第一篇:高考知識點數(shù)學(xué)
高中數(shù)學(xué)知識點總結(jié)
1.對于集合,一定要抓住集合的代表元素,及元素的“確定性、互異性、無序性”。
2.進行集合的交、并、補運算時,不要忘記集合本身和空集 的特殊情況。
注重借助于數(shù)軸和文氏圖解集合問題。
空集是一切集合的子集,是一切非空集合的真子集。
4.你會用補集思想解決問題嗎?(排除法、間接法)
5.可以判斷真假的語句叫做命題,邏輯連接詞有“或”,“且”和
“非.若p q為真,當(dāng)且僅當(dāng)p、q均為真
6.命題的四種形式及其相互關(guān)系是什么?
(互為逆否關(guān)系的命題是等價命題。)
原命題與逆否命題同真、同假;逆命題與否命題同真同假。
7.對映射的概念了解嗎?映射f:A→B,是否注意到A 中元素的任意性和B 中與之對應(yīng)元素的哪幾種對應(yīng)能構(gòu)成映射?
(一對一,多對一,允許B 中有元素?zé)o原象。)
8.函數(shù)的三要素是什么?如何比較兩個函數(shù)是否相同?
(定義域、對應(yīng)法則、值域)
9.求函數(shù)的定義域有哪些常見類型?
10.如何求復(fù)合函數(shù)的定義域?
11.求一個函數(shù)的解析式或一個函數(shù)的反函數(shù)時,注明函數(shù)的定義域了嗎?
12.反函數(shù)存在的條件是什么?
(一一對應(yīng)函數(shù))
14.如何用定義證明函數(shù)的單調(diào)性?
(取值、作差、判正負)
15.如何利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性?
16.你熟悉周期函數(shù)的定義嗎?
17.你掌握常用的圖象變換了嗎?
f(x)與f(x)的圖象關(guān)于y軸對稱
f(x)與 f(x)的圖象關(guān)于x軸對稱
f(x)與 f(x)的圖象關(guān)于原點對稱
f(x)與f 1(x)的圖象關(guān)于直線y ? x 對稱
f(x)與f(2a x)的圖象關(guān)于直線x ? a 對稱
f(x)與 f(2a x)的圖象關(guān)于點(a,0)對稱)? 0
18.指數(shù)函數(shù)、對數(shù)函數(shù)【由圖象記性質(zhì)!(注意底數(shù)的限定!)】
19.如何解抽象函數(shù)問題?
(賦值法、結(jié)構(gòu)變換法)
20.掌握求函數(shù)值域的常用方法了嗎?
(二次函數(shù)法、配方法,反函數(shù)法,換元法,均值定理法,判別式法,利用函數(shù)單調(diào)性法等。)
21.熟記三角函數(shù)的定義,單位圓中三角函數(shù)線的定義
22.你能迅速畫出正弦、余弦、正切函數(shù)的圖象嗎?并由圖象寫出單調(diào)區(qū)間、對稱點、對稱軸嗎
23.在解含有正、余弦函數(shù)的問題時,你注意(到)運用函數(shù)的有界性了嗎?
(平移變換、伸縮變換)
24.熟練掌握兩角和、差、倍、降冪公式及其逆向應(yīng)用了嗎?
應(yīng)用以上公式對三角函數(shù)式化簡。(化簡要求:項數(shù)最少、函數(shù)種類最少,分母中不含三角求值,盡可能求值。)
具體方法:
(1)角的變換:
(2)名的變換:化弦或化切
(3)次數(shù)的變換:升、降冪公式
(4)形的變換:統(tǒng)一函數(shù)形式,注意運用代數(shù)運算。
(應(yīng)用:已知兩邊一夾角求第三邊;已知三邊求角。)
25.利用均值不等式:
(一正、二定、三相等)
26.不等式證明的基本方法都掌握了嗎?
(比較法、分析法、綜合法、數(shù)學(xué)歸納法等)
并注意簡單放縮法的應(yīng)用。
27.解分式不等式的一般步驟是什么?
(移項通分,分子分母因式分解,x 的系數(shù)變?yōu)?,穿軸法解得結(jié)果。)
28.用“穿軸法”解高次不等式——“奇穿,偶切”,從最大根的右上方開始
29.解含有參數(shù)的不等式要注意對字母參數(shù)的討論
30.對含有兩個絕對值的不等式如何去解?
(找零點,分段討論,去掉絕對值符號,最后取各段的并集。)
(按不等號方向放縮)
31.你熟悉求數(shù)列通項公式的常用方法嗎?
(1)求差(商)法
(2)疊乘法
(3)等差型遞推公式
(4)等比型遞推公式
(5)倒數(shù)法
32.你熟悉求數(shù)列前n 項和的常用方法嗎?
(1)裂項法:把數(shù)列各項拆成兩項或多項之和,使之出現(xiàn)成對互為相反數(shù)的項。
(2)錯位相減法:
33.你知道儲蓄、貸款問題嗎?
△零存整取儲蓄(單利)本利和計算模型:
若每期存入本金p 元,每期利率為r,n 期后,本利和為:
△若按復(fù)利,如貸款問題——按揭貸款的每期還款計算模型(按揭貸款——分期等額歸還本息種類)
若貸款(向銀行借款)p 元,采用分期等額還款方式,從借款日算起,一期(如一年)后為第款日,如此下去,第n 次還清。如果每期利率為r(按復(fù)利),那么每期應(yīng)還x 元,滿足
p——貸款數(shù),r——利率,n——還款期數(shù)
34.解排列、組合問題的依據(jù)是:分類相加,分步相乘,有序排列,無序組合。
(1)分類計數(shù)原理
(2)排列: 從n 個不同元素中,任取m(m ≤ n)個元素,按照一定的順序列,叫做從n個不同元素中取出m個元素的一個排列,所有排列的個數(shù)記為
(3)組合: 從n 個不同元素中任取m(m ≤ n)個元素并組成一組,叫做從同元素中取出m個元素的一個組合,所有組合個數(shù)記為C
35.解排列與組合問題的規(guī)律是:
相鄰問題捆綁法;相間隔問題插空法;定位問題優(yōu)先法;多元問題分類法;至多至少問題間同元素分組可采用隔板法,數(shù)量不大時可以逐一排出結(jié)果。
36.抽樣方法主要有:簡單隨機抽樣(抽簽法、隨機數(shù)表法)常常用于總體個數(shù)較少時,它的特總體中逐個抽取;系統(tǒng)抽樣,常用于總體個數(shù)較多時,它的主要特征是均衡成若干部分,每部分只分層抽樣,主要特征是分層按比例抽樣,主要用于總體中有明顯差異,它們的共同特征是每個個體的概率相等,體現(xiàn)了抽樣的客觀性和平等性。
37.對總體分布的估計——用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估的期望和方差。
要熟悉樣本頻率直方圖的作法:
列頻率分布表;
畫頻率直方圖。
38.你對向量的有關(guān)概念清楚嗎?
