第一篇:六年級數學上冊《分數除法》教案
六年級數學上冊《分數除法》教案
第三單元
分數除法
教學目標:、理解分數除法的意義。
2、探索分數除法的計算方法,知道除以一個數等于乘這個數的倒數。
3、學會分析并能正確列式解答一步計算和兩步計算的分數除法應用題。
時安排:9
時
第一時
教學內容:分數除以整數(本第23——26頁的內容)
學習目標:理解分數除以整數的意義并掌握分數除以整數的計算方法。
教具:小黑板
教學過程:
一、板題示標:
同學們,這節我們一起來學習“分數除以整數”,這節的學習目標是:理解分數除以整數的意義并掌握分數除以整數的計算方法。(小黑板出示)
過渡:目標明確了,要達到這節的學習目標,靠大家自學,怎樣自學呢?請看自學指導!
二、自學指導(小黑板出示)
認真看本第23頁信息窗和紅點1的內容,重點看方框里的內容。
思考:
、兩個方框所表示的意義一樣嗎?結果呢?(同桌說一說)
2、仔細觀察第2個方框的計算過程,你有什么發現?(同桌說一說)
(分鐘后,比誰會正確回答對檢測題)
過渡:下面自學競賽開始。
三、先學
(一)看書(看一看)
師巡視并督促每個學生認真自學。(要保證學生看夠4分鐘,學生可以看看、想想,如果學生看完,可以復看)
過渡:看完的請舉手?看懂的請把手放下。老師給同學們1分鐘的時間,同桌互相討論自學指導中的問題。
(二)檢測(做一做)
過渡:下面我們就來比一比誰能做對檢測題。
請兩名(后進生)板演。小黑板出示習題,其余同學做在練習本上,做題前請看清要求。
要求(師說):
1、認真審題
2、握筆姿勢正確
3、做一題及時檢查一題
檢測題:
自主練習第2題
學生獨立完成,師巡視,要搜集學生中的錯誤不隨意輔導。
四、后教
(一)更正
講述:做完的同學,請認真看黑板的練習,發現錯了的請舉手,指名讓學生上臺更正。(提示:用紅色粉筆改,哪個題錯了,先圈一下,再在旁邊改,不要擦去原來的)
(二)討論(議一議)
過渡:到底誰對誰錯呢,下面咱們一起來討論。
、評議第2題,一樣的請舉手,若錯,請說出錯在哪里?
追問:分數除以整數(0除外)可以如何計算?(板書)
2、同桌對改,調查學情。(全對的同學是好樣的,沒有做對的同學也不要灰心,相信你只要根據方法認真學習,也一定能得100分,加油!)
五、當堂訓練(練一練)
過渡:下面咱們就用今天所學的知識來做作業吧,有信心全做對、字寫端正的同學請舉手。、必做題:自主練習第1題。
2、思考題:
自主練習第3題
六、板書設計:
分數除以整數
分數除以整數的意義同整數除法的意義完全相同。
分數除以整數(0除外)的計算方法:等于乘以這個數的倒數。
七、教后反思:
第二時
教學內容:分數除以整數的練習(第24——26頁綠點的內容及練習)
學習目標:理解并掌握分數隊以整數的計算方法。
教具:小黑板
教學過程:
一、板書題
同學們今天我們上一節練習“分數除以整數”,這節的學習目標是:理解并掌握分數除以整數的計算方法。(小黑板出示)
二、檢測
下面我們來進行比賽,比誰能做對本上的“自主練習”。老師也相信你們是最棒的!、打開本第24頁綠點的題目、4、、6題
2、做題前請看清要求。
要求(師說):(1)、認真審題
(2)、握筆姿勢正確
做一題及時檢查一題
3、時間1分鐘。
4、學生做題。
四、出示答案同桌互批
五、統計各題正確率,評講重難、易錯題
、綠點題目:怎樣計算的?說一說
2、第4題:說說你的解題思路。
3、第題:說一說解題思路,為什么這樣做。
4、第6題:全對的舉手,要求正確率100%
六、學生補錯題
七、當堂訓練:
今天這節的收獲不少,下面我們就用今天所學的知識來做作業。比比誰的作業能得100分,誰的字體最端正。
自主練習:第8、9、10題
第二篇:六年級數學上冊《分數除法》教案
《分數除法》教學設計
1、教學目標:理解分數除法的意義。
2、探索分數除法的計算方法,知道除以一個數等于乘這個數的倒數。
3、學會分析并能正確列式解答一步計算和兩步計算的分數除法應用題。
時安排:9課時
第一時
教學內容:分數除以整數(本第23——26頁的內容)
學習目標:理解分數除以整數的意義并掌握分數除以整數的計算方法。
教具:小黑板
教學過程:
一、板題示標:
同學們,這節我們一起來學習“分數除以整數”,這節的學習目標是:理解分數除以整數的意義并掌握分數除以整數的計算方法。(小黑板出示)
過渡:目標明確了,要達到這節的學習目標,靠大家自學,怎樣自學呢?請看自學指導!
二、自學指導(小黑板出示)
認真看本第23頁信息窗和紅點1的內容,重點看方框里的內容。
思考:
1、兩個方框所表示的意義一樣嗎?結果呢?(同桌說一說)
2、仔細觀察第2個方框的計算過程,你有什么發現?(同桌說一說)
(分鐘后,比誰會正確回答對檢測題)
過渡:下面自學競賽開始。
三、先學
(一)看書(看一看)
師巡視并督促每個學生認真自學。(要保證學生看夠4分鐘,學生可以看看、想想,如果學生看完,可以復看)
過渡:看完的請舉手?看懂的請把手放下。老師給同學們1分鐘的時間,同桌互相討論自學指導中的問題。
(二)檢測(做一做)
過渡:下面我們就來比一比誰能做對檢測題。
請兩名(后進生)板演。小黑板出示習題,其余同學做在練習本上,做題前請看清要求。
要求(師說):
1、認真審題
2、握筆姿勢正確
3、做一題及時檢查一題
檢測題:自主練習第2題
學生獨立完成,師巡視,要搜集學生中的錯誤不隨意輔導。
四、后教
(一)更正
講述:做完的同學,請認真看黑板的練習,發現錯了的請舉手,指名讓學生上臺更正。(提示:用紅色粉筆改,哪個題錯了,先圈一下,再在旁邊改,不要擦去原來的)
(二)討論(議一議)
過渡:到底誰對誰錯呢,下面咱們一起來討論。
1、評議第2題,一樣的請舉手,若錯,請說出錯在哪里?
追問:分數除以整數(0除外)可以如何計算?(板書)
2、同桌對改,調查學情。(全對的同學是好樣的,沒有做對的同學也不要灰心,相信你只要根據方法認真學習,也一定能得100分,加油!)
五、當堂訓練(練一練)
過渡:下面咱們就用今天所學的知識來做作業吧,有信心全做對、字寫端正的同學請舉手。
1、必做題:自主練習第1題。
2、思考題:自主練習第3題
六、板書設計:
分數除以整數
分數除以整數的意義同整數除法的意義完全相同。
分數除以整數(0除外)的計算方法:等于乘以這個數的倒數。
第三篇:2017六年級數學分數除法教案.doc
第三單元:分數除法
[單元教材分析]:本單元是在學生學習了整數乘除法以及解簡易方程,學習了分數乘法知識的基礎上,學習分數除法和比的初步知識。這些知識為學生學習分數除法打下了基礎,學習本單元的知識對加深學生對計算方法的理解和提高學生的計算能力有很好的作用。教材內容包括:分數除法、解決問題、比和比例的應用。這些知識都是學生進一步學習的重要基礎,通過本單元的學習,學生一方面基本上完成任務了分數加、減、除的學習任務,比較系統地掌握了分數四則運算;另一方面又開始了比的初步知識的學習,為后面學習百分數和比例提供了基礎。兩方面的收獲,都將在進一步的學習中發揮重要的作用。
[單元教學目標]:
1、使學生具體情景,感知分數除法的意義,掌握分數除法的計算方法,能正確地用口算或筆算的方法進行分數除法的計算。
2、使學生學分用分數除法來解決已知一個數的幾分之幾是多少,求這個數的實際問題。
3、理解比的意義和比的基本性質,知道比與分數、除法之間的關系,能正確地求比值和化簡比,能運用比的有關知識解決實際問題。
4、讓學生在具體生動的情景中感受學習數學的價值。
[單元教學重點]:
1、分數除法的計算;
2、分數除法問題的解答;
3、比的意義和基本性質的理解與運用。
[單元教學難點]:理解分數除法計算法則的算理;比的應用.第一課時
教學內容:分數除以整數(例
1、例2)教學目標:
1、引導學生在具體的情景中借助已有的經驗理解分數除法的意義并掌握分數除法的計算方法,能正確計算分數除以整數。
2、通過富有啟發性的問題情景和探索性的學習活動,引導學生主動參與、獨立思考、合作交流,形成計算技能。
3、在教學中滲透轉化的思想,讓學生充分感受轉化的美妙與魅力。教學重點:
1、分數除法意義的理解;
2、分數除以整數的算法的探究。教學難點:分數除以整數的算法的探究。
教學準備:例1的教學掛圖;平均分成5份的長方形紙一張。教學過程:
一、創設情景導入:
1、同學們,你們去過超市購物嗎?(去過)你去買了一些什么東西呢?你有沒有過相同的東西買幾件的時候?能不能舉個例?(指名讓學生舉例并用算式表示求該例的總價)
二、新知探究:
(一)分數除法的意義
1、出示例1的教學掛圖,讓學生看圖觀察圖意,指名口答圖意和應該怎樣列式。
2、上面的問題能改編成用除法計算的問題嗎?(學生獨立思考,口答問題和列式)3、100g=?kg,你能將上面的問題改成用kg作單位的嗎?(引導學生將整數乘除法應用題改變成分數乘除法應用題)
4、引導學生觀察比較整數乘除法的問題和改寫后的問題,分析得出整數除法和分數除法的聯系以及分數除法的意義。
5、練習:(鞏固加深對意義的理解)課本28頁做一做。學生獨立練習,訂正時讓學生說明為什么這樣填。
(二)、分數除以整數
1、小組學習活動: 活動⑴把這張紙的4/5平均分成2份,每份是這張長方形紙的幾分之幾? 活動⑵把這張紙的4/5平均分成3份,每份是這張長方形紙的幾分之幾? [活動要求]先獨立動手操作,再在組內交流:通過折紙操作和計算,你發現了什么規律?你有什么問題要提出來?
