聰明,使問題妙不可言。
數學游戲:兩人相繼輪流往長方形桌子上放同樣大小的硬幣,硬幣一定要平放在桌面上,后放的硬幣不能壓在先放的硬幣上,放最后一顆的硬幣的人算贏。應該先放還是后放才有必勝的把握。
數學思想:退到最簡單、最特殊的地方。
故事二:聰明的渡邊:20世紀40年代末,手寫工具突破性進展-圓珠筆問世,它以價廉、方便、書寫流利在社會上廣泛流傳,但寫到20萬字時就會因圓珠磨小而漏油,影響了銷售。工程師們從圓珠質量入手,從改進油墨性能入手進行改良,但收效甚微。于是廠家打出廣告:解決此問題獲獎金50萬元。當時山地制筆廠的青年工人渡邊看到女兒把圓珠筆用到快漏油時就德育不用這一現象中受到啟發,很好地解決了這一問題,你認為他會怎么做呢?
渡邊的成功之處就在于思維角度新,從問題的側面輕巧取勝。也正體現了數學學習中經常用到的發散式思維。在數學學習中,既要有集中式思維又要有發散式思維。集中式思維是一種常用思維渠道,即為對問題的歸納,聯系思維方式,表現為對解題方法的模仿和繼承;而發散式思維即對問題開拓、創新,表現為對問題舉一反三,觸類旁通。在解決具體問題中,我們應該將兩種思維方式相結合。
學數學有利于培養人的思維品質:結構意識、整體意識、抽象意識、化歸意識、優化意識、反思意識,盡管數學在培養學生的這些思維品質方面和其他學科存在著交集,但數學在其中的地位是無法被代替的。總之,學習數學可以使人思考問題更合乎邏輯,更有條理,更嚴密精確,更深入簡潔,更善于創造……
(二)如何學好數學
高中數學的內容多,抽象性、理論性強,高中很注重自學能力的培養的,高中不會像初中那樣老師一天到晚盯著你,在高中一定要注重自學能力的培養,誰的自學能力強,那么在一定的程度上影響著你的成績以及你將來你發展的前途。同時要注意以下幾點:
第一:對數學學科特點有清楚的認識
主編寄語里是這樣描述數學的特征的:數學是自然的。數學的概念、方法、思想都是人類長期實踐中自然發展形成的,以數域的發展為例,從自然數到有理數到實數再到復數,都是由自然的認知沖突引起的。因此,在學習過程中我們有必要了解知識產生的背景,它的形成過程以及它的應用,讓數學顯得合情合理,渾然天成。數學中沒有含糊不清的詞,對錯分明,凡事都要講個為什么,只要按照數學規則去學去想就能融會貫通,但是如果不把來龍去脈想清楚而是“想當然”的話,那就學不下去了。
第二:要改變一個觀念。
有人會說自己的基礎不好。那我問下什么是基礎?今天所學的知識就是明天的基礎。明天學習的知識就是后天的基礎。所以要學好每一天的內容,那么你打的基礎就是最扎實的了。所以現在你們是在同一個起跑線上的,無所謂基礎好不好。過去的幾年里我分別帶過五十一中和一中的學生,兩邊學生的課堂感覺差不多,應該說接受能力不相上下,有的時候我會選擇在五十一中開公開課,因為課堂氣氛活躍、輕松,但是成績差異卻是很大,原因在于我們同學外課自主時間的投入太少,學習習慣不太好。
第三:學數學要摸索自己的學習方法
學習、掌握并能靈活應用數學的途徑有千萬條,每個人都可以有與眾不同的數學學習方法。做習題、用數學解決各種問題是必需的,理解、學會證明、領會思想、掌握方法也是必需的。此外,還要發揮問題的作用,學會提問,熱心幫助別人解決問題,用自己的問題和別人的問題帶動自己的學習。同時,注意前后知識的銜接,類比地學、聯系地學,既要從概念中看到它的具體背景,又要在具體的例子中想到它蘊含的一般概念。
第四:養成良好的學習習慣(與一中學生相比較)
㈠課前預習。怎樣預習呢?就是自己在上課之前把內容先看一邊,把自己不懂的地方做個記號或者打個問號,以至于上課的時候重點聽,這樣才能夠很快提高自己的水平。但是預習不是很隨便的把課本看一邊,預習有個目標,那就是通過預習可以把書本后面的練習題可以自己獨立的完成。一中的同學預習就已經有好幾個層次了,先是課本,再是精編,再是高考題典,上課對于他們來說是第一輪高考復習。