(1)向量——既有大小又有方向的量。
(2)向量的模——有向線段的長度
(3)單位向量
(4)零向量
(5)相等的向量:長度相等、方向相同
在此規(guī)定下向量可以在平面(或空間)平行移動而不改變。
(6)并線向量(平行向量)——方向相同或相反的向量。
規(guī)定零向量與任意向量平行。
(7)向量的加、減法
(8)平面向量基本定理(向量的分解定理)
(9)向量的坐標(biāo)表示
39.平面向量的數(shù)量積
(1)a · b 或a · b 叫做向量a 與b 的數(shù)量積(或內(nèi)積)。
三角形的重心、垂心、外心、內(nèi)心及其性質(zhì)嗎?
40.立體幾何中平行、垂直關(guān)系證明的思路清楚嗎?
三垂線定理(及逆定理):?
41.三類角的定義及求法
(1)異面直線所成的角θ,0°<θ≤90°
(2)直線與平面所成的角θ,0°≤θ≤90°
(3)二面角:(三垂線定理法:A∈α作或證AB⊥β于B,作BO⊥棱于O,連AO,則AO⊥棱l,∴∠AOB 求。)
三類角的求法:
①找出或作出有關(guān)的角。
②證明其符合定義,并指出所求作的角。
③計算大小(解直角三角形,或用余弦定理)。
空間有幾種距離?如何求距離?
點與點,點與線,點與面,線與線,線與面,面與面間距離。
將空間距離轉(zhuǎn)化為兩點的距離,構(gòu)造三角形,解三角形求線段的長(如:三垂線定理法,或者轉(zhuǎn)化法)。
42.你是否準(zhǔn)確理解正棱柱、正棱錐的定義并掌握它們的性質(zhì)?
正棱柱——底面為正多邊形的直棱柱
正棱錐——底面是正多邊形,頂點在底面的射影是底面的中心。
正棱錐的計算集中在四個直角三角形中:
43.球有哪些性質(zhì)?
(1)球心和截面圓心的連線垂直于截面r ? R 2 d
2(2)球面上兩點的距離是經(jīng)過這兩點的大圓的劣弧長。為此,要找球心角!
(5)球內(nèi)接長方體的對角線是球的直徑。正四面體的外接球半徑R 與內(nèi)切球半徑r 之比為R:1。
(4)到角公式:
夾角公式
45.如何判斷兩直線平行、垂直?
46.怎樣判斷直線l 與圓C 的位置關(guān)系?
圓心到直線的距離與圓的半徑比較。
直線與圓相交時,注意利用圓的“垂徑定理”。
47.怎樣判斷直線與圓錐曲線的位置?
聯(lián)立方程組關(guān)于(或)的一元二次方程“ ”
48.分清圓錐曲線的定義
第一定義
橢圓,雙曲線,拋物線
49.與雙曲線有相同焦點的雙曲線系為x
50.在圓錐曲線與直線聯(lián)立求解時,消元后得到的方程,要注意其二次項系數(shù)是否為零?△≥0
51.會用定義求圓錐曲線的焦半徑嗎?
通徑是拋物線的所有焦點弦中最短者;以焦點弦為直徑的圓與準(zhǔn)線相切。
52.有關(guān)中點弦問題可考慮用“代點法”。
53.求軌跡方程的常用方法有哪些?注意討論范圍。
(直接法、定義法、轉(zhuǎn)移法、參數(shù)法)
54.對線性規(guī)劃問題:作出可行域,作出以目標(biāo)函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出數(shù)的最值。
第二篇:高考數(shù)學(xué)知識點歸納
高三學(xué)生很快就會面臨繼續(xù)學(xué)業(yè)或事業(yè)的選擇。面對重要的人生選擇,是否考慮清楚了?這對于沒有社會經(jīng)驗的學(xué)生來說,無疑是個困難的想選擇。下面小編給大家分享一些高考數(shù)學(xué)知識點歸納,希望能夠幫助大家,歡迎閱讀!