2、匯報學習結果:
活動1學生甲,把4/5平均分成2份,就是把4個1/5平均分成2份,1份就是2個1/5,就是2/5;用算式表示是:4/5÷2=(4÷2)/5=2/5 學生乙,把4/5平均分成2份,每份就是4/5的1/2,就是4/5×1/2;用算式表示是:4/5×1/2=4/10=2/5;
學生丙,我發現了計算4/5÷2時,可以用分子4÷2作分子,分母不變;
學生丁,我發現分數除以整數可能轉化成乘法來計算,也就是乘以這個整數的倒數;
活動2:學生甲,4要平均分成3份,不能直接分,我先找出4和3的最小公倍數12,把4分成12份,再把12份平均分成3份,算式可以用4/5÷3表示,4不能夠被3整除,這道題我不知道怎樣計算;
學生乙,我的分法與前面的同學相同,不同的是:我在計算4/5÷3時,我把4/5÷3轉化成4/5×1/3來計算,因為,把4/5平均分成3份,就是求4/5的1/3是多少。討論:
1、從折紙實驗和計算來看,你發現計算分數除以整數可以怎樣計算?
2、整數可以為0嗎?
小結并板書:分數除以一個不等于0的整數,等于分數乘以這個整數的倒數。
三、鞏固與提高
3、把3/5平均分成4份,每份是多少;什么數乘6等于3/20?
4、如果a是一個不等于0的自然數,1/3÷a等于多少?1/a÷3等于多少?你能用一個具體的數檢驗上面的結果嗎?
四、作業練習板書設計:
分數除法——分數除以整數
例1每盒水果糖重100g,3盒重多少g?例2把一張紙的4/5平均分成2份,每份是這張紙100×3=300g→1/10×3=3/10g 的幾分之幾? 3盒水果糖重300g,每盒子重多少g?
4/5÷2=(4÷2)/5=2/5
4/5÷2=4/5×1/2=2/5 300÷3=100g→3/10÷3=1/10g 如果把這張紙的4/5平均分成3份,每份是 300g水果糖,100g裝1盒,可以裝幾盒?
這張紙的幾分之幾?
300÷100=3(盒)→3/10÷1/10=3(盒)
4/5÷3=4/5×1/3=4/15 除以一個不等于0的整數,等于分數乘以這個整數的倒數。
第二課時
教學內容:一個數除以分數(例3)教學目標:
1、通過畫線段圖引導學生分析并歸納一個數除以分數的計算法則。
2、能運用法則,正確迅速地計算分數除法。
3、培養學生抽象思維能力。
4、讓學生通過探索知識,從而獲得知識,體驗成功的樂趣,樹立學習的自信心。教學重點:
分析并歸納一個數除以分數的計算法則。教學難點:
理解一個數除以分數的算理。教學過程:
一、復習導入
1、計算:5/6÷10
3/5÷3
15/16÷20
40/39÷26
(說一說,你在計算中如何盡量避免錯誤的產生?在計算中要注意什么?)
2、勝利路長1000米,東東走完全程用了20分鐘,東東平均每分鐘行多少米?(獨立解答并且說明解題依據)3、2/3小時有()個1/3小時,1小時有()個1/3小時。
二、新知探究:
1、教學例3:小明2/3小時走了2km,小紅5/12小時走了5/6 km,誰走得快些? 師:已知什么?
生:已知小明和小紅各自的時間和對應的路程。師:問題求什么? 生:求誰走的快些。
師:求誰走得快些?就是比較什么? 生:就是比較誰的速度快。師:你能根據題意列出算式嗎? 生:2÷2/3 5/6÷5/12
2、除數是分數的除法計算方法的探究: 引導學生畫線段圖分析:
師:2/3里有幾個1/3?2/3小時走了2 km,能不能求出1/3小時走多少千米?
生:2/3里有2個1/3,求1/3小時走了多少千米可以用2 km÷2,也就是2km×1/2; 師:2 km÷2得到的1km,有什么具體的含義?是線段圖上的哪一段? 生:略
師:1小時里有幾個1/3小時,能求1小時行多少千米了嗎? 生:2×1/2×3=2×3/2=3 km。
指導學生觀察:2÷2/3=2×1/2×3=2×3/2=3(提示:觀察2÷2/3=2×3/2這一步)師:這兒把除法轉化成什么運算來計算?除以2/3=? 生:把除法轉化為法來計算,除以2/3等于以3/2。
師:你能用自己的語言敘述整數除以分數的計算方法嗎?
(有語言敘述、用字母表示等都行,只要是正確的都肯定學生的結論)師:請你觀察上面和算式,怎樣把除法轉化成為乘法來進行計算?你能說出轉化的要點嗎? 生:
1、被除數沒有變化;
2、除號變乘號;
3、除數變成了它的倒數。
3、學生獨立計算5/6÷5/12 訂正并板書:
4、讓學生根據分數除法的意義檢驗后作答。
三、鞏固與提高: 1、31頁做一做第1題和第2題的后兩個小題。
(做完1題后,讓學生把每個算式完整地讀一遍,然后再完成第2題,第二題要求學生要寫出計算過程。)
2、練習八第2題的后4個小題。(在學生完成此題時,教師指導好思維慢的學生先算出乘法算式的積,再找出兩題之間的關系)
四、全課小結:
1今天我們共同研究了什么知識?
2你能用一句完整的話來說一說今天的主要內容嗎?
3你認為在完成課后作業時,應該從哪些方面盡量避免錯誤的產生?
五、作業練習:練習八第3、4題。(第3題在學生做完題后,引導學生將題中的4/5改成小數,用小數除法加以驗證。)六:教學反思:
第三課時
練習內容:分數除法的計算 練習目標:
1在理解分數除法算理的基礎上,正確熟練地進行分數除法的計算;2運用所學的分數除法的知識,解決相應的實際問題.練習過程:
一、基礎知識練習:
1、計算:
⑴2/13÷2 8/9÷4
3/10÷3 5/11÷5
22/23÷2 ⑵3/10÷2 23/24÷26 17/21÷51 8/9÷7 13/15÷4(學生獨立計算,教師巡視指導,訂正時讓學生說一說是怎樣計算的.)
2、通過計算下面的題,請你想一想,除數是整數和除數是分數的除法在計算上有什么相同的地方?
引導學生小結:除以一個不等于0的數,等于H這個數的倒數.二 深入練習
1、計算下面各題,比較它們的計算方法.5/6+2/3
5/6-2/3
5/6×2/3
5/6÷2/3 2、(讓學生計算后分組討論:你發現了什么規律?請你把你發現的規律完整地講給大家聽聽。)根據學生的回答,教師作如下板書:
一個數除以小于1的數,商大于被除數;
一個數除以1,商等于被除數; 一個數除以大于1的數,商小于被除數。
三、解決問題: 練習八第7至8題。第7題學生獨立解答。
第8題學生解答時提示學生需要先統一單位。
小結三道題的共同特點:都是求一個量里包含多少個另一個量,都用除法計算。
四、作業練習: 1、33頁第5、9題。
2、一個商店用塑料袋包裝120千克水果糖.如果每袋裝1/4千克,這些水果糖可以裝多少袋?
五、教學反思:
第四課時
教學內容:例4,練習九第1---4題。教學目標:
1、正確解答兩三步計算的分數四則混合式題。
2、運用學過的知識,解答兩步計算的較簡單的分數應用題。
3、培養和訓練學生的思考和分析解答問題的能力。教學重點:
1、兩三步式題的正確計算。
2、培養和訓練學生運用所學知識解決問題的能力。教學過程: 一:復習鋪墊
1、填空:
除以一個不等于0的數,等于()。
2、口算:
3/5÷3 3/7×2
2/5—1/5 1/4÷2/3
1/2÷3 3÷3/5
1/3+1/2 6×1/3
3、標明下面各題的運算順序:
720÷2+[50×(25+47)] [1178—12×(84+5)]÷5
4、小紅用8米長的彩帶做一些花,如果每朵花用2/3米彩帶,小紅能做多少朵花?
二、引入新課:
在上面第三個問題的后面增加“她把其中的4朵送給了同學,還剩多少朵花?”(增加問題后就成為例4)
1、學生讀題,理解題意。
2、說一說,怎樣求還剩多少朵花?
3、學生列式:
4、師:請同學們觀察,這道題目中有哪幾種運算? 生:除法和減法。
師:在整數四則混合運算中,運算順序是怎樣的? 生:略。
師:從以上分析請你推想:整數四則混合運算的運算順序,適用于分數嗎? 生:通過分析例4的題意我們可以看出——整數四則混合運算的運算方法,同樣適用于分數和計算。
5、學生獨立計算,師巡視指導并作訂正。8÷2/3-4=8×3/2-4=12-4=8(朵)答:小紅還剩8朵花。
6、思考:在計算中,應該注意什么?