㈡上課認真聽講。上課的時候準備課本,一只筆,一本草稿。做不做筆記你們自己決定,不過我不大提倡數學課做筆記的。不過有一點,有些知識點比較重要,課本上又沒有的,我要求你們把它寫在課本上的相應的空白地方。還有如果你覺得某個例題比較新或者比較重要,也可以把它記在書本的相應位置上,這樣以后復習起來就一目了然了。那么草稿要來干什么的呢?課堂上你可以自己演算還有做課堂練習。
㈢關于作業。絕對不允許有抄作業的情況發生。如果我發現有誰抄作業,那么既然他這樣喜歡抄,我就要你把當天的作業多抄幾遍給我。那有人會問,碰到不會做的題目怎么辦?有兩個辦法:
一、向同學請教,請教做題目的思路,而不是整個過程和答案。同學之間也要相互幫助,如果你讓他抄襲你的作業這樣不是幫助他而是害他,這個道理大家應該明白吧。我非常提倡同學之間的相互討論問題的,這樣才能夠相互促進提高。
二、向老師請教,要養成多想多問的習慣。我的辦公室在二樓二號,歡迎大家前來交流
㈣準備一本筆記本,作為自己的問題集。把平時自己不懂的和不大理解的還有易錯的記錄下來,并且要及時的消化,不懂的地方問老師。這是一個很好的辦法,到考試的時候就可以有重點、有針對性的自己復習了。我高中的時候就是采用這樣的方法把數學成績提高。
好的開始是成功的一半,新的學期開始了,請大家調整好自己的思想,找到學習的原動力。播種一種思想,收獲一種行為;播種一種行為,收獲一種習慣;播種一種習慣,收獲一種性格;播種一種性格,收獲一種命運。愿每位同學都有個好的開始。高考狀元學習數學的經驗:
【認認真真做好筆記】
高一高二打基礎時,做好筆記很重要。“我每次都是上課時認真用草稿紙記筆記,然后回家再把筆記謄抄到筆記本上,這樣通過兩次抄寫就基本印象深刻了”。另外,對于一些易錯或難題,她的訣竅是在錯題或難題的旁邊用一些活潑可愛的話標注。比如在錯題邊寫:“下次再錯就不可原諒啦,并在旁邊打個打打的笑臉”。
【主動尋求解題思路法】
在學習過程中,我曾有這樣的經歷,有時見到一道題目一時找不到思路,就迫不急待去翻看答案,看答案時往往覺得答案的每一步都順理成章,該用哪個定理,該用什么方法,非常簡單,就自認為把題目已經理解透了。過幾天再做這道題,還是無從下手。我覺得出現這種情況主要是因為我對這道題的接受是一個被動的過程。在這個過程中我只是機械地看到了具體解題過程,而沒有真正理解解題思路。
主動尋求解題思路法與這種被動接受的學習方法正好相反,這種方法強調從簡單習題入手,因為做簡單的習題會比較輕松一些,簡單的做出來之后再由淺入深。當在練習過程中遇到了難一點的題目時,有意識強迫自己不看答案、不看書套公式、不求助于別人(這些都是被動方法),而是靜下心來,積極調動自己的大腦知識庫,主動尋求解題思路。這樣由淺入深地訓練自己,加上對常見題型的歸類分析,再見到數學、物理習題時就會在第一時間反應出該題所考查的知識點和思維方式,有得心應手的感覺。
【選擇題去掉選項法】
解選擇題有很多種方法,面對簡單的選擇題,也需要一些簡單的技巧,這需要同學們平時在學習中慢慢摸索。但是我覺得解選擇題最好的辦法就是去掉選項法。培養自己的解題能力,也就是培養自己不被錯誤選項干擾的能力。尤其是面對一些比較難的、特別繁瑣的選擇題,我們可以把這些選項給去掉,把它當做填空題來做,把答案寫出來之后,再從選項中去找,如果找不到的話,說明你肯定犯了錯誤。這樣的話,還可以避免很多問題--比如有些同學容易看錯題目,他做題目的時候,常常根據自己看錯的一些數據去做,剛好選項里面有這樣的答案,這樣的話,就會選擇錯誤答案;再者就是,有一些題目是理論性的選擇題,可能它的選項本身就帶有很大的誤導性,去掉選項就不會受它的誤導。
【吃透課本法】
很多同學覺得,數學課本上面的題目很簡單,都是老師上課講過的內容,下課以后,往往就把課本放在一邊,去做其他一些他們認為難度更高的習題,剛開始我也是這樣做的。可是到考試的時候往往是難題做出來了,簡單的題目卻容易失分--尤其是前面的選擇題、填空題這樣一些小題。所以要特別注重學習課本,把課本上每一道題都做到位,這也是我要講的第一點。第二點就是課本上的基本概念和基本思路。課本上面不光是習題重要,更重要的是它的基本概念和基本思路。數學課本有很多黑體字的大概念,這些都是我們平時很注意的,但是在一些小字里面,往往有一些非常細微的概念和原理是容易被忽視的,而考試的時候,往往就是把那些我們忽視的問題拎出來考。而一考大家就“倒一大片”。所以我們在看課本的時候,一定要把課本上的每一個字,每一個句子,即使很細小的一些原理都要看到。三角函數、立體幾何、解析幾何的習題中,有很多重要結論,都是應該記住的。吃透課本,不管怎么強調它的重要性都不為過。