高考數(shù)學(xué)知識點1
一、高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)
主要是考函數(shù)和導(dǎo)數(shù),因為這是整個高中階段中最核心的部分,這部分里還重點考察兩個方面:第一個函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個分布重點還包含兩個分析。
二、平面向量和三角函數(shù)
對于這部分知識重點考察三個方面:是劃減與求值,第一,重點掌握公式和五組基本公式;第二,掌握三角函數(shù)的圖像和性質(zhì),這里重點掌握正弦函數(shù)和余弦函數(shù)的性質(zhì);第三,正弦定理和余弦定理來解三角形,這方面難度并不大。
三、數(shù)列
數(shù)列這個板塊,重點考兩個方面:一個通項;一個是求和。
四、空間向量和立體幾何
在里面重點考察兩個方面:一個是證明;一個是計算。
五、概率和統(tǒng)計
概率和統(tǒng)計主要屬于數(shù)學(xué)應(yīng)用問題的范疇,需要掌握幾個方面:……等可能的概率;……事件;獨立事件和獨立重復(fù)事件發(fā)生的概率。
六、解析幾何
這部分內(nèi)容說起來容易做起來難,需要掌握幾類問題,第一類直線和曲線的位置關(guān)系,要掌握它的通法;第二類動點問題;第三類是弦長問題;第四類是對稱問題;第五類重點問題,這類題往往覺得有思路卻沒有一個清晰的答案,但需要要掌握比較好的算法,來提高做題的準(zhǔn)確度。
七、壓軸題
同學(xué)們在最后的備考復(fù)習(xí)中,還應(yīng)該把重點放在不等式計算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時多做些壓軸題真題,爭取能解題就解題,能思考就思考。
高考數(shù)學(xué)直線方程知識點:什么是直線方程
從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標(biāo)系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯(lián)立求解,當(dāng)這個聯(lián)立方程組無解時,兩直線平行;有無窮多解時,兩直線重合;只有一解時,兩直線相交于一點。常用直線向上方向與X 軸正向的 夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對于X軸)的傾斜程度。可以通過斜率來判斷兩條直線是否互相平行或互相垂直,也可計算它們的交角。直線與某個坐標(biāo)軸的交點在該坐標(biāo)軸上的坐標(biāo),稱為直線在該坐標(biāo)軸上的截距。直線在平面上的位置,由它的斜率和一個截距完全確定。在空間,兩個平面相交時,交線為一條直線。因此,在空間直角坐標(biāo)系中,用兩個表示平面的三元一次方程聯(lián)立,作為它們相交所得直線的方程。
高考數(shù)學(xué)知識點2
一、求動點的軌跡方程的基本步驟
⒈建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動點M的坐標(biāo);
⒉寫出點M的集合;
⒊列出方程=0;
⒋化簡方程為最簡形式;
⒌檢驗。
二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點法、參數(shù)法和交軌法等。
⒈直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
⒉定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。
⒊相關(guān)點法:用動點Q的坐標(biāo)x,y表示相關(guān)點P的坐標(biāo)x0、y0,然后代入點P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點法。
⒋參數(shù)法:當(dāng)動點坐標(biāo)x、y之間的直接關(guān)系難以找到時,往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
⒌交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。
-直譯法:求動點軌跡方程的一般步驟
①建系——建立適當(dāng)?shù)淖鴺?biāo)系;
②設(shè)點——設(shè)軌跡上的任一點P(x,y);
③列式——列出動點p所滿足的關(guān)系式;
④代換——依條件的特點,選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;
⑤證明——證明所求方程即為符合條件的動點軌跡方程。
高考數(shù)學(xué)知識點3
第一、高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)。
主要是考函數(shù)和導(dǎo)數(shù),這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的問題,這是第一個板塊。
第二、平面向量和三角函數(shù)。
重點考察三個方面:一個是劃減與求值,第一,重點掌握公式,重點掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來解三角形。難度比較小。
第三、數(shù)列。
數(shù)列這個板塊,重點考兩個方面:一個通項;一個是求和。
第四、空間向量和立體幾何,在里面重點考察兩個方面:一個是證明;一個是計算。
第五、概率和統(tǒng)計。
這一板塊主要是屬于數(shù)學(xué)應(yīng)用問題的范疇,當(dāng)然應(yīng)該掌握下面幾個方面,第一……等可能的概率,第二………事件,第三是獨立事件,還有獨立重復(fù)事件發(fā)生的概率。
第六、解析幾何。
這是我們比較頭疼的問題,是整個試卷里難度比較大,計算量的題,當(dāng)然這一類題,我總結(jié)下面五類常考的題型,包括:
第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容。考生應(yīng)該掌握它的通法;
第二類我們所講的動點問題;
第三類是弦長問題;
第四類是對稱問題,這也是2008年高考已經(jīng)考過的一點;
第五類重點問題,這類題時往往覺得有思路,但是沒有答案,當(dāng)然這里我相等的是,這道題盡管計算量很大,但是造成計算量大的原因,往往有這個原因,我們所選方法不是很恰當(dāng),因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準(zhǔn)確度,這是我們所講的第六大板塊。
第七、押軸題。
考生在備考復(fù)習(xí)時,應(yīng)該重點不等式計算的方法,雖然說難度比較大,我建議考生,采取分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點。
高考數(shù)學(xué)知識點4
(一)導(dǎo)數(shù)第一定義
設(shè)函數(shù)y=f(x)在點x0的某個領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有增量△x(x0+△x也在該鄰域內(nèi))時,相應(yīng)地函數(shù)取得增量△y=f(x0+△x)-f(x0);如果△y與△x之比當(dāng)△x→0時極限存在,則稱函數(shù)y=f(x)在點x0處可導(dǎo),并稱這個極限值為函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)記為f'(x0),即導(dǎo)數(shù)第一定義
(二)導(dǎo)數(shù)第二定義
設(shè)函數(shù)y=f(x)在點x0的某個領(lǐng)域內(nèi)有定義,當(dāng)自變量x在x0處有變化△x(x-x0也在該鄰域內(nèi))時,相應(yīng)地函數(shù)變化△y=f(x)-f(x0);如果△y與△x之比當(dāng)△x→0時極限存在,則稱函數(shù)y=f(x)在點x0處可導(dǎo),并稱這個極限值為函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)記為f'(x0),即導(dǎo)數(shù)第二定義
(三)導(dǎo)函數(shù)與導(dǎo)數(shù)
如果函數(shù)y=f(x)在開區(qū)間I內(nèi)每一點都可導(dǎo),就稱函數(shù)f(x)在區(qū)間I內(nèi)可導(dǎo)。這時函數(shù)y=f(x)對于區(qū)間I內(nèi)的每一個確定的x值,都對應(yīng)著一個確定的導(dǎo)數(shù),這就構(gòu)成一個新的函數(shù),稱這個函數(shù)為原來函數(shù)y=f(x)的導(dǎo)函數(shù),記作y',f'(x),dy/dx,df(x)/dx。導(dǎo)函數(shù)簡稱導(dǎo)數(shù)。
(四)單調(diào)性及其應(yīng)用
1.利用導(dǎo)數(shù)研究多項式函數(shù)單調(diào)性的一般步驟
(1)求f¢(x)
(2)確定f¢(x)在(a,b)內(nèi)符號(3)若f¢(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f¢(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)
2.用導(dǎo)數(shù)求多項式函數(shù)單調(diào)區(qū)間的一般步驟
(1)求f¢(x)
(2)f¢(x)>0的解集與定義域的交集的對應(yīng)區(qū)間為增區(qū)間;f¢(x)<0的解集與定義域的交集的對應(yīng)區(qū)間為減區(qū)間
高考數(shù)學(xué)知識點5
一、排列
1定義
(1)從n個不同元素中取出m個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一排列。
(2)從n個不同元素中取出m個元素的所有排列的個數(shù),叫做從n個不同元素中取出m個元素的排列數(shù),記為Amn.2排列數(shù)的公式與性質(zhì)
(1)排列數(shù)的公式:Amn=n(n-1)(n-2)…(n-m+1)
特例:當(dāng)m=n時,Amn=n!=n(n-1)(n-2)…×3×2×1
規(guī)定:0!=1
二、組合1定義
(1)從n個不同元素中取出m個元素并成一組,叫做從n個不同元素中取出m個元素的一個組合(2)從n個不同元素中取出m個元素的所有組合的個數(shù),叫做從n個不同元素中取出m個元素的組合數(shù),用符號Cmn表示。
2比較與鑒別
由排列與組合的定義知,獲得一個排列需要“取出元素”和“對取出元素按一定順序排成一列”兩個過程,而獲得一個組合只需要“取出元素”,不管怎樣的順序并成一組這一個步驟。
排列與組合的區(qū)別在于組合僅與選取的元素有關(guān),而排列不僅與選取的元素有關(guān),而且還與取出元素的順序有關(guān)。因此,所給問題是否與取出元素的順序有關(guān),是判斷這一問題是排列問題還是組合問題的理論依據(jù)。
三、排列組合與二項式定理知識點
1.計數(shù)原理知識點
①乘法原理:N=n1·n2·n3·…nM(分步)②加法原理:N=n1+n2+n3+…+nM(分類)
2.排列(有序)與組合(無序)
Anm=n(n-1)(n-2)(n-3)-…(n-m+1)=n!/(n-m)!Ann=n!