三、要求:讓學生說一說,上面的題目的運算順序各是什么,然后進行計算。
本練習的教學安排:學生先獨立計算前兩列的四個小題,然后交流各自的算法,對比分步計算的先把除法轉化為乘法再一次性約分這兩種不同的解法,哪一種更簡便些?鼓勵學生以后在計算中可以根據題目的特點靈活選用恰當的方法進行計算;然后再讓學生計算第三列的兩個小題,此兩小題由學生找出運算順序之后獨立計算,教師指導有困難的學生。最后讓學生說一說,你在計算中是如何來提高計算的正確率的?
學生讀題,理解題意。
提問:
1、老爺爺每天跑幾圈?
2、半圈用哪個數來表示?
3、照這個速度,怎樣理解?
4、要求老爺爺每天跑步要用多少時間,要先求出什么?
5、現在你能解答了嗎,能解答的自己寫出解答過程,不能解答的請教老師。
6、指名口答解答過程,師生共同訂正。
四、全課總結:
1、說一說,今天學習了什么新知識?
2、這節課,你有什么收獲嗎?有什么發現嗎?有什么想要告訴老師和同學的嗎?請大家發表自己的見解。
五、課后作業:練習九第1---4題。
第1題:讀題后思考,你打算怎樣來計算這幾道題?(多找幾個學生來說自己心里的想法,尋找出最好的解題策略后再讓學生進行計算。)
第2題:提問6樓到地面的高度是多少層樓的高度?(6樓樓板到地面的高度實際只有5層樓的高度)第3、4題由學生獨立完成。
六、教學反思:
第五課時:
練習內容:分數除法的計算及相應問題解答。練習目標:
1、進一步掌握分數除法的計算方法,能夠正確迅速地計算兩、三步計算的分數四則運算式題,提高分數四則運算的能力。
2、體會數學與生活的聯系,提高學生綜合運用知識解決問題的能力,能運用分數的知識解決一些實際問題。練習過程:
一、基本練習:
1、判斷正誤:
①3/5÷5=5/3×5()
②4分米的1/5等于5分米的1/4。()③兩數相除,商一定大于被除數。()
2、學生計算后訂正時,著重評講第5小題至第7小題的解法,第5、6小題讓學生說一說寫出計算過程前是怎樣想的,即0.375和0.6是怎樣處理的?第7小題可以分步計算也可以運用乘法分配律進行計算。
3、訂正時讓學生說明解題依據。第四小題目可以在等號兩邊先乘以4再乘2/3,也可以一次同乘4與2/3的積。
二、深入練習:
1、選擇正確答案的序號填在括號里:
①一根繩子剪去3米正好是1/3,這根繩子原來的長度是多少米?()A
B 9
C ②與12÷4/5相等的式子是:()
A12÷5×4
B12÷4×5
C12×0.4
2、(此題中的60瓦是沒有用的條件,可能會影響少數學生的正確列式,這里在學生審題之后指名分析已知條件和問題的關系,讓學生明白列式中不需要這個條件。)3、(讓學生先計算,再比較——你有什么發現?引導學生弄清楚:其原因是2/
3、3/4的倒數與1/2的積正好是1。也就是除以2/
3、3/4再乘上1/2,實際效果相當于除以或乘上1。)
三、自主練習:
1、2、四、思維體操:
1、一根繩子每次剪去它的1/2,一共剪了4次,最后下這根繩子的幾分之幾?
2、用汽車運一堆貨物,每天運這堆貨物的四分之一,幾天可以運完?每天運這堆貨物的七分之二,幾天可以運完?
五、策略說明:讓全體學生都有較充分的練習機會,在這個過程中檢驗、評價了分數除法的認知結果。
第四篇:六年級數學分數除法教案
第三單元 分 數 除 法
1、倒數的認識
第一課時
教學內容:倒數的認識(教材第28、第29頁的內容)教學目標:
1、引導學生通過觀察、研究、類推等數學活動,理解倒數的意義,總結出求倒數的方法。
2、通過互助活動,培養學生與人合作、與人交流的習慣。
3、通過自行設計方案,培養學生自主探索和創新的意識。教學重難點:
重點:理解倒數的含義,掌握求倒數的方法。難點:掌握求倒數的方法。教學準備:口算卡片、課件 教學過程:
一、導入
1、課件出示。找一找下面文字的構成規律。學生分組交流,找出文字的構成規律。
2、按照上面的規律填數。
5()2()1()— — — 8()3()2()
3、揭示課題。今天,我們就來研究這樣的數——倒數。
二、教學實施
1、師:關于倒數,你想知道什么?
2、學習倒數的含義。
(1)學生觀察教材第28頁主題圖。
(2)學生根據所舉的例子進行思考,還可以與老師共同探討。(3)學生反饋,老師板書。學生可能發現:
①每組中的兩個數相乘的積是1。
②每組中兩個數的分子和分母的位置互相顛倒。③每組中兩個數有相互依存的關系。(4)舉例驗證。
(5)學生辯論:看誰說得對。
(6)歸納:乘積是1的兩個數會為倒數。
3、特殊數:0和1。板書:0沒有倒數,1的倒數是它本身。
4、求倒數的方法。(1)出示例1.(2)歸納方法:你是怎樣求一個數的倒數的?板書:分子和分母調換位置。
5、反饋練習。
(1)完成教材第28頁的“做一做”。學生獨立解答,老師巡視。(2)完成教材第29頁練習六的第1-5題。
三、課堂作業設計
1、找一找下列各數中哪兩個數互為倒數。43 18 78 1 76 117 0 34 67 12 6
2、填空。
(1)43的倒數是(),()的倒數是76。
(2)10的倒數是(),()的倒數是1。
(3)12的倒數是(),()沒有倒數。
板書設計:
倒數的認識
倒數的意義:乘積為1的兩個數互為倒數。0沒有倒數,1的倒數是1。
2、分數除法
第一課時
教學內容:分數除法的意義和分數除以整數(教材第30頁的內容)教學目標:
1、通過對比兩個除法算式與一個乘法算式,比較已知數和得數,理解并概括出分數除法的意義。
2、掌握分數除以整數的計算方法。
3、通過教學,培養學生的知識遷移能力和抽象、概括能力。
4、使學生明確知識間是相互聯系的。教學重難點:
重點:理解分數除法的意義,掌握分數除以整數的計算方法。難點:掌握分數除以整數的計算方法。教學準備:
課件、一張長方形的紙 教學過程:
一、導入
1、出示例1。
2、改編條件和問題,用除法計算。
二、教學實施
1、初步理解分數除法的意義。
5師問:如果將一盒重千克的水果平均分成5份,求其中一份是多少千克,該怎樣
8計算?
學生試著列出算式。
引導觀察:這幾道算式之間有怎樣的關系?分數除法是什么樣的運算?它的意義和整數除法的意義是否相同?
2、歸納概括分數除法的意義。
3、分數除以整數。
(1)出示例1.引導學生分析并用圖表示數量關系。師問:求每份是這張紙的幾分之幾,怎樣列式?(2)列式計算。
4÷2的結果是多少?這個結果是怎樣得到的? 5學生折一折,算一算。師問:從圖上看,(3)理清思路。
411思路一:把平均分成2份,就是把4個平均分成2份,每份是2個,也就是5552。5441思路二:把平均分成2份,求每份是多少,就是求的是多少。
552(4)總結分數除以整數的計算方法。分數除以整數等于分數乘這個數的倒數。
5、鞏固練習。完成教材第30頁“做一做”。
三、課堂作業設計
1、填空。
(1)分數除法的意義與整數除法的意義(),都是已知()與(),求()的運算。
(2)分數除以整數(0除外),等于分數()這個整數的()。
88(3)÷5=×()=()
992、計算并驗算。
651115 ÷3= ÷10= ÷11= ÷30= 11131228板書設計
分數除以整數
分數除以整數等于分數乘這個數的倒數。第二課時
教學內容:一個數除以分數(教材第31、32頁的內容)教學目標:
1、結合具體情境,理解整數除以分數和分數除以分數的算理,掌握一個數除以分數的計算方法。
2、能夠熟練、正確地進行計算。
3、滲透轉化思想。教學重難點:
重點:理解一個數除以分數算理,掌握計算方法。難點:能夠熟練、正確地進行分數除法的計算。教學準備: 課件 教學過程:
一、導入
1、口算。
5471÷3= ÷4= ÷5= ÷3 115962、說出下面各分數的分數單位,每個分數單位中有幾個這樣的分數單位,并說 出每個分數單位的倒數。
1791
158910
二、教學實施
揭示課題:我們已經學過了分數除以整數的計算方法,如果除數是分數該怎樣計算呢?今天我們就來研究一個數除以分數的計算方法。(板書課題:一個數除以分數)
1、出示例2。
①學生讀題,明確題意。師問:這道題應該怎樣解決呢?
②列式。師問:怎樣求小明和小紅的速度?引導學生利用“速度=路程÷時間”這個關系式列式。
2、整數除以分數的計算方法。
①學生嘗試說出自己的算法,教師評價。②用線段圖理解整數除以分數的計算方法。老師在黑板上畫一條線段,然后提問:在圖2上怎樣表示“小時走了2千米”這個已知條件?
33、學生自學分數除以分數的計算方法。
55師問:求小紅1小時行多少千米,列式是÷=,該怎樣計算呢?