【普通解題法】
從微觀上看,數學的學習就是如何解出每一道數學題。我的經驗是關注通法,即關注普通解題法,有余力再掌握一些技巧。由于文科的數學題難度一般都不太大,基礎題(即用通法可以順利解出的題目)占絕大多數。對于文科學生來說,老師上課的時候本身就會比較注重基礎,他首先講的可能就是通法,那么這個時候就必須把老師講的例題記下來。通法肯定會有一個固定的解題思路,上課的時候就得領會這個解題思路,課后最好再選一些類似的題目做一做,以便熟能生巧。其實解普通的題目也有多種方法,有通法,還有一些帶有技巧性的方法。我覺得對于文科學生來說,通法更加重要一些,因為它能解答這一類型的所有題目,所以我覺得更實用。當然,學有余力的同學還可以研究一些技巧,但我本人不提倡鉆得太深,因為這樣會浪費時間。事實證明,通法掌握好了,高考一般都能取得優秀甚至是拔尖的成績。
【錯題集法】
除了典型例題,還需要重視自己出錯的題目。錯題集是許多成績好的學生必備的,我也不例外,而在這里我強調的是如何充分利用自己的錯題集。錯題大約可以分兩種:一種是自己根本不會做,因為太難了,沒有思路;另一種是自己會做,因為粗心而做錯。我覺得,最有價值的錯題是第二類。因為粗心也有許多種,我們也要分析它。第一,看錯題目。是看錯數字還是理解錯題意?為什么會看錯題?怎么樣誤解了題意?以后會不會犯同樣的錯?第二,切入點、思路出錯,這樣的思維解法根本不適合這類題目。第三,計算錯誤。為什么會算錯?有沒有方法杜絕?怎樣才能真正做到細心?其實在高考中,有多少題目是你不會做的呢?最終的競爭,還是在于你究竟能做對多少。如果你能把自己粗心的錯誤杜絕,那么在高考中一定會贏得非常好的成績。
【主動尋求解題思路法】
在學習過程中,我曾有這樣的經歷,有時見到一道題目一時找不到思路,就迫不急待去翻看答案,看答案時往往覺得答案的每一步都順理成章,該用哪個定理,該用什么方法,非常簡單,就自認為把題目已經理解透了。過幾天再做這道題,還是無從下手。我覺得出現這種情況主要是因為我對這道題的接受是一個被動的過程。在這個過程中我只是機械地看到了具體解題過程,而沒有真正理解解題思路。
主動尋求解題思路法與這種被動接受的學習方法正好相反,這種方法強調從簡單習題入手,因為做簡單的習題會比較輕松一些,簡單的做出來之后再由淺入深。當在練習過程中遇到了難一點的題目時,有意識強迫自己不看答案、不看書套公式、不求助于別人(這些都是被動方法),而是靜下心來,積極調動自己的大腦知識庫,主動尋求解題思路。這樣由淺入深地訓練自己,加上對常見題型的歸類分析,再見到數學、物理習題時就會在第一時間反應出該題所考查的知識點和思維方式,有得心應手的感覺。【知識點網絡總結法】
我學習數學的第一個方法是知識點網絡總結法。平時做數學題時,一些題目往往會讓我們感覺到無從下手,這個時候如果我們能聯想到這道題目所考察的知識點,就可以以此為線索對癥下藥,找到解題的突破口。所謂的知識點網絡總結法就是在平時做題時,如果遇到解答中出現困難的題目,就將與這道題目有關的解題方法和所考查的知識點在題目的旁邊列出來,然后在本子上總結出來。這樣經過一段時間的訓練,在考試的時候看到題目就能聯想到有關的知識點,并迅速找到相應的解題方法。使用這種方法一方面可以提高解題速度,為考生節約不少時間,另一方面做題的正確率很高,提高了解題命中率。
【適當放棄法】
“舍得,舍得,有舍才有得”,這是大家常說的一句話。對于數學這門學科來說,我認為要根據自己的實力,為自己準確定位,保證基礎題全部答對,并適當放棄自己力不從心的高難題,這樣達到智力資源的優化配置,才能取得較好的成績。