Cnm=n!/(n-m)!m!
Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k!
3.排列組合混合題的解題原則:先選后排,先分再排
排列組合題的主要解題方法:優(yōu)先法:以元素為主,應(yīng)先滿足特殊元素的要求,再考慮其他元素.以位置為主考慮,即先滿足特殊位置的要求,再考慮其他位置.捆綁法(集團元素法,把某些必須在一起的元素視為一個整體考慮)
插空法(解決相間問題)間接法和去雜法等等
在求解排列與組合應(yīng)用問題時,應(yīng)注意:
(1)把具體問題轉(zhuǎn)化或歸結(jié)為排列或組合問題;
(2)通過分析確定運用分類計數(shù)原理還是分步計數(shù)原理;
(3)分析題目條件,避免“選取”時重復(fù)和遺漏;
(4)列出式子計算和作答.經(jīng)常運用的數(shù)學(xué)思想是:
①分類討論思想;②轉(zhuǎn)化思想;③對稱思想.4.二項式定理知識點:
①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn
特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn
②主要性質(zhì)和主要結(jié)論:對稱性Cnm=Cnn-m
二項式系數(shù)在中間。(要注意n為奇數(shù)還是偶數(shù),答案是中間一項還是中間兩項)
所有二項式系數(shù)的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n
奇數(shù)項二項式系數(shù)的和=偶數(shù)項而是系數(shù)的和
Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1
③通項為第r+1項:Tr+1=Cnran-rbr作用:處理與指定項、特定項、常數(shù)項、有理項等有關(guān)問題。
5.二項式定理的應(yīng)用:解決有關(guān)近似計算、整除問題,運用二項展開式定理并且結(jié)合放縮法證明與指數(shù)有關(guān)的不等式。
6.注意二項式系數(shù)與項的系數(shù)(字母項的系數(shù),指定項的系數(shù)等,指運算結(jié)果的系數(shù))的區(qū)別,在求某幾項的系數(shù)的和時注意賦值法的應(yīng)用。
高考數(shù)學(xué)知識點歸納
第三篇:數(shù)學(xué)高考知識點目錄
一、集合列舉法、描述法、韋恩圖法、交集、并集、補集
簡易邏輯:
命題:原命題、逆命題、否命題、逆否命題、全稱量詞、存在量詞
二、函數(shù)概念和基本初等函數(shù)(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù))
三、立體幾何初步
四、平面解析幾何初步
五、算法初步
六、統(tǒng)計
七、概率
八、基本初等函數(shù)(三角函數(shù))
九、平面向量十、三角恒等變換
十一、解三角形
十二、數(shù)列
首項、尾項、公比、公差、定義法、公式法、裂項相消法、錯位相減法、倒序相減法、分組求和法、累加累積法、構(gòu)造法、歸納猜想證明法。
十三、不等式
1.對稱性、傳遞性、可加性、可乘性
2.同向相加、異向相減
3.基本不等式:a2+b2≥2ab(a、b∈R)
4.可推廣為a2+b2≥2▕ab▏
5.對于一元二次不等式ax2+bx+c>0或者ax2+bx+c<0(a>0)的解集
6.線性規(guī)劃:
① 確定未知數(shù)及目標(biāo)函數(shù)
② 確定線性約束條件,并畫出可行域
③ 目標(biāo)函數(shù):Z=aX+bY,再化作Y=-a/bx+z/b
④ 作平行線
7.絕對值不等式
十四、常用邏輯用語
十五、圓錐曲線與方程
十六、導(dǎo)數(shù)及其應(yīng)用
十七、統(tǒng)計案例
十八、推理與證明
十九、直接證明和間接證明
二十、數(shù)系的擴充與復(fù)數(shù)的引入
虛數(shù)單位、復(fù)數(shù)相等、共軛復(fù)數(shù)、復(fù)數(shù)的坐標(biāo)表示、復(fù)數(shù)的模
二十一、框圖
二十二、幾何證明
二十三、坐標(biāo)系與參數(shù)方程
第四篇:2021年高考數(shù)學(xué)知識點歸納總結(jié)
2021年高考數(shù)學(xué)知識點歸納總結(jié)你知道嗎?高中數(shù)學(xué)在學(xué)習(xí)的過程中,有很多知識點常考點。一起來看看2021年高考數(shù)學(xué)知識點歸納總結(jié),歡迎查閱!