6124、歸納方法。
師問:觀察比較例2的兩個算式,你發現了什么?你會用自己的方式描述你發現的規律嗎?(板書:甲數除以乙數(0除外),等于甲數乘乙數的倒數。)
5、練習。
(1)完成教材第32頁“做一做”的第1、2、3題。(2)完成教材第34頁;練習七的第1—8題。
三、課堂作業設計
1、在○里填上運算符號,在()里填上適當的數。
41554÷4= ○=()÷5= ○()=()55412123116÷= 6○()=()()÷()= ○=()
4342、口算。
4444÷4= 1÷= 1+= 1-= 7777111412×= ÷2= 2÷= ÷= 2212272板書設計
一個數除以分數
速度=路程÷時間
2551、小明的速度=2÷ 小紅的速度=÷ 36121132、2××3=2×(×3)=2×=3(千米)
2223、分數除以分數
4、甲數除以乙數(0除外),等于甲數乘乙數的倒數。第三課時
教學內容:分數四則混合運算(教材第33頁的內容)教學目標:
1、結合具體情境,掌握分數四則混合運算的順序,能正確地進行計算。
2、能運用所學知識解決簡單的實際問題,提高綜合解題的能力。
3、培養學生認真審題、準確計算的好習慣。教學重難點:
重點:掌握分數四則混合運算的順序。難點:正確計算分數四則混合運算。教學準備: 課件 教學過程:
一、導入
1、筆算下面各題。
24÷4+16×5-37 46+50×[(900-90)÷9]
2、計算下面各題。
2÷320 34-38 23×2 11335÷15 8÷8
二、教學實施
1、出示例3。
(1)老師整理情境中的信息。(2)學生明確題意。(3)學生分析題目并解答
(4)老師提問:可以列綜合算式嗎?小組討論并匯報,如何列綜合算式。板書:12÷(112×3)12÷2÷3(5)分析運算順序。
師問:這兩道算式里分別含有幾級運算?應該先算什么,再算什么?
2、鞏固練習,完成教材第33頁“做一做”。
3、變式練習。
51出示分數、小數混合運算:÷0.125-
4三、課堂作業設計
1、填空。
222()(1)20米是()米的,20米的是()米,20米的是56米的。
(2)()噸的3554比8噸還多1噸。
(3)1÷()=0.125=()÷64=5()()=24
2、計算下面各題。
20-14×1(5 -1)×(4 -1640×2584525×(1 +14)(14-110)×23
5())
3、解決問題
第一課時
教學內容:“已知一個數的幾分之幾是多少,求這個數”的實際應用問題(教材第37、38頁的內容及練習八的1—3題)教學目標:
1、結合具體情境,理解“已知一個數的幾分之幾是多少,求這個數”的應用題的結構特征,能夠用方程或算術方法解答這類簡單的實際問題。
2、借助線段圖培養學生分析、解決問題的能力。
3、進一步滲透轉化的數學思想。教學重難點:
重點:通過分析比較,找出分數乘、除法應用題的區別和聯系,掌握解決問題的規律。難點:運用分數除法解決實際問題。教學準備: 課件 教學過程:
一、導入
1、口頭分析。
下面每組中的兩個量,應把誰看做單位“1”?
1生物組的人數是美術組的。
34航模組的人數是生物組。
52汽車數量相當于自行車數量的。
32、復習分數乘法應用題。
一個兒童重35千克,他體內所含的水分約占體重的二、教學實施
1、出示例4.2、分析數量關系。
師問:例4與復習題有什么區別和聯系?
引導學生從已知條件和問題、單位“1”、數量關系式等幾方面進行比較。在學生回
4。他體內的水分是多少千克? 5報過程中,繪制下面的線段圖。板書:
師問:在這個數量關系式中,小明的體重是未知的,可以用什么來表示? 讓學生用含有未知數的等式來表示這個數量關系式,即:
4x×=小明體內水分的質量
53、列方程解應用題。
師問:你會用列方程的方法解答這道題嗎?
學生匯報的同時,老師板書補充完整第一問的解題過程。
4、出示例5。
學生先讀題,選擇有用的信息。
8”這兩個條件畫出線段15圖。(老師強調:這是兩個量之間的比較,要畫出兩條線段。)根據“小明的體重是35千克,他的體重比爸爸的體重輕根據線段圖,列出數量關系式。
8爸爸的體重×(1-)=小明的體重
15爸爸的體重-爸爸比小明重的部分=小明的體重
學生列方程解答。
解:設爸爸的體重是x千克。
88(1-)x=35 x-x=35 15156、練習,完成教材第39頁練習八。
三、課堂作業設計
1、看圖列算式(或方程)。
2、解方程。
8215 2x= x=30 x=
15546板書設計
解決“已知一個數的幾分之幾是多少,求這個數”的實際應用問題
4一個兒童的體重×=這個兒童體內水分的質量
58爸爸的體重×(1-)=小明的體重 爸爸的體重-爸爸比小明重的部分=小明的體重 第二課時
教學內容:稍復雜的“已知一個數的幾分之幾是多少,求這個數”的實際應用問題(教材第40—45頁的內容)教學目標:
1、結合具體情境,進一步理解和掌握“已知一個數的幾分之幾是多少,求這個數”的應用題的結構特征,能正確解答這類應用題。
2、培養學生分析、解答應用題的能力。教學重難點:
重點:找準單位“1”及數量關系。
難點:正確解答稍復雜的“已知一個數的幾分之幾是多少,求這個數”的應用題。教學準備: 課件 教學過程:
一、導入
1、口頭列式。
3重15千克,這袋面粉重多少千克? 41(2)一輛汽車每小時行60千米,是火車速度的,求火車的速度是多少?
412、分析條件。課件出示:美術小組的人數比航模小組的人數多 師問:這句話中哪個量是單位“1”?怎樣理解這句話?(1)一袋面粉的二、教學實施
1、出示例6。老師整理情境中的信息:已知一場比賽的總得分是42,下半場得分只有上半場的一半,求上半場和下半場各的了多少分?
2、閱讀與理解。
(1)一場比賽的總得分是多少?
(2)下半場得分只有上半場得分的一半,怎么理解這句話?(3)問題是求什么?
3、分析數量關系。
師問:單位”1”是已知的還是未知的?應該怎樣解答?
1=比賽的總得分 2 下半場的得分×2+半場的得分=比賽的總得分 板書:上半場的得分+上半場的得分×
4、列式解答。
解:設上半場得x分。解:設下半場得x分。x+x=42 2x+x=42 21 28×=14(分)14×2=28(分)
25、出示例7。老師整理情境中的信息:一條隧道,如果一隊單獨修,12天能修完,如果二隊單獨修,18天才能修完,如果兩隊合修,多少天能修完?
6、分析方法。
師問:題中這條路多長沒有給出,可以怎樣來解答?
7、小組討論分析結果,集體匯報。
8、鞏固練習。完成教材第44頁練習九。(學生畫圖后再解答,并說出等量關系式)
三、課堂作業設計
1、填空。
1()(1)同學們回收的廢舊電池比易拉罐多,易拉罐的數量是廢舊電池的。
4()1()(2)國產小轎車的現價比原價降低了,現價是原價的。
8()()()(3)40是60的,60比40多。
()()14(4)一本書的是40頁,這本書的是()頁。
452、判斷。
1(1)10克鹽溶入100克水中,鹽占鹽水的。()
1013(2)3米的和1米的同樣長。()
4411(3)一種商品先提價,再降價,現價和原價相等。()
88板書設計
稍復雜的“已知一個數的幾分之幾是多少,求這個數”的實際應用問題
1上半場的得分+上半場的得分×=比賽的總得分
2下半場的得分×2+半場的得分=比賽的總得分
整理和復習
第一課時
教學內容:復習分數除法的意義和計算(教材第46、47頁的內容)教學目標:
1、使學生進一步明確本單元的知識體系,加深對分數除法的意義和計算方法的理解。
2、熟練掌握分數除法的計算法則,提高靈活解題的能力。
3、在整理知識體系的過程中,幫助學生掌握復習的方法。教學重難點:
重點:概念和計算法則的整理。難點:運用所學概念,靈活解決問題。教學準備:課件 教學過程:
一、整理本單元的知識
1、課前布置作業,學生自己整理本單元的知識點。
2、展示學生的知識結構圖。
二、復習分數除法的意義和計算法則
1、回憶。分數除法可以分成幾種情況,請你分別舉例說說它們的意義和計算方法。
2、整理學生的匯報。
3、完成教材第46頁的第1題。請學生先復述分數除法的意義,然后計算。
三、課堂作業設計
1、在○里填上“>”“<”或“=”。
9×18○9 9÷4343○9 ×○1 9÷244231213○9 9×3○9 3×5○3÷5
2、計算。
12-13×14+16 12×13-14+111116(2+3)×4-6
12÷[13×(114-6)]
第二課時
教學內容:復習分數除法應用題(教材第46、47頁的內容)教學目標:
1、通過復習比較,進一步弄清分數乘、除法應用題在數量關系和解題思路等方面的聯系和區別。
2、進一步掌握用方程或算術方法解答“已知一個數的幾分之幾是多少,求這個數”的應用題,提高學生解答分數應用題的能力。
3、培養學生獨立思考、認真審題的好習慣。教學重難點:
建立三類分數應用題之間的聯系,能夠比較準確地分析、解決較復雜的實際問題。教學準備:課件 教學過程:
一、導入。今天,我們一起上一節分數應用題的復習課,想一想我們學過的分數應用題包括哪幾種類型。
二、教學實施
1、出示教材第46頁的第2題。
(1)第①題是比較簡單的“已知一個數的幾分之幾是多少,求這個數”的應用題。
引導學生說出鴨的只數是單位“1”且未知,求鴨的只數,就是求單位“1”是多少,用除法計算。
老師可以請學生邊說,邊畫出線段圖。
(2)第②題是稍復雜的“已知一個數的幾分之幾是多少,求這個數”的實際應用問題。
3師問:怎樣理解“鵝的只數比鴨少”?(請幾名學生回答)
5學生畫圖并口頭分析,請一名學生板演: 師問:根據線段圖,你能用簡單的話概括這道題已知什么,求什么嗎?(3)提問:比較以上兩道題,有什么相同點和不同點?(4)按比分配的應用題。請學生完成第③題。
師問:還記得按比分配解決問題的一般方法嗎?