每個人都有自己的長處和短處,揚長補短應該是一種比較有效的應試方法。俗話說“狗熊嘴大啃地瓜,麻雀嘴小啄芝麻”,我這個小嘴“麻雀”,在數學學習中沒有多大的優勢。在平時考試中,數學最后一道題對我而言難度就挺大的,我經常只是做出第一問,第二問基本上是無可奈何、屢戰屢敗。在高考中,我一看最后一道題的第二個問題挺難的,于是很快決定放棄了這個難啃的“地瓜”,并立刻回頭檢查前面已經做過的試題,幸運的是檢查出做錯的一道5分的選擇題。或許,正是由于這樣量力而行的戰術,我保住了“芝麻”--基礎題,只在較難題目上失去了12分,其他題全部做對,做到了數學考試的超水平發揮。
【總結規律法】
“題海戰術”是為了做題而做題,只要是題,統統拿來做,只注重做題的數量,卻忽視了做題的質量。我做的題也很多,類型也很廣,但在做題時我并不局限于這道題本身,而是能夠進行發散性思考,想想如果把這一題的題目、條件改變一下能演變出什么題,從這道題我有什么額外收獲。對同類型題,只要我覺得自己已經非常熟練了,就不再繼續做這種類型的題目了,轉而做其他類型的題目。你做的題目類型越多,你的視野就越開闊。我覺得這樣做題才是高效率的。
在做完很多類型的題目之后,我們還要進行總結:對哪一種類型的題目可以用哪些方法解答,這一種方法可以解答哪些類型的題目。同時,把自己做錯的題目記在一個本子上,總結一下錯的原因和教訓,以后決不讓同一塊石頭絆倒兩次。
2013年高中數學開學第一課教案
(一)高中一年級的新同學們,當你們踏進高中校門,漫步在優美的校園時,看見老師嚴謹而熱心的教學和師兄、師姐深切的關懷時,我想你們會暗暗決心:爭取學好高中階段的各門學科。在新的高考制度“3+綜合”普遍吹散全國大地之時,代表人們基本素質的“3”科中,數學是最能體現一個人的思維能力,判斷能力、反應敏捷能力和聰明程度的學科。數學直接影響著國民的基本素質和生活質量,良好的數學修養將為人的一生可持續發展奠定基礎,高中階段則應可能充分反映學習者對數學的不同需求,使每個學生都能學習適合他們自己的數學。
一、高中數學課的設置
高中數學內容豐富,知識面廣泛,高一年級上學期學習第一冊(上):第一章集合與簡易邏輯;第二章函數;第三章數列。高一年級下學期學習第一冊(下):第四章三角函數;第五章平面向量。高二年級上學期學習第二冊(上):第六章不等式;第七章直線和圓的方程;第八章圓錐曲線方程。高二年級下學期學習第二冊(下):第九章直線、平面、簡單幾何體;第十章排列、組合和概率。高二結束將有數學“會考”。高三年級文科生學習第三冊(選修1):第一章統計;第二章極限與導數。高三年級理科生學習第三冊(選修2):第一章概率與統計;第二章極限;第三章導數;第四章復數。高三還將進行全面復習,并有重要的“高考”。
二、初中數學與高中數學的差異。
1、知識差異。初中數學知識少、淺、難度容易、知識面笮。高中數學知識廣泛,將對初中的數學知識推廣和引伸,也是對初中數學知識的完善。如:初中學習的角的概念只是“0-1800”范圍內的,但實際當中也有7200和“-300”等角,為此,高中將把角的概念推廣到任意角,可表示包括正、負在內的所有大小角。又如:高中要學習《立體幾何》(第九章直線、平面、簡單幾何體),將在三維空間中求角和距離等;還將學習“排列組合”知識,以便解決排隊方法種數等問題。如:①三個人排成一行,有幾種排隊方法,(=6種);②四人進行乒乓球雙打比賽,有幾種比賽場次?(答:=3種)高中將學習統計這些排列的數學方法。初中中對一個負數開平方無意義,但在高中規定了i2=--1,就使-1的平方根為±i.即可把數的概念進行推廣,使數的概念擴大到復數范圍等。這些知識同學們在以后的學習中將逐漸學習到。
2、學習方法的差異。
(1)初中課堂教學量小、知識簡單,通過教師課堂教慢的速度,爭取讓全面同學理解知識點和解題方法,課后老師布置作業,然后通過大量的課堂內、外練習、課外指導達到對知識的反反復復理解,直到學生掌握。而高中數學的學習隨著課程開設多(有九們課學生同時學習),每天至少上六節課,自習時間三節課,這樣各科學習時間將大大減少,而教師布置課外題量相對初中減少,這樣集中數學學習的時間相對比初中少,數學教師將相初中那樣監督每個學生的作業和課外練習,就能達到相初中那樣把知識讓每個學生掌握后再進行新課。