高考數(shù)學(xué)的答題順序是什么
高考數(shù)學(xué)的答題順序:先易后難
就是先做簡單題,再做綜合題,應(yīng)根據(jù)自己的實際,果斷跳過啃不動的題目,從易到難,也要注意認真對待每一道題,力求有效,不能走馬觀花,有難就退,傷害解題情緒。
高考數(shù)學(xué)的答題順序:先熟后生
通覽全卷,可以得到許多有利的積極因素,也會看到一些不利之處,對后者,不要驚慌失措,應(yīng)想到試題偏難對所有考生也難,通過這種暗示,確保情緒穩(wěn)定,對全卷整體把握之后,就可實施先熟后生的方法,即先做那些內(nèi)容掌握比較到家、題型結(jié)構(gòu)比較熟悉、解題思路比較清晰的題目。這樣,在拿下熟題的同時,可以使思維流暢、超常發(fā)揮,達到拿下中高檔題目的目的。
高考數(shù)學(xué)的答題順序:先同后異
先做同科同類型的題目,思考比較集中,知識和方法的溝通比較容易,有利于提高單位時間的效益。高考題一般要求較快地進行“興奮灶”的轉(zhuǎn)移,而“先同后異”,可以避免“興奮灶”過急、過頻的跳躍,從而減輕大腦負擔(dān),保持有效精力。
點擊查看:高中數(shù)學(xué)知識點總結(jié)及復(fù)習(xí)資料
高考數(shù)學(xué)的答題順序:先小后大
小題一般是信息量少、運算量小,易于把握,不要輕易放過,應(yīng)爭取在大題之前盡快解決,從而為解決大題贏得時間,創(chuàng)造一個寬松的心理基矗
高考數(shù)學(xué)的答題順序:先點后面
近年的高考數(shù)學(xué)解答題多呈現(xiàn)為多問漸難式的“梯度題”,解答時不必一氣審到底,應(yīng)走一步解決一步,而前面問題的解決又為后面問題準(zhǔn)備了思維基礎(chǔ)和解題條件,所以要步步為營,由點到面6.先高后低。即在考試的后半段時間,要注重時間效益,如估計兩題都會做,則先做高分題;估計兩題都不易,則先就高分題實施“分段得分”,以增加在時間不足前提下的得分。
高考數(shù)學(xué)知識點歸納總結(jié)
復(fù)習(xí)忌諱一
一忌“多而不精,顧此失彼”
許多同學(xué)(更多的是家長)為了在高考中領(lǐng)先于其它人,總是絞盡腦汁想方設(shè)法要比別人學(xué)得多,這無疑是件好事。但他們最后所采用的方法卻往往是對他們最為不利的,那就是:購買和選擇大量的復(fù)習(xí)資料和講義,花去比別人多得多的時間,沒日沒夜的做,他們的精神非常可貴,他們的毅力非常驚人,其效果卻讓他們自己都非常傷心失望。有些家長甚至說:“我的小孩已經(jīng)盡力了,還是沒有進步,一定是太笨了”。其實,他們犯了很多科學(xué)性的錯誤,卻不自知。
1.高中階段所學(xué)的知識具有一定的范圍,再多的復(fù)習(xí)資料、講義,也只不過是這一范圍內(nèi)的知識的重復(fù)和變形。你所做的很多題目都代表相同的知識點,代表相同的方法,對于那些你已經(jīng)掌握的`知識、方法,做再多的題目還是于事無補,簡單無聊的重復(fù)除了使你身陷題海,不能自拔,耗盡了你的精力不算,還使你失去了信心,因為你比別人努力,卻沒有得到相應(yīng)的回報。
2.每一套復(fù)習(xí)資料都經(jīng)過編纂人員的反復(fù)推敲,仔細研究,都很系統(tǒng)地將相應(yīng)的知識點按照一定的規(guī)律和方法融會于其中。所以同學(xué)只要研究好一兩套具有代表性的復(fù)習(xí)資料,你該學(xué)的一定都能學(xué)到,該會的都能學(xué)會。
3.“丟了西瓜,撿了芝麻”的故事告訴我們,不能太貪心,這本資料也好,那本資料也不錯,好的資料太多了,同學(xué)們的精力是有限的,而題目是無限的,以有限的精力去做無限的題目,永遠沒有盡頭,必然導(dǎo)致你對每一套資料都沒有很好的完成,都沒有系統(tǒng)地研究,反而會因為各種資料的風(fēng)格、體系的不同,而使你的學(xué)習(xí)失去全面性、系統(tǒng)性,多而不精,顧此失彼,是高三復(fù)習(xí)的大敵。
復(fù)習(xí)忌諱二
二忌“學(xué)而不思,囫圇吞棗”
導(dǎo)致很多同學(xué)身陷題海,不能自拔的另一個重要原因,就是“學(xué)而不思”,題目是知識的載體,有的同學(xué)做了很多題目,卻仍然沒有明白它們代表同一知識點,不但不能舉一反三,甚至舉三不能反一,其真正的原因,是他們沒有養(yǎng)成思考、總結(jié)的習(xí)慣。華羅庚先生說過:“譬如我們讀一本書,厚厚的一本,再加上我們自己的注解,就愈讀愈厚,我們自己知道的東西也就‘由薄到厚’了”。“‘學(xué)’并不到此為止,‘懂’并不到此為透,所謂由厚到薄是消化提煉的過程,即把那些學(xué)到的東西,經(jīng)過咀嚼、消化,融會貫通,提煉出關(guān)鍵性的東西來。”這段話充分說明了思考在學(xué)習(xí)過程中的重要性。以下是“學(xué)而不思”的幾種具體表現(xiàn),也許你就有過這樣的經(jīng)歷。
1.上課以為自己聽懂了,可你仍然作業(yè)不會做,去問老師的時候,老師告訴你,這就是上課講的例題或例題的變形;總是感到有做不完的題目,覺得每個題目都很新鮮,常常遇到那種好象從未見過的題型;
2.從來不去想,怎樣發(fā)展自己的強項,怎樣彌補自己的不足,只知道老師叫干什么就干什么,布置了作業(yè)就做,發(fā)了試卷就考。
3.考試的時候突然覺得這就是老師講的某個典型的東西,卻有那種話到嘴邊說不出的感覺,或者豁然開朗、猛然醒悟的感覺;
4.當(dāng)老師要你總結(jié)一類題目的解題方法和策略或要你總結(jié)某一章所學(xué)內(nèi)容的時候,你總是支支唔唔無話可說;
5.一個自己所犯的錯誤,只是輕輕的告訴自己,下次要注意,只簡單地歸結(jié)為粗心,但下次還是犯同樣的錯誤。
學(xué)而不思,往往就囫圇吞棗,對于外界的東西,來者不拒,只知接受,不會挑選,只知記憶,不會總結(jié)。你沒有在學(xué)習(xí)過程中“加入自己的注解”,怎能做到華羅庚先生說的“由薄到厚”,你不會“提煉出關(guān)鍵性的東西來”,就更不能“由厚到薄”,找到問題地本質(zhì),那么,你的學(xué)習(xí)就很難取得質(zhì)的飛躍。
復(fù)習(xí)忌諱三
三忌“好高騖遠,忽視雙基”
很多同學(xué)都知道好高務(wù)遠就是眼高手低、不自量力的代名詞,但卻不知道什么是好高騖遠。
有的同學(xué)由于自己覺得成績很好,所以,總認為基礎(chǔ)的東西,太簡單,研究雙基是浪費時間;有的同學(xué)對自己的定位較高,認為自己研究的應(yīng)該是那些高于其它同學(xué)的,別人覺得有困難的東西;有的同學(xué)總是嫌老師講得太簡單或者太慢,甚至有的同學(xué)成績不怎么樣,也瞧不起基礎(chǔ)的東西。其實,這些都是好高騖遠。
最深刻的道理,往往存在于最簡單的事實之中。一切高樓大廈都是平地而起的,一切高深的理論,都是由基礎(chǔ)理論總結(jié)出來的。同學(xué)們可以仔細地分析老師講的課,無論是多難的題目,最后總是深入淺出,歸結(jié)到課本上的知識點,無論是多簡單的題目,總能指出其中所蘊藏的科學(xué)道理,而大多數(shù)同學(xué),只聽到老師講的是題目,常常認為此題已懂,不需要再聽,而忽略了老師闡述“來自基礎(chǔ),回歸基礎(chǔ)”的道理的關(guān)鍵地方。所以大家一定要重視雙基,千萬別好高務(wù)遠。
四忌“敷衍了事,得過且過”
以下是對某校2020屆高三300名同學(xué)關(guān)于作業(yè)問題的兩項調(diào)查:(數(shù)值為人數(shù)比例:做到的/總?cè)藬?shù))
你做作業(yè)是為了什么?