課件出示: 求平均分得的總份數 ↓
求每部分占總份數的幾分之幾
↓
用分數乘法求出每部分是多少
(5)提問并解答。你能用上面的數據編出其他的分數乘、除法應用題嗎?
2、反饋練習。
完成教材第47頁的練習十。
三、課堂作業設計
11、一頭藍鯨骨骼重20噸,約占體重的,它的體重約是多少噸?
712、一種手機降價出售,正好比降價前便宜了200元,降價前賣多少元?
523、小明看一本640頁的書,第一天看了全書的。兩天共看了多少頁?
5把需要補充的條件和相應的算式用線連起來。第二天看了128頁 640×+128
521 第二天比第一天少看了128頁 640××(1+)
5212 第二天看的頁數相當于第一天的 640××2-128
第五篇:六年級上冊數學第三單元_分數除法教案
六年級上冊數學第三單元 分數除法教案
單元教材分析:
本單元是在學生已經掌握了分數乘法的基礎上,學習分數除法和比的初步知識。主要內容包括分數除法的意義和計算;解決問題;比的意義與基本性質,求比值一化簡比,以及比的應用。通過本單元的學習,學生可以比較系統大掌握了分數的四則運算;另一方面又開始了比的初步知識的系統學習,為后面學習百分數和比例提供了基礎。
單元教學目標:
1、理解并掌握分數除法的計算方法,回進行分數除法計算。
2、回解答已知一個數的幾分之幾是多少求這個數的實際問題。
3、理解不的意義,知道比與分數、除法的關系,并能類推出比的基本性質。能夠正確地化
簡比和求比值
4、能運用比的知識解決有關的實際問題。
學情分析:
本單元學習之前,學生基本上完成了分數加、減以及分數乘法的學習。學生可以根據整數除法的意
義理解分數除法的意義。
單元課時安排:
1、分數除法..............5課時
2、解決問題..............3 課時
3、比和比的應用.......4 課時
4、整理和復習..........2 課時
一 分數除法
第一課時 分數除法的意義和整數除以分數
教學目標:
知識目標:通過實例,使學生知道分數除法的意義與整數除法的意義是相同的,并使學生掌握分數
除以整數的計算法則。能力目標:動手操作,通過直觀認識使學生理解整數除以分數,引導學生正確地總結出計算法則,能運用法則正確地進行計算。
情感目標:培養學生觀察、比較、分析的能力和語言表達能力,提高計算能力。
教學重點:
使學生理解算理,正確總結、應用計算法則。
教學難點:
使學生理解整數除以分數的算理。
教學過程:
一、復習
1、復習整數除法的意義
(1)引導學生回憶整數除法的計算法則:已知兩個因數的積與其中一個因數,求另一個因數的運算。
(2)根據已知的乘法算式:5×6=30,寫出相關的兩個除法算式。(30÷5=6,30÷6=5)
2、口算下面各題(題略)
二、新授
1、教學例1(1)出示插圖及乘法應用題,學生列式計算:100×3=300(克)(2)學生把這道乘法應用題改編成兩道除法應用題,并解答。A、3盒水果糖重300克,每盒有多重? 300÷3=100(克)B、300克水果糖,每盒100克,可以裝幾盒? 300÷100=3(盒)(3)將100克化成 千克,300克化成 千克,得出三道分數乘、除法算式。
1/10×3=3/10(千克)3/10÷3=1/10(千克)3/10÷1/10=3(盒)
(4)引導學生通過整數題組和分數題組的對照,小組討論后得出:分數除法的意義與整數除法相同,都是已知兩個因數的積與其中一個因數,求另個一個因數。都是乘法的逆運算。
2、鞏固分數除法意義的練習:P28“做一做”
3、教學例2(1)學生拿出課前準備好的紙,小組討論操作,如何把這張紙的4/5平均分成2份,并通過操作得
出每份是這張紙的幾分之幾。
(2)小組匯報操作過程,得出:將一張紙的4/5平均分成2份,每份是這張紙的2/5。
(3)引導學生數形結合,對照不同的折法,說出兩種不同的計算方法。
A、4/5÷2=(4÷2)/5 =2/5,每份就是2個1/5。B、4/5÷2=4/5 ×1/2 =2/5,每份就是單位1 的2/5。(4)如果把這張紙的平均分成3份呢?讓學生從上面兩種方法中選擇一種進行計算,通過操作對
比,讓學生發現第二種方法適用的范圍更廣。
4、引導學生觀察 4/5÷2和4/5 ÷3兩個算式,概括出分數除以整數的計算法則:分數除以整數,等
于乘上這個整數的倒數。
三、練習
8/15÷4 9/10÷3 5/7÷2 7/12÷7 5/21÷10 6/35÷6
四、總結
1、今天我們學習了哪些內容?(分數除法的意義及分數除以整數的計算法則)
2、誰來把這兩部分內容說一說?
第二課時 一個數除以分數
教學目標:
知識目標:在學生學習了分數除以整數、整數除以分數、一個數除以分數計算法則基礎上,引導學生總結出分數除法的計算法則,能利用計算法則,正確、迅速地進行分數除法的計算。
能力目標:培養學生的語言表達能力和抽象概括能力。
情感目標:培養學生良好的計算習慣。
教學重點:
總結出一個數除以分數的計算法則,并抽象概括出分數除法的計算法則。
教學難點:
利用法則正確、迅速地進行計算,并能解決一些實際問題。
教學過程:
一、復習
1、列式,說清數量關系
小明2小時走了6 km,平均每小時走多少千米?(速度=路程÷時間)
2、直接寫出得數(題略)
二、新授
1、默讀例3,理解題意,列出算式:2÷ 2/3 5/6÷5/12
2、探索整數除以分數的計算方法
(1)2÷2/3 如何計算?引導學生結合線段圖進行理解。(2)先畫一條線段表示1小時走的路程,怎么樣表示2/3小時走了2 km這個條件?(將線段平均分成3份,其中2份表示的就是2/3小時走的路程)
(3)引導學生討論交流:已知2/3小時走了2 km,要求1小時走了多少千米?可以先算什么,再算
什么?
(4)根據學生的回答把線段圖補充完整,并板書出過程。
先求2/3小時走了多少千米,也就是求2個1/2,算式:2×1/2
再求3個1/3 小時走了多少千米,算式:2×1/2 ×3(1)綜合整個計算過程:2÷2/3 =2×1/2 ×3=2×3/2
2、小結出計算法則:從上面這個推算過程,我們發現——整數除以,分數等于用整數乘這個分數的倒數。
3、計算5/6 ÷5/12,探索分數除以分數的計算方法
(1)學生根據整數除以分數的計算方法,自己獨立嘗試分數除以分數的計算。
5/6÷5/12 = 5/6× 12/5=2(km)(2)學生用自己的方法來驗證結果是否正確。
4、總結計算法則:無論是整數除以分數,還是分數除以分數,都可以轉化成乘法來計算,也就是說除以一個不等于0的數,等于乘上這個數的倒數。
三、練習
1、P31“做一做”的第1、2題。
2、練習八第2、4題。
教學反思:
第三課時 分數除法的練習
練習內容
分數除法計算(課本第33頁第6~9題)
練習目標
1、使學生熟練掌握分數除法的計算方法,能正確的進行計算,并能解決有關的簡單問題。
2、能根據除數的特征,判斷除法算式中商與被除數的大小關系。
教學過程
一、基礎練習
1、填一填,說一說。
()/()÷()/()=()/()
5/8×1/3=5/24
()/()÷()/()=()/()
過程要求:(1)根據題意填寫算式;(2)說一說分數除法與乘法的關系。
2、計算。
2/7÷2/3 1/3÷5/4 5/8÷4 20÷2/3 過程要求:(1)學生獨立計算;(2)說一說是怎么算的;(3)用一句話歸納分數除法計算法則。
二、專項練習完成課文練習八第6題。
1、不用計算,判斷各式的商與被除數的大小關系。
2、與同伴交流思維過程和結果。
3、匯報交流情況。
學生有可能將除法算式轉化為乘法算式,然后根據算式的含義進行判斷。
如:6/7÷3=6/7×1/3 6/7的1/3,表示把6/7平均分成3份,只取其中1份,結果一定小于6/7。
教師按照學生匯報的結果,進行歸類。
商大于被除數的: 商小于被除數的:
4、引導發現規律。比較兩邊的算式,有什么發現? 學生通過觀察、思考,并和同伴交流后,得出自己的發現規律。
除以小于1(0除外)的數時,商大于被除數;
除以大于1的數時,商小于被除數。
三、鞏固練習完成練習八第7~9題。
1、第7題 學生根據題意列出算式,并計算。
2、第8題 認真審題,說一說題中的數量關系,列式計算。
3、第9題 認真審題,說一說題中的數量關系,并和第8題比較。
“半秒”怎么表示?“1分鐘”怎么表示?