(2)模仿與創新的區別。
初中學生模仿做題,他們模仿老師思維推理教多,而高中模仿做題、思維學生有,但隨著知識的難度大和知識面廣泛,學生不能全部模仿,即就是學生全部模仿訓練做題,也不能開拓學生自我思維能力,學生的數學成績也只能是一般程度。現在高考數學考察,旨在考察學生能力,避免學生高分低能,避免定勢思維,提倡創新思維和培養學生的創造能力培養。初中學生大量地模仿使學生帶來了不利的思維定勢,對高中學生帶來了保守的、僵化的思想,封閉了學生的豐富反對創造精神。如學生在解決:比較a與2a的大小時要不就錯、要不就答不全面。大多數學生不會分類討論。
3、學生自學能力的差異
初中學生自學那能力低,大凡考試中所用的解題方法和數學思想,在初中教師基本上已反復訓練,老師把學生要學生自己高度深刻理解的問題,都集中表現在他的耐心的講解和大量的訓練中,而且學生的聽課只需要熟記結論就可以做題(不全是),學生不需自學。但高中的知識面廣,知識要全部要教師訓練完高考中的習題類型是不可能的,只有通過較少的、較典型的一兩道例題講解去融會貫通這一類型習題,如果不自學、不靠大量的閱讀理解,將會使學生失去一類型習題的解法。另外,科學在不斷的發展,考試在不斷的改革,高考也隨著全面的改革不斷的深入,數學題型的開發在不斷的多樣化,近年來提出了應用型題、探索型題和開放型題,只有靠學生的自學去深刻理解和創新才能適應現代科學的發展。
其實,自學能力的提高也是一個人生活的需要,他從一個方面也代表了一個人的素養,人的一生只有18---24年時間是有導師的學習,其后半生,最精彩的人生是人在一生學習,靠的自學最終達到了自強。
4、思維習慣上的差異
初中學生由于學習數學知識的范圍小,知識層次低,知識面笮,對實際問題的思維受到了局限,就幾何來說,我們都接觸的是現實生活中三維空間,但初中只學了平面幾何,那么就不能對三維空間進行嚴格的邏輯思維和判斷。代數中數的范圍只限定在實數中思維,就不能深刻的解決方程根的類型等。高中數學知識的多元化和廣泛性,將會使學生全面、細致、深刻、嚴密的分析和解決問題。也將培養學生高素質思維。提高學生的思維遞進性。
5、定量與變量的差異
初中數學中,題目、已知和結論用常數給出的較多,一般地,答案是常數和定量。學生在分析問題時,大多是按定量來分析問題,這樣的思維和問題的解決過程,只能片面地、局限地解決問題,在高中數學學習中我們將會大量地、廣泛地應用代數的可變性去探索問題的普遍性和特殊性。如:求解一元二次方程時我們采用對方程ax2+bx+c=0(a≠0)的求解,討論它是否有根和有根時的所有根的情形,使學生很快的掌握了對所有一元二次方程的解法。另外,在高中學習中我們還會通過對變量的分析,探索出分析、解決問題的思路和解題所用的數學思想。
三、如何學好高中數學
良好的開端是成功的一半,高中數學課即將開始與初中知識有聯系,但比初中數學知識系統。高一數學中我們將學習函數,函數是高中數學的重點,它在高中數學中是起著提綱的作用,它融匯在整個高中數學知識中,其中有數學中重要的數學思想方法;如:函數與方程思想、數形結合思想等,它也是高考的重點,近年來,高考壓軸題都以函數題為考察方法的。高考題中與函數思想方法有關的習題占整個試題的60%以上。
1、有良好的學習興趣
兩千多年前孔子說過:“知之者不如好之者,好之者不如樂之者。”意思說,干一件事,知道它,了解它不如愛好它,愛好它不如樂在其中。“好”和“樂”就是愿意學,喜歡學,這就是興趣。興趣是最好的老師,有興趣才能產生愛好,愛好它就要去實踐它,達到樂在其中,有興趣才會形成學習的主動性和積極性。在數學學習中,我們把這種從自發的感性的樂趣出發上升為自覺的理性的“認識”過程,這自然會變為立志學好數學,成為數學學習的成功者。那么如何才能建立好的學習數學興趣呢?