檢測自己究竟學(xué)會了沒有占91/30.33%
因為老師要檢查占143/47.67%
怕被家長、老師批評的占38/12.67%
說不清什么原因占28/9.33%
你的作業(yè)是怎樣完成的?
復(fù)習(xí),再聯(lián)系課上內(nèi)容獨立完成占55/18.33%
高中高三數(shù)學(xué)的知識點歸納
一、直線與圓:
1、直線的傾斜角 的范圍是
在平面直角坐標(biāo)系中,對于一條與 軸相交的直線,如果把 軸繞著交點按逆時針方向轉(zhuǎn)到和直線 重合時所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。當(dāng)直線 與軸重合或平行時,規(guī)定傾斜角為0;
2、斜率:已知直線的傾斜角為,且90,則斜率k=tan.過兩點(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導(dǎo)的方法。
3、直線方程:⑴點斜式:直線過點 斜率為,則直線方程為 ,⑵斜截式:直線在 軸上的截距為 和斜率,則直線方程為
4、,,① ∥ ,;②.直線 與直線 的位置關(guān)系:
(1)平行 A1/A2=B1/B2 注意檢驗(2)垂直 A1A2+B1B2=05、點 到直線 的距離公式;
兩條平行線 與 的距離是
6、圓的標(biāo)準(zhǔn)方程:.⑵圓的一般方程:
注意能將標(biāo)準(zhǔn)方程化為一般方程
7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長問題.① 相離② 相切③ 相交
9、解決直線與圓的關(guān)系問題時,要充分發(fā)揮圓的`平面幾何性質(zhì)的作用(如半徑、半弦長、弦心距構(gòu)成直角三角形)直線與圓相交所得弦長
二、圓錐曲線方程:
1、橢圓: ①方程(a0)注意還有一個;②定義: |PF1|+|PF2|=2a ③ e= ④長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;
2、雙曲線:①方程(a,b0)注意還有一個;②定義: ||PF1|-|PF2||=2a ③e=;④實軸長為2a,虛軸長為2b,焦距為2c;漸進線或 c2=a2+b23、拋物線 :①方程y2=2px注意還有三個,能區(qū)別開口方向;②定義:|PF|=d焦點F(,0),準(zhǔn)線x=-;③焦半徑;焦點弦=x1+x2+p;
4、直線被圓錐曲線截得的弦長公式:
5、注意解析幾何與向量結(jié)合問題:1、,.(1);(2).2、數(shù)量積的定義:已知兩個非零向量a和b,它們的夾角為,則數(shù)量|a||b|cos叫做a與b的數(shù)量積,記作ab,即
3、模的計算:|a|=.算模可以先算向量的平方
在上面文章中,我們學(xué)大專家已經(jīng)為大家?guī)砹耍呷龜?shù)學(xué)知識點。只要你能夠把這些難點知識學(xué)習(xí)牢固,就可以在高考輕松取得數(shù)學(xué)高分。
第五篇:2010年高考數(shù)學(xué)知識點總結(jié)
2010年高考數(shù)學(xué)知識點總結(jié)
1.平面向量 考試內(nèi)容:
向量.向量的加法與減法.實數(shù)與向量的積.平面向量的坐標(biāo)表示.線段的定比分點.平面向量的數(shù)量積.平面兩點間的距離.平移.考試要求:
(1)理解向量的概念,掌握向量的幾何表示,了解共線向量的概念.(2)掌握向量的加法和減法.(3)掌握實數(shù)與向量的積,理解兩個向量共線的充要條件.(4)了解平面向量的基本定理,理解平面向量的坐標(biāo)的概念,掌握平面向量的坐標(biāo)運算.(5)掌握平面向量的數(shù)量積及其幾何意義,了解用平面向量的數(shù)量積可以處理有關(guān)長度、角度和垂直的問題,掌握向量垂直的條件.(6)掌握平面兩點間的距離公式,以及線段的定比分點和中點坐標(biāo)公式,并且能熟練運用.掌握平移公式.2.集合、簡易邏輯 考試內(nèi)容:
集合.子集.補集.交集.并集.邏輯聯(lián)結(jié)詞.四種命題.充分條件和必要條件.考試要求:
理解集合、子集、補集、交集、并集的概念.了解空集和全集的意義.了解屬于、包含、相等關(guān)系的意義.掌握有關(guān)的術(shù)語和符號,并會用它們正確表示一些簡單的集合.理解邏輯聯(lián)結(jié)詞“或”、“且”、“非”的含義.理解四種命題及其相互關(guān)系.掌握充分條件、必要條件及充要條件的意義.3.函數(shù) 考試內(nèi)容:
映射.函數(shù).函數(shù)的單調(diào)性.奇偶性.反函數(shù).互為反函數(shù)的函數(shù)圖像間的關(guān)系.指數(shù)概念的擴充.有理指數(shù)冪的運算性質(zhì).指數(shù)函數(shù).對數(shù).對數(shù)的運算性質(zhì).對數(shù)函數(shù).函數(shù)的應(yīng)用.考試要求:
了解映射的概念,理解函數(shù)的概念.了解函數(shù)單調(diào)性、奇偶性的概念,掌握判斷一些簡單函數(shù)的單調(diào)性、奇偶性的方法.了解反函數(shù)的概念及互為反函數(shù)的函數(shù)圖像間的關(guān)系,會求一些簡單函數(shù)的反函數(shù).理解分數(shù)指數(shù)冪的概念,掌握有理指數(shù)冪的運算性質(zhì),掌握指數(shù)函數(shù)的概念、圖像和性質(zhì).理解對數(shù)的概念,掌握對數(shù)的運算性質(zhì).掌握對數(shù)函數(shù)的概念、圖像和性質(zhì).能夠運用函數(shù)的性質(zhì)、指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì)解決某些簡單的實際問題.4.不等式