四、作業 選用課時作業
第四課時 分數混合運算
教學目標:
知識目標:通過觀察、分析、使學生掌握分數四則混合運算的運算順序,能應用計算法則較熟練地
進行計算。
能力目標:通過練習,培養學生的計算能力及初步的邏輯思維能力。通過觀察、類推,使學生進一步理解整數四則混合運算的運算定律在分數四則運算中同樣適用,并能應用運算定律及有關性質進行簡便
運算。
情感目標:通過練習,培養學生觀察、類推的思維能力和靈活計算的能力。
教學重點:確定運算順序再進行計算。教學難點:明確混合運算的順序。
教學過程:
一、復習
1、復習整數混合運算的運算順序
(1)在一個沒有小括號的算式里,只有乘除法或加減法,應該從左往右依次計算;如果既有加減法
又有乘除法,應該先算乘除法,后算加減法。
(2)在一個有小括號的算式里,應該先算小括號里面的,后算小括號外面的。
(3)在一個既有小括號又有中括號的算式里,應該先算小括號里面的,后算中括號里面的,最后算
中括號外面的。
2、說出下面各題的運算順序。
(1)428+63÷9―17×
5(2)1.8+1.5÷4―3×0.4(3)3.2÷[(1.6+0.7)×2.5](4)[7+(5.78—3.12)]×(41.2―39)
二、新授
1、教學例4(1)學生讀題,明確已知條件及問題,嘗試說說自己的解題思路。(2)根據學生的回答,歸納出兩種思路:
A、可以從條件出發思考,根據彩帶長8m,每朵花用2/3m 彩帶,可以先算出一共做了多少
朵花。
B、從問題入手想:要求小紅還剩幾多花,根據題意,應先求小紅一共做了幾朵花。(3)學生獨立列出綜合算式后,讓他們說說運算順序,再進行計算。
2、鞏固練習:P34“做一做”
(1)學生獨立完成第一題,然后全班校對。引導學生比較計算分數連除或連乘除的兩種算法,通過比較,使學生發現統一約分后再計算比分步計算簡便。
(2)學生讀題理解題意,指名說說解題思路,再讓學生獨立列式計算。
三、練習
1、練習九第1題:前三題提倡學生選擇統一成乘法的方法進行計算。
2、練習九第2-4題
(1)第2題:可以先求每層有多高,再求樓的樓板到地面的高度,但要注意引導學生意識到6樓樓
板到地面的高度實際上只有5層樓的高度。
(2)第3題可引導學生形成兩種思路:A、先求每小時錄入了這篇論文的幾分之幾,再求8小時可錄入這篇論文的幾分之幾;B、先求8小時是3小時的幾倍,再求8小時錄入幾分之幾。(3)第4題同樣有兩種方法:A、可以先求一共能裝多少袋,列式:240÷ 1/4× 3/4;B、可以先求裝完的3/4 有多少千克,綜合算式是240×3/4 ÷1/4。
四、布置作業
練習九第5-9題。教學反思:
第五課時 分數混合運算的練習
練習內容
分數除法計算及四則混合運算(課本第36頁第5~10題)
練習目標
1、使學生較熟練的掌握分數除法的計算方法,熟練掌握分數四則混合運算順序,并能正確地進行計
算。
2、能綜合運用所學知識解決有關實際問題。
3、對不懂的地方有提出疑問的意識,發現錯誤能及時改正。
教學過程
一、基礎練習
1、口算。
4/7÷2 9/10÷1/5 15÷1/3 3/4×2/9 1/2-1/4 1/2÷1/4 1/2×1/4 1/4÷1/2 過程要求:(1)用口算卡依次出示各算式;(2)學生完整表達算式,計算過程及結果;(3)說一
說分數四則運算的計算方法。
2、計算下列各題。
4/13÷2+1 5/63/7÷3/5 0.6÷3/4×5/12 過程要求:(1)學生獨立計算;(2)匯報計算方法。
3、簡便計算。3/8+1/3÷5/9+2/5 過程要求:(1)學生獨立計算,然后與同伴交流;(2)怎么計算簡便?學生匯報,集體評價。
二、鞏固練習
完成課文練習九第5~10題。
1、第5題(1)學生獨立計算;(2)匯報計算方法。如:2/9÷0.375÷6/7 式中含有小數,要怎么辦?
=2/9÷3/8÷6/7 連除的式子,要怎么算?
=2/9×8/3×7/6 能約分的要先約分。=56/81
2、第6題(1)學生獨立解方程,然后與同伴交流;(2)選講其中兩題。
3、第7、8、9題。(1)認真讀題,理解題意;(2)說一說解題思路;(3)列式計算,集體訂正。
4、第10題
(1)按題目要求計算出每一步結果。(2)說一說你發現了什么。(3)想一想:這是為什么?
三、作業
選用課時作業。
二 解決問題
第六課時 已知一個數的幾分之幾是多少求這個數的應用題
教學目標:
知識目標:使學生學會掌握“已知一個數的幾分之幾是多少,求這個數”的應用題的解答方法,能熟練
地列方程解答這類應用題。
能力目標:進一步培養學生自主探索問題解決的能力和分析、推理和判斷等思維能力,提高解答應
用題的能力。
情感目標:培養學生良好的學習習慣。
教學重點:
弄清單位“1”的量,會分析題中的數量關系。
教學、難點:
分數除法應用題的特點及解題思路和解題方法。
教學過程:
一、復習
1、出示復習題:
根據測定,成人體內的水分約占體重的2/3,而兒童體內的水分約占體重的4/5,六年級學生小明的體重為35千克,他體內的水分有多少千克?
2、讓學生觀察題目,看看題目中所給的三個條件是否都用得上,并說說為什么。
3、選擇解決問題所需的條件,確定出單位“1”,并引導學生說出數量關系式。
小明的體重× 4/5 =體內水分的重量
4、指名口頭列式計算。
二、新授
1、教學例1的第一個問題:小明的體重是多少千克?
(1)讀題、理解題意,并畫出線段圖來表示題意:
(2)引導學生結合線段圖理解題意,分析題中的數量關系式,并寫出等量關系式。
小明的體重× 4/5 =體內水分的重量
(3)這道題與復習題相比有什么相同點和不同點?(相同點是它們的數量關系是一樣的;不同點是
已知條件和問題變了)
(4)這道題什么是單位“1”?單位“1”是已知的還是未知的?怎樣求?(引導學生根據數量關系式,將未知的單位“1”設為χ,列方程來解決問題)
(5)啟發學生應用算術解來解答應用題。(根據數量關系式:小明的體重×4/5 =體內水分的重量,反過來,體內水分的重量÷4/5 =小明的體重)
2、解決第二個問題:小明的體重是爸爸的7/15,爸爸的體重是多少千克?
(1)啟發學生找到分率句,確定單位“1”。
(2)讓學生選擇一種自己喜愛的解法進行計算,獨立解決第二個問題。
(3)指名說說自己是怎樣理解題意的,并與其他同學交流自己的解題思路。(出示線段圖)
爸爸: 小明:
爸爸的體重×7/15 =小明的體重
①方程解:解:設爸爸的體重是χ千克。②算術解: 35÷7/15 =75(千克)
7/15χ=35 χ=35÷7/15
χ=75
3、鞏固練習:P38“做一做”(學生先獨立審題完成,然后全班再一起分析題意、評講)
三、練習
1、練習十第1—3題。(先分析數量關系式,然后確定單位“1”,最后再進行解答。第二題注意引導
學生發現250ml的鮮牛奶是多余條件)
2、練習十第6題(引導學生先求出單位“1”——爸爸媽媽兩人的工資和1500+1000,再根據數量關
系式進行計算)
四、總結 這節課我們學習了分數應用題中“已知一個數的幾分之幾是多少求這個數的應用題”,我們知道了,如果分率句中的單位“1”是未知的話,可以用方程或除法進行解答。
教學反思:
第七課時 練習課
練習內容
兩步計算解決問題(課本第40頁練習十第5~9題)
練習目標
1、使學生能用除法計算熟練解決“已知一個數的幾分之幾是多少,求這個數”的問題。
2、能綜合運用所學知識解決有關的實際問題。
教學過程
一、基礎練習完成課本練習十第5題。
過程要求:(1)學生獨立計算,教師巡視,發現問題及時糾正;
(2)選取幾道計算題,讓學生上臺演板。
(3)集體評價。
(4)小結分數四則混合運算的計算方法。
二、專項練習
1、只列式不計算。
(1)男生30人,是女生人數的2倍,女生有多少人?(2)男生30人,是女生人數的1.5倍,女生有多少人?
(3)男生30人,是女生人數的1/2,女生有多少人?(4)男生30人,是女生人數的2/3,女生有多少人? 過程要求:依次出示題目,學生根據題意列出除法算式;
說一說有什么體會。
通過交流,使學生明白這類問題的特征和解答方法。
教師結合板書幫助分析。
一個數×幾/幾=具體量 → 單位“1”的量×幾/幾=具體量
→ 單位“1”的量=具體量÷幾/幾
2、即時練習。
學校田徑隊有女隊員20人,是男隊員人數的4/5,男隊員有多少人?
過程要求:(1)學生嘗試用除法解答。(2)引導提問:4/5把什么看作單位“1”?
如何求單位“1”的量?
具體量是多少,占單位“1”的幾分之幾?
怎樣列式計算?
三、鞏固練習
完成課本練習十第6~9題。
1、第6題: 3/5把什么看作單位“1”?
求每月開支多少元,就是求什么?
列式計算。
2、第7題: 4/5把什么看作單位“1”?
單位“1”的量已知嗎?用什么方法解答?
求出的單位“1”是什么時候的產量?求全年產量應該怎么辦?
3、第8題: 說一說題中的數量關系?
你用什么方法解答,怎樣解答比較簡單?