(1)課前預習,對所學知識產生疑問,產生好奇心。
(2)聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預習中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養思考與老師同步性,提高精神,把老師對你的提問的評價,變為鞭策學習的動力。
(3)思考問題注意歸納,挖掘你學習的潛力。
(4)聽課中注意老師講解時的數學思想,多問為什么要這樣思考,這樣的方法怎樣是產生的?
(5)把概念回歸自然。所有學科都是從實際問題中產生歸納的,數學概念也回歸于現實生活,如角的概念、至交坐標系的產生、極坐標系的產生都是從實際生活中抽象出來的。只有回歸現實才能使對概念的理解切實可靠,在應用概念判斷、推理時會準確。
2、建立良好的學習數學習慣。
習慣是經過重復練習而鞏固下來的穩重持久的條件反射和自然需要。建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養自己再學習能力。
3、有意識培養自己的各方面能力
數學能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想象能力和分析解決問題能力共五大能力。這些能力是在不同的數學學習環境中得到培養的。在平時學習中要注意開發不同的學習場所,參與一切有益的學習實踐活動,如數學第二課堂、數學競賽、智力競賽等活動。平時注意觀察,比如,空間想象能力是通過實例凈化思維,把空間中的實體高度抽象在大腦中,并在大腦中進行分析推理。其它能力的培養都必須學習、理解、訓練、應用中得到發展。特別是,教師為了培養這些能力,會精心設計“智力課”和“智力問題”比如對習題的解答時的一題多解、舉一反三的訓練歸類,應用模型、電腦等多媒體教學等,都是為數學能力的培養開設的好課型,在這些課型中,學生務必要用全身心投入、全方位智力參與,最終達到自己各方面能力的全面發展。
四、其它注意事項
1、注意化歸轉化思想學習。
人們學習過程就是用掌握的知識去理解、解決未知知識。數學學習過程都是用舊知識引出和解決新問題,當新的知識掌握后再利用它去解決更新知識。初中知識是基礎,如果能把新知識用舊知識解答,你就有了化歸轉化思想了。可見,學習就是不斷地化歸轉化,不斷地繼承和發展更新舊知識。
2、學會數學教材的數學思想方法。
數學教材是采用蘊含披露的方式將數學思想溶于數學知識體系中,因此,適時對數學思想作出歸納、概括是十分必要的。概括數學思想一般可分為兩步進行:一是揭示數學思想內容規律,即將數學對象其具有的屬性或關系抽取出來,二是明確數學思想方法知識的聯系,抽取解決全體的框架。實施這兩步的措施可在課堂的聽講和課外的自學中進行。
課堂學習是數學學習的主戰場。課堂中教師通過講解、分解教材中的數學思想和進行數學技能地訓練,使高中學生學習所得到豐富的數學知識,教師組織的科研活動,使教材中的數學概念、定理、原理得到最大程度的理解、挖掘。如初中學習的相反數概念教學中,教師的課堂教學往往有以下理解:①從定義角度求
3、-5的相反數,相反數是的數是_____.②從數軸角度理解:什么樣的兩點表示數是互為相反數的。(關于原點對稱的點)③從絕對值角度理解:絕對值_______的兩個數是互為相反數的。④相加為零的兩個數互為相反數嗎?這些不同角度的教學會開闊學生思維,提高思維品質。望同學們把握好課堂這個學習的主戰場。
五、學數學的幾個建議。