不等式.不等式的基本性質(zhì).不等式的證明.不等式的解法.含絕對值的不等式.考試要求:
(1)理解不等式的性質(zhì)及其證明.(2)掌握兩個(不擴展到三個)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)的定理,并會簡單的應(yīng)用.(3)掌握分析法、綜合法、比較法證明簡單的不等式.(4)掌握簡單不等式的解法.(5)理解不等式│a│-│b│≤│a+b│≤│a│+│b│.5.三角函數(shù) 考試內(nèi)容:
角的概念的推廣.弧度制.任意角的三角函數(shù).單位圓中的三角函數(shù)線.同角三角函數(shù)的基本關(guān)系式.正弦、余弦的誘導(dǎo)公式.兩角和與差的正弦、余弦、正切.二倍角的正弦、余弦、正切.正弦函數(shù)、余弦函數(shù)的圖像和性質(zhì).周期函數(shù).函數(shù)y=Asin(ωx+)的圖像.正切函數(shù)的圖像和性質(zhì).已知三角函數(shù)值求角.正弦定理.余弦定理.斜三角形解法.考試要求:
(1)理解任意角的概念、弧度的意義.能正確地進行弧度與角度的換算.(2)掌握任意角的正弦、余弦、正切的定義.了解余切、正割、余割的定義.掌握同角三角函數(shù)的基本關(guān)系式.掌握正弦、余弦的誘導(dǎo)公式.了解周期函數(shù)與最小正周期的意義.(3)掌握兩角和與兩角差的正弦、余弦、正切公式.掌握二倍角的正弦、余弦、正切公式.(4)能正確運用三角公式,進行簡單三角函數(shù)式的化簡、求值和恒等式證明.(5)理解正弦函數(shù)、余弦函數(shù)、正切函數(shù)的圖像和性質(zhì),會用“五點法”畫正弦函數(shù)、余弦函數(shù)和函數(shù)y=Asin(ωx+)的簡圖,理解A,ω, 的物理意義.(6)會由已知三角函數(shù)值求角,并會用符號arcsin x、arccos x、arctanx表示.(7)掌握正弦定理、余弦定理,并能初步運用它們解斜三角形.6.數(shù)列 考試內(nèi)容:
數(shù)列.等差數(shù)列及其通項公式.等差數(shù)列前n項和公式.等比數(shù)列及其通項公式.等比數(shù)列前n項和公式.考試要求:
(1)理解數(shù)列的概念,了解數(shù)列通項公式的意義.了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項.(2)理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式與前n項和公式,并能解決簡單的實際問題.(3)理解等比數(shù)列的概念,掌握等比數(shù)列的通項公式與前n項和公式,并能解決簡單的實際問題.7.直線和圓的方程 考試內(nèi)容:
直線的傾斜角和斜率.直線方程的點斜式和兩點式.直線方程的一般式.兩條直線平行與垂直的條件.兩條直線的交角.點到直線的距離.用二元一次不等式表示平面區(qū)域.簡單的線性規(guī)劃問題.曲線與方程的概念.由已知條件列出曲線方程.圓的標(biāo)準(zhǔn)方程和一般方程.圓的參數(shù)方程.考試要求:
(1)理解直線的傾斜角和斜率的概念,掌握過兩點的直線的斜率公式.掌握直線方程的點斜式、兩點式、一般式,并能根據(jù)條件熟練地求出直線方程.(2)掌握兩條直線平行與垂直的條件,兩條直線所成的角和點到直線的距離公式.能夠根據(jù)直線的方程判斷兩條直線的位置關(guān)系.(3)了解二元一次不等式表示平面區(qū)域.(4)了解線性規(guī)劃的意義,并會簡單的應(yīng)用.(5)了解解析幾何的基本思想,了解坐標(biāo)法.(6)掌握圓的標(biāo)準(zhǔn)方程和一般方程,了解參數(shù)方程的概念,理解圓的參數(shù)方程.8.圓錐曲線方程 考試內(nèi)容:
橢圓及其標(biāo)準(zhǔn)方程.橢圓的簡單幾何性質(zhì).橢圓的參數(shù)方程.雙曲線及其標(biāo)準(zhǔn)方程.雙曲線的簡單幾何性質(zhì).拋物線及其標(biāo)準(zhǔn)方程.拋物線的簡單幾何性質(zhì).考試要求:
(1)掌握橢圓的定義、標(biāo)準(zhǔn)方程和橢圓的簡單幾何性質(zhì),了解橢圓的參數(shù)方程.(2)掌握雙曲線的定義、標(biāo)準(zhǔn)方程和雙曲線的簡單幾何性質(zhì).(3)掌握拋物線的定義、標(biāo)準(zhǔn)方程和拋物線的簡單幾何性質(zhì).(4)了解圓錐曲線的初步應(yīng)用.9(A).①直線、平面、簡單幾何體 考試內(nèi)容:
平面及其基本性質(zhì).平面圖形直觀圖的畫法.平行直線.對應(yīng)邊分別平行的角.異面直線所成的角.異面直線的公垂線.異面直線的距離.直線和平面平行的判定與性質(zhì).直線和平面垂直的判定與性質(zhì).點到平面的距離.斜線在平面上的射影.直線和平面所成的角.三垂線定理及其逆定理.平行平面的判定與性質(zhì).平行平面間的距離.二面角及其平面角.兩個平面垂直的判定與性質(zhì).多面體.正多面體.棱柱.棱錐.球.考試要求:
