2014年中考數學三角函數
1、(2014?黃岡)如圖,在南北方向的海岸線MN上,有A、B兩艘巡邏船,現均收到故障船C的求救信號.已知A、B兩船相距100(+1)海里,船C在船A的北偏東60°方向上,船C在船B的東南方向上,MN上有一觀測點D,測得船C正好在觀測點D的南偏東75°方向上.
(1)分別求出A與C,A與D之間的距離AC和AD(如果運算結果有根號,請保留根號).
(2)已知距觀測點D處100海里范圍內有暗礁.若巡邏船A沿直線AC去營救船C,在去營救的途中有無觸暗礁危險?(參考數據:≈1.41,≈1.73)
2、18.(7分)(2014?長春)如圖,為測量某建筑物的高度AB,在離該建筑物底部24米的點C處,目測建筑物頂端A處,視線與水平線夾角∠ADE為39°,且高CD為1.5米,求建筑物的高度AB.(結果精確到0.1米)(參考數據:sin39°=0.63,cos39°=0.78,tan39°=0.81)
3、(2014?蘭州)如圖,在電線桿上的C處引拉線CE、CF固定電線桿,拉線CE和地面成60°角,在離電線桿6米的B處安置測角儀,在A處測得電線桿上C處的仰角為30°,已知測角儀高AB為1.5米,求拉線CE的長(結果保留根號).
4、(2014?瀘州)海中兩個燈塔A、B,其中B位于A的正東方向上,漁船跟蹤魚群由西向東航行,在點C處測得燈塔A在西北方向上,燈塔B在北偏東30°方向上,漁船不改變航向繼續向東航行30海里到達點D,這是測得燈塔A在北偏西60°方向上,求燈塔A、B間的距離.(計算結果用根號表示,不取近似值)
5、(2014?萊蕪)如圖,一堤壩的坡角∠ABC=62°,坡面長度AB=25米(圖為橫截面),為了使堤壩更加牢固,一施工隊欲改變堤壩的坡面,使得坡面的坡角∠ADB=50°,則此時應將壩底向外拓寬多少米?(結果保留到0.01米)
(參考數據:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)
6、(2014
綿陽)如圖,一艘海輪位于燈塔P的北偏東30°方向,距離燈塔80海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東45°方向上的B處,這時,海輪所在的B處與燈塔P的距離為()
A.
40海里
B.
40海里
C.
80海里
D.
40海里
7、(2014?遂寧)如圖,根據圖中數據完成填空,再按要求答題:
sin2A1+sin2B1= ??;sin2A2+sin2B2= ??;sin2A3+sin2B3= ?。?/p>
(1)觀察上述等式,猜想:在Rt△ABC中,∠C=90°,都有sin2A+sin2B= ?。?/p>
(2)如圖④,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的對邊分別是a、b、c,利用三角函數的定義和勾股定理,證明你的猜想.
(3)已知:∠A+∠B=90°,且sinA=,求sinB.
8、(2014山東日照)如圖某天上午9時,向陽號輪船位于A處,觀測到某港口城市P位于輪船的北偏西67.5°,輪船以21海里/時的速度向正北方向行駛,下午2時該船到達B處,這時觀測到城市P位于該船的南偏西36.9°方向,求此時輪船所處位置B與城市P的距離?(參考數據:sin36.9°≈,tan36.9°≈,sin67.5°≈,tan67.5°≈)
(第22題圖)
A
P
C
B
36.9°
67.5°
9、(2014年湖北荊門)釣魚島自古以來就是中國的領土.如圖,我國甲、乙兩艘海監執法船某天在釣魚島附近海域巡航,某一時刻這兩艘船分別位于釣魚島正西方向的A處和正東方向的B處,這時兩船同時接到立即趕往C處海域巡查的任務,并測得C處位于A處北偏東59°方向、位于B處北偏西44°方向.若甲、乙兩船分別沿AC,BC方向航行,其平均速度分別是20海里/小時,18海里/小時,試估算哪艘船先趕到C處.
(參考數據:cos59°≈0.52,sin46°≈0.72)
10、(2014?臨沂)如圖,在某監測點B處望見一艘正在作業的漁船在南偏西15°方向的A處,若漁船沿北偏西75°方向以40海里/小時的速度航行,航行半小時后到達C處,在C處觀測到B在C的北偏東60°方向上,則B、C之間的距離為()
A.
20海里
B.
10海里
C.
20海里
D.
30海里