4、第9題: 認真審題,弄清題意;這里的1/
6、1/
3、1/2都是以什么數看作單位“1”?
說一說你的解答思路。再計算,把結果填在表上。
四、作業 選用課時作業。
第八課時 稍復雜的分數除法應用題
教學目標:
知識目標:通過教學, 使學生在理解分數除法意義及掌握分數乘法應用題解題思路的基礎上,掌握已知一個數的幾分之幾是多少求這個數的稍復雜分數除法應用題的解題思路和方法,能比較熟練地解答一些
簡單的實際問題。
能力目標:通過教學,培養并提高學生的分析、判斷、探索能力及初步的邏輯思維能力。
情感目標:培養學生良好的學習習慣。
教學重點:
弄清單位“1”的量,會分析題中的數量關系。
教學難點:分析題中的數量關系。
教學過程:
一、復習
小紅家買來一袋大米,重40千克,吃了5/8,還剩多少千克?
1、指定一學生口述題目的條件和問題,其他學生畫出線段圖。
2、學生獨立解答。
3、集體訂正。提問學生說一說兩種方法解題的過程。
4、小結:解答分數應用題的關鍵是找準單位“1”,如果單位“1”的具體數量是已知的,要求單位“1”的幾分之幾是多少,就可以根據分數乘法的意義,直接用乘法計算。
二、新授
1、教學補充例題:小紅家買來一袋大米,吃了5/8,還剩15千克。買來大米多少千克?
(1)吃了5/8是什么意思?應該把哪個數量看作單位“1”?
(2)引導學生理解題意,畫出線段圖。
(3)引導學生根據線段圖,分析數量關系式:買來大米的重量-吃了的重量=剩下的重量
(4)指名列出方程。解:設買來大米X千克。
x-5/8x=15
2、教學例2
(1)出示例題,理解題意。
(2)比航模組多1/4是什么意思?引導學生說出:是把航模組的人數看作單位“1”,美術組少的人數
占航模組的
(2)學生試畫出線段圖。
(3)根據線段圖,結合題中的分率句,列出數量關系式:
航模小組人數+美術小組比航模小組多的人數=美術小組人數(4)根據等量關系式解答問題。解:設航模小組有χ人。
χ+1/4χ=25(1+1/4)χ=25
χ=25÷5/4 χ=20
三、小結
1、今天我們學習的這兩道應用題,它們有什么共同點?(今天我們學習的這兩道應用題,題里的單位“1”都是未知的數量,都可以列方程來解,這樣順著題意列出方程思考起來比較方便。)
2、用方程解答稍復雜的分數應用題的關鍵是什么?(關鍵是找準單位“1”,再按照題意找出數量間的相等關系列出方程)
四、練習
練習十第4、12、14題。
教學反思:
三 比和比的應用
第九課時 比的意義
教學目標:
知識目標:使學生理解比的意義,掌握比的各部分名稱,能正確地讀、寫比,并會正確地求比值。能力目標:引導學生加強知識之間的聯系,使學生掌握的知識系統化,提高學生分析解決問題的能
力。
情感目標:培養學生良好的學習習慣。教學重點:比與除法、分數的關系
教學難點:理解比的意義
教學過程:
一、復習。
1.某車間有男工人5人,女工人8人,男工人數是女工人數的幾分之幾?女工人數是男工人數的幾
倍?
2.分數與除法有什么關系?
二、新授。1. 教學比的意義。(1)教學同類量的比。
A、2003年10月15日,我國第一艘載人飛船“神舟”五號順利升空。在太空中,執行此次任務的航天員楊利偉在飛船里向人們展示了聯合國旗和中華人民共和國國旗。楊利偉展示的兩面旗都是長15cm,寬10cm,怎樣用算式表示它們的長和寬的關系?(引導學生說出:可以求長是寬的幾倍? 或求紅旗的寬
是長的幾分之幾?)
B、這兩個關系都是用什么方法來求的?(除法)
C、比較這兩個數量之間的關系,除了除法,還有一種表示方法,即“比”。可以說成是:長和寬的比
是15比10,或寬和長的比是10比15。
D、不論是長和寬的比還是寬和長的比,都是兩個長度的比,相比的兩個量是同類的量。
(2)教學不同類量的比。
A、“神舟”五號進入運行軌道后,在距地350km的高空作圓周運動,平均90分鐘繞地球一周,大約運行42252km。怎樣用算式表示飛船進入軌道后平均每分鐘飛行多少千米?(路程÷時間=速度,算式:
42252÷90)
B、對于這種關系,我們也可以說:飛船所行路程和時間的比是42252比90,這里的42252千米與
90小時是兩個不同類的量。
(3)歸納比的意義。
A、通過上面兩個例子,你認為什么是比?(學生試說,教師總結:兩個數相除,又叫做兩個數的比。)
B、練習:判斷,下面數量間的關系是表示兩個數的比嗎?
①甲數是9,乙數是7,甲數和乙數的比是9比7;乙數和甲數的比是7比9。
② 拖拉機45分耕了2公頃地,工作總量和工作時間的比是2比45。
③ 足球比賽,甲隊和乙隊的比分是3比2。
2.教學比的寫法、比的各部分名稱。
比的寫法。
15比10 記作15∶10 10比15 記作10∶15
42252比90記作42252∶ 90
比的各部分名稱。
A、學生自學課本,小組討論概括知識點。
B、小組匯報并舉例:
“:”是比號,讀作“比”。比號前面的數,叫做比的前項,比號后面的數叫做比的后項。比的前項除以
后項所得的商,叫做比值。例如: ∶ 2=3÷2=3/2
3.教學比與除法、分數的關系。
(1)比與除法的關系
A、觀察上面的式子,比的前項相當于什么?(被除數),后項相當于什么?(除數)比值相當于什
么?(商)。
B、比的后項能不能是零?為什么?(比的后項不能是零。因為比的后項相當于除數,除數不能是0,所以比的后項也不能是0)
C、比值通常用分數表示,也可以用小數或整數表示。
(2)比與分數的關系。
A、根據分數與除法的關系,可以推知比與分數有什么關系?(引導學生回答:比的前項相當于分子,比的后項相當于分母,比值相當于分數的值。)
a)兩個數的比也可以寫成分數的形式。例如15∶10,可寫成,讀作15比10。
結合上面的講解,板書下表:
除法 被除數 ÷(除號)除數 商
分數 分子 -(分數線)分母 分數值
比 前項 ∶(比號)后項 比值
三、鞏固練習。1.完成課本“做一做”。2.練習十一第1、2題。
四、布置作業。1.課本練習十一的第3題。
2.補充:求出比值。
0.375∶0.875 0.25∶ 0.75 2.6∶3.9
教學小記:
學生理解比的意義,掌握比的各部分名稱,能正確地讀、寫比,并會正確地求比值。
第十課時 比的基本性質
教學目的:
知識目標:通過觀察、類比,使學生理解和掌握比的基本性質,并會運用這個性質把比化成最簡單的整數比。
能力目標:通過學習,培養學生觀察、類比的能力,滲透轉化的數學思想方法,培養學生思維的靈活
性。
情感目標:通過教學,使學生學會與人合作的意識,并能與他人互相交流思維的過程和結果。
教學重點:理解比的基本性質,掌握化簡比的方法
教學難點:化簡比與求比值0的不同
教學過程:
一、復習。
1、什么叫做比?比的各部分名稱是什么?
2、比與除法和分數有什么關系?
比 前項 :(比號)后項 比值 除法 被除數 ÷(除號)除數 商 分數 分子 -(分數線)分母 分數值
3、除法中的商不變規律是什么?舉例:6÷8=(6×2)÷(8×2)=12÷16
4、分數的基本性質是什么?舉例: = =
二、新授
1、猜測比的性質:除法有“商不變性質”,分數也有“分數的基本性質”,根據比與除法和分數的關系,同學們猜想看看,比也有這樣的一條性質嗎?如果有,這條性質的內容是什么?(學生猜測,并相互補充,把這條性質說完整)
2、驗證猜測的性質能否成立:學生以四人小組為單位,討論研究。
6÷8=(6×2)÷(8×2)=12÷16 6:8=(6×2)∶(8×2)=12:16 6:8=(6÷2)∶(8÷2)=3:4 6÷8=(6÷2)÷(8÷2)=3÷4
1、小組派代表說明驗證過程,其他同學補充說明。
2、正式得出“比的基本性質”:比的前項和后項同時乘或除以相同的數(0除外),比值不變,這叫
做比的基本性質。
3、教學例1
(1)出示例題:把下面各比化成最簡單的整數比
15∶10 0.75∶2(2)引導學生審題,說說題目提出了幾個要求(兩個,一是化成整數比,二必須是最簡的)
(3)指名學生說出自己化簡的方法,全班評判。
三、練習
1、P46“做一做”
2、練習十一第2題(提醒學生第二個長方形,長的那條為“長”,短的那條為“寬”)
四、總結
今天我們學習了什么知識?比的基本性質可以應用在哪些方面?