1、記數學筆記,特別是對概念理解的不同側面和數學規律,教師為備戰高考而加的課外知識。
2、建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對癥下藥;解答問題完整、推理嚴密。
3、記憶數學規律和數學小結論。
4、與同學建立好關系,爭做“小老師”,形成數學學習“互助組”。
5、爭做數學課外題,加大自學力度。
6、反復鞏固,消滅前學后忘。
7、學會總結歸類。可:①從數學思想分類②從解題方法歸類③從知識應用上分類
同學們在高中有優美的學習環境,有一群樂于事業的熱心教師,全體教師經驗豐富,他們甘愿為你們做鋪路石直至你們走進高等學校大門。我們數學組的全體教師一定會使你們成為數學學習的成功
第四篇:科學 第一課 吹泡泡
科學
第一課
吹泡泡
活動目標:1探索泡泡水的制作方法和怎么使泡泡變大和形狀發生變化。2感受成功的快樂,對科學實驗的興趣。活動準備:洗衣粉
洗潔精
肥皂 洗發水
沐浴露 吸管 方便杯 活動過程: 1活動導入:聽音樂,老師吹泡泡帶動孩子抓泡泡,激發做泡泡水的欲望。你們也想吹泡泡嗎?那么,我們一起來做好嗎?什么東西可以產生泡泡呢?讓孩子暢所欲言。
2猜一猜:哪些東西可以制作泡泡水?單獨用純凈水可以嗎? 3試一試: 上道具,分組依次實驗。將學生分成5組,發放實驗用具,講解試驗方法。
4學生試吹,老師質疑:為什么粗的管子吹出來的泡泡比較大,細管子吹出來的泡泡比較小呢? 5比一比:小組互換溶液,嘗試用兩種溶液混合做泡泡水,請兩位學生比試誰吹的大,吹得多。
活動結束:生活中有好多溶液和水混合后變得有張力,當你使勁吹的時候它會變成一個個大大小小的泡泡,真的好神奇!老師放音樂:吹泡泡 一起玩泡泡水 回收剩余用具,洗手。
第五篇:小學科學開學第一課
科學開學第一課
(2018-2019學年第一學期)
一、教學目標
1、通過師生交流,營造溫馨舒適的學習氛圍。
2、通過師生討論,了解學生以往的科學課學習方法以及對科學的認知。
3、通過對教材的梳理,明確本學期的學習目標及要求。
4、通過科學視頻,認識到學習科學與生活密不可分,激發學習興趣。
二、教學過程
1、自我介紹
同學們,很高興認識大家!我是你們的科學老師,接下來的一年里,將由我來和大家一起進行神奇的“科學之旅”。讓我們珍惜這份相遇,在這難得的相遇中把本冊教材學好,好嗎?如果在學習上有什么問題可以隨時找我,很樂于為大家解決問題!
2、說一說“我眼中的科學”
知道老師為什么選擇科學嗎?因為在老師的眼中科學是神奇的,充滿魔力的。它不僅能告訴我們身體里的各種秘密,比如我為什么見到大家這么高興,原來是因為體內的多巴胺分泌所致,為什么我這次感冒只是打噴嚏,而上次卻發燒了,還能知道我的影子怎么來的等等,所以在大學的時候老師選擇了深入學習這門學科。那你能說一說你眼中的科學嗎?(學生談一談自己對科學的認識以及自己的想法)
3、無處不在的科學
從大家的談話中就知道,科學是無處不在的!(如:……)
4、實驗是科學的基礎
提問:這么多的科學知識都是怎么來的呢?大家都有聽過“實踐是檢驗真理的唯一標準”這句話吧,也就是說,這些科學知識大都都是通過實驗驗證出來的,所以,要學習科學知識必然離不開實驗。這學期我們也要用實驗來學習知識,大家有興趣嗎?
下面具體講一講實驗課的要求:(1)上課三必備:課本、能力訓練、筆(2)排隊快、靜、齊
(3)小組實驗分工明確,有合作(4)實驗記錄真實、詳細(5)保持實驗室清潔衛生
大家能做到嗎?(能)那我們下節課見!
萬安一分校 楊淑霞 2018年9月