(1)掌握平面的基本性質(zhì),會用斜二測的畫法畫水平放置的平面圖形的直觀圖.能夠畫出空間兩條直線、直線和平面的各種位置關(guān)系的圖形.能夠根據(jù)圖形想像它們的位置關(guān)系.(2)掌握兩條直線平行與垂直的判定定理和性質(zhì)定理.掌握兩條直線所成的角和距離的概念,對于異面直線的距離,只要求會計算已給出公垂線時的距離.(3)掌握直線和平面平行的判定定理和性質(zhì)定理.掌握直線和平面垂直的判定定理和性質(zhì)定理.掌握斜線在平面上的射影、直線和平面所成的角、直線和平面的距離的概念.掌握三垂線定理及其逆定理.(4)掌握兩個平面平行的判定定理和性質(zhì)定理.掌握二面角、二面角的平面角、兩個平行平面間的距離的概念.掌握兩個平面垂直的判定定理和性質(zhì)定理.(5)會用反證法證明簡單的問題.(6)了解多面體、凸多面體的概念,了解正多面體的概念.(7)了解棱柱的概念,掌握棱柱的性質(zhì),會畫直棱柱的直觀圖.(8)了解棱錐的概念,掌握正棱錐的性質(zhì),會畫正棱錐的直觀圖.(9)了解球的概念,掌握球的性質(zhì),掌握球的表面積、體積公式.9(B).直線、平面、簡單幾何體 考試內(nèi)容:
平面及其基本性質(zhì).平面圖形直觀圖的畫法.平行直線.直線和平面平行的判定與性質(zhì).直線和平面垂直的判定.三垂線定理及其逆定理.兩個平面的位置關(guān)系.空間向量及其加法、減法與數(shù)乘.空間向量的坐標(biāo)表示.空間向量的數(shù)量積.直線的方向向量.異面直線所成的角.異面直線的公垂線.異面直線的距離.直線和平面垂直的性質(zhì).平面的法向量.點到平面的距離.直線和平面所成的角.向量在平面內(nèi)的射影.平行平面的判定和性質(zhì).平行平面間的距離.二面角及其平面角.兩個平面垂直的判定和性質(zhì).多面體.正多面體.棱柱.棱錐.球.考試要求:
(1)掌握平面的基本性質(zhì),會用斜二測的畫法畫水平放置的平面圖形的直觀圖;能夠畫出空間兩條直線、直線和平面的各種位置關(guān)系的圖形,能夠根據(jù)圖形想像它們的位置關(guān)系.(2)掌握直線和平面平行的判定定理和性質(zhì)定理;理解直線和平面垂直的概念,掌握直線和平面垂直的判定定理;掌握三垂線定理及其逆定理.(3)理解空間向量的概念,掌握空間向量的加法、減法和數(shù)乘.(4)了解空間向量的基本定理;理解空間向量坐標(biāo)的概念,掌握空間向量的坐標(biāo)運算.(5)掌握空間向量的數(shù)量積的定義及其性質(zhì);掌握用直角坐標(biāo)計算空間向量數(shù)量積的公式;掌握空間兩點間距離公式.(6)理解直線的方向向量、平面的法向量、向量在平面內(nèi)的射影等概念.(7)掌握直線和直線、直線和平面、平面和平面所成的角、距離的概念.對于異面直線的距離,只要求會計算已給出公垂線或在坐標(biāo)表示下的距離.掌握直線和平面垂直的性質(zhì)定理.掌握兩個平面平行、垂直的判定定理和性質(zhì)定理.(8)了解多面體、凸多面體的概念,了解正多面體的概念.(9)了解棱柱的概念,掌握棱柱的性質(zhì),會畫直棱柱的直觀圖.(10)了解棱錐的概念,掌握正棱錐的性質(zhì),會畫正棱錐的直觀圖.(11)了解球的概念,掌握球的性質(zhì),掌握球的表面積、體積公式.(考生可在9(A)和9(B)中任選其一)
10.排列、組合、二項式定理 考試內(nèi)容:
分類計數(shù)原理與分步計數(shù)原理.排列.排列數(shù)公式.組合.組合數(shù)公式.組合數(shù)的兩個性質(zhì).二項式定理.二項展開式的性質(zhì).考試要求:
(1)掌握分類計數(shù)原理與分步計數(shù)原理,并能用它們分析和解決一些簡單的應(yīng)用問題.(2)理解排列的意義,掌握排列數(shù)計算公式,并能用它解決一些簡單的應(yīng)用問題.(3)理解組合的意義,掌握組合數(shù)計算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡單的應(yīng)用問題.(4)掌握二項式定理和二項展開式的性質(zhì),并能用它們計算和證明一些簡單的問題.11.概率 考試內(nèi)容:
隨機事件的概率.等可能性事件的概率.互斥事件有一個發(fā)生的概率.相互獨立事件同時發(fā)生的概率.獨立重復(fù)試驗.考試要求:
(1)了解隨機事件的發(fā)生存在著規(guī)律性和隨機事件概率的意義.(2)了解等可能性事件的概率的意義,會用排列組合的基本公式計算一些等可能性事件的概率.(3)了解互斥事件、相互獨立事件的意義,會用互斥事件的概率加法公式與相互獨立事件的概率乘法公式計算一些事件的概率.(4)會計算事件在n次獨立重復(fù)試驗中恰好發(fā)生k次的概率.12.統(tǒng)計 考試內(nèi)容:
抽樣方法.總體分布的估計.總體期望值和方差的估計.考試要求:
(1)了解隨機抽樣了解分層抽樣的意義,會用它們對簡單實際問題進行抽樣.(2)會用樣本頻率分布估計總體分布.(3)會用樣本估計總體期望值和方差.13.導(dǎo)數(shù) 考試內(nèi)容:
導(dǎo)數(shù)的背景.導(dǎo)數(shù)的概念.多項式函數(shù)的導(dǎo)數(shù).利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值.函數(shù)的最大值和最小值.考試要求:
(1)了解導(dǎo)數(shù)概念的某些實際背景.(2)理解導(dǎo)數(shù)的幾何意義.(3)理解極大值、極小值、最大值、最小值的概念,并會用導(dǎo)數(shù)求多項式函數(shù)的單調(diào)區(qū)間、極大值、極小值及閉區(qū)間上的最大值和最小值.(4)會利用導(dǎo)數(shù)求某些簡單實際問題的最大值和最小值.