教學反思:
第十一課時 比的應用
教學目標:
知識目標:結合生活實例,使學生進一步掌握按比例分配應用題的結構特點和解題思路,能運用這個知識來解決一些日常工作、生活中的實際問題。能力目標:培養學生運用知識進行分析、推理等思維能力,以及探求解決問題途徑的能力。情感目標:滲透數學的對應思想及函數思想,培養學生認真審題、獨立思考、自覺檢驗的好習慣,增強學好數學的信心。
教學重點:
進一步掌握按比例分配應用題的結構特點和解題思路。
教學難點:
正確分析解答比例分配應用題。
教學過程:
一、復習。
1、我們在教學中學過平均分,平均分的結果有什么特點?(每份都相等)在日常生活中,為了分配的合理,往往需要把一個數量分成不等的幾部分,即把一個數量按照一定的比來進行分配。這種方法通常
叫按比例分配。
2、一瓶500ml的稀釋液,其中濃縮液和水的體積分別是100ml和400ml,__________?(補充
問題并解答)
二、新授。
1、教學例2。(1)出示例2:
(2)引導學生弄清題意后,問:題目中要分配什么?是按什么進行分配的?(分配500ml的稀釋液;
濃縮液和水的體積按1∶4進行分配。)
(3)問:“濃縮液和水的體積1∶4”,是什么意思?(就是說在500ml的稀釋液,濃縮液占1份,水的體積占1份,一共是5份,濃縮液占稀釋液的5分之4,水的體積占稀釋液的5分之1。)
(4)你能求出兩種各多少ml嗎?怎樣求?(引導學生進行解題)
① 稀釋液平均分成的份數:1+4=5 ② 濃縮液的體積:500× 1/5 =100(ml)③ 水的體積: 500× 4/5 =400(ml)
答:稀釋液100ml,水400ml。
(5)如何檢驗解答是否正確呢?(說明:檢驗的方法有兩種:一是把求得的濃縮液和水的體積相加,看是不是等于稀釋液的總體積;二是把求得的濃縮液和水的體積寫成比的形式,看化簡后是不是等于1∶4(6)學生試做:練習:做一做第1題。(訂正時說說解題時先求什么?再求什么?)
2、補充練習
(1)出示:學校把栽280棵樹的任務,按照六年級三個班的人數分配給各班。一班有47人,二班有45人,三班有48人。三個班各應栽樹多少棵?(2)引導學生弄清題意后,問:題中要把280棵樹按照什么進行分配?(著重使學生明確要按照一班、二班、三班的人數的比來分配,即按47∶45∶48來分配。)
(3)根據一班、二班、三班的人數怎樣算出各班栽的棵數占總棵數的幾分之幾?(使學生明確:要先算三個班總共有多少人(即總份數),然后才能算出各班栽的棵數占總棵數的幾分之幾。)
(4)怎樣分別算出各班應種的棵數?引導學生解答: ① 三個班的總人數:47+45+48=140(人)② 一班應栽的棵數: 280× = 94(人)③ 二班應栽的棵數: 280× = 90(人)④ 三班應栽的棵數: 280× = 96(人)答:一班栽樹94棵,二班栽樹90棵,三班栽樹96棵。
(5)學生進行檢驗。
(6)學生試做“做一做”中的第2題。
三、鞏固練習。練習十二的第1、3題。
四、布置作業。
練習十二第2、4、5、6、7題。
教學反思:
第十二課時 比的應用練習
練習內容
比的應用的綜合練習(課本第51頁的第5~7題,第48頁的第7題)。
練習目標 使學生進一步理解掌握按一定的比進行分配的問題結構特征及數量關系,解決有關的問題。
教學過程
一、基礎練習
1、填一填。
(1)某班男生人數與女生人數的比是4∶3,男生人數占全班人數的()/(),女生人數占全班
人數的()/()。
(2)修筑一段公路,已修的部分占全長的3/5,未修的部分占全長的()/(),未修的部分與已
修部分的最簡單整數比是()/()。
2、一本書,已看的部分與未看的部分的比是3∶2。
(1)根據題意,你能得到哪些數量關系?
學生思考后回答,教師記錄。
已看的部分占未看的3/2;未看的部分占已看的2/3;已看的部分占全書的3/5;未看的部分占全書的2/5。(2)解決問題。
如果已看了60頁,未看的有多少頁? 60×2/3 如果未看的是40頁,全書有多少頁? 40÷2/5
你還能提出哪些問題?怎樣解答? 讓學生與同伴互相提問,解答,然后匯報。
二、深化練習
1、例題:一個長方形的周長是84dm,長與寬的比是4∶3,這個長方形的長和寬各是多少dm?
(1)認真審題,弄清題意。(2)說一說你的解答思路。
長與寬的和:842=42
4+3=7 長:42×4/7=24dm 寬:42×3/7=18dm
2、完成課本第5、6題。第5題:(1)認真審題,弄清題意,(2)說一說解答思路:先求出長、寬、高的和,再分別求出長、寬、高各是多少。
(3)怎樣求長、寬、高的和?(4)為什么要120÷4?
(5)學生列式解答,指名演板。
第6題:
(1)認真審題,說一說題目的意思,(2)要怎么解決?(3)學生列式計算。
3、思考題。第51頁第7題。
(1)認真審題,弄清題意,說一說題中的數量關系的特征。
(2)要怎樣解決?(3)列式計算(4)還有其它方法嗎? 第48頁第7題。
說一說根據兩數的比是2∶3,能得到哪些數量關系?
三、作業 選用課時作業。
四 整理和復習
第十三課時 整理復習(1)
復習目標:
使學生進一步掌握本章所學的基本概念和計算法則,提高學生的計算能力和解題能力。
復習重點:分數除法的計算方法,化簡比。
復習難點:正確計算分數除法。
復習過程:
一、復習分數除法的意義和計算法則
1、這一章我們學習了分數除法的有關知識.請大家回憶一下分數除法有幾種類型?
(1)分數除以整數,例如5/7 ÷5;
(2)一個數除以分數,它又包括整數除以分數,例如20÷4/5 ;和分數除以分數,例如 2/3 ÷ 6/7。
(3)做第52頁“整理和復習”的第2題。
2、分數除法的意義
(1)第52頁“整理和復習”的第1題:要把這道乘法算式改寫成兩道除法算式,應該怎么辦呢?(引導學生根據乘、除法的關系進行改寫,然后讓學生將改寫的算式填寫在書上)
(2)讓學生說說是怎樣題改寫成兩道分數除法算式的。
(3)分數除法的意義是什么呢?(使學生明確,分數除法的意義與整數除法的意義相同,都是:已知兩個因數的積與其中一個因數,求另一個因數的運算)
3、分數除法的計算法則
(1)分數除以整數應該怎樣計算?一個數除以分數應該怎樣計算?
(2)引導學生概括出分數除法的統一計算法則:除以一個數(0除外),等于乘這個數的倒數。
(3)完成P52“整理和復習”第2題。
(4)P53練習十三第2題。
二、復習比的意義和基本性質
1、比的意義
(1)什么叫做比?(兩個數相除又叫做兩個數的比)什么叫做比值?(比的前項除以后項所得的商.)
(2)以“3∶2”為例,讓學生分別說出“比號”“前項”和“后項”。
3∶2 =1.5 ┇ ┇ ┇
┇
前 比 后
比
項 號 項 值
(3)比和比值有什么區別和聯系呢?(比值是一個數,是比的前項除以比的后項所得的商,它通常用分數表示,也可以用小數表示,有時還是整數。而比所表示的是兩個數的關系,如3∶2,雖然也可以寫成分數的形式,但仍讀作3比2。特別強調比的后項不能為0)
(4)比和除法、分數的聯系
除法 被除數 ÷(除號)除數 商 分數 分子 -(分數線)分母 分數值 比 前項 ∶(比號)后項 比值
2、比的基本性質(1)復習概念及化簡方法 ①比的基本性質是什么?
②應用比的基本性質,怎樣對整數比進行化簡?
③不是整數的比應該怎樣化簡?
(2)學生做P52“整理和復習”第3題(指名學生說說自己是怎樣想的)
三、課堂練習
1、練習十三的第1題(先讓學生獨立完成.訂正時,要讓學生說出判斷正誤的理由)
2、做練習十四的第2題.
3、做練習十四的第3題(學生獨立完成.教師注意巡視,察看學生所用算法是否簡便)
4、做練習十四的第7題.
第十四課時 整理復習(2)
教學目的:
使學生進一步掌握用方程或算術方法解答已知一個數的幾分之幾是多少求這個數的應用題和稍復雜的分數乘除法應用題,提高學生解答分數應用題的能力.
教學重點:正確解答分數乘除法應用題 教學難點:分數乘除法應用題的聯系與區別
教學過程:
一、推理訓練
1、男生占全班人數的3/5,女生占全班人數的()。
2、一堆煤,用去了4/7,還剩下()。
3、今年比去年增產 1/8,今年相當于去年的()。
二、對比訓練:
1、一步分數應用題
① 張大爺養了200只鵝,500只鴨,鵝的只數與鴨的只數的幾分之幾? ② 張大爺養了200只鵝,鵝的只數是鴨的只數的2/5,養了多少只鵝? ③ 張大爺養了200只鵝,鴨的只數是鵝的只數的5/2,養了多少只鴨?
(1)比較相同點和不同點
引導學生進行比較,使學生更清楚地認識到,在結構上,這三道應用題都含有同樣的數量關系,即:鵝的只數,鴨的只數, 鵝的只數是鴨的幾分之幾;不同的是已知和未知發生了變化。在解題思路上,都要弄清以誰作標準,正確判定把哪一種數量看作單位“1”;不同的是需要根據已知、未知的變化確定該用什么
方法解答。
(2)比較完后,學生將三道題的解答過程寫在練習本上。
2、出示題組:
① 上海到漢口的水路長1125千米,一艘輪船從上每開往漢口,已經行了3/5,離漢口還有多少千
米?
② 一艘輪船從上海開往漢口,已經行了3/5,離漢口還有450千米,上海到漢口的水路長多少千米?
(1)學生自己畫線段圖,分析,解答。
(2)對比:兩題有什么異同?你是怎樣分析的,如何區別的?
3、出示題組:
① 停車場有8輛大客車,小汽車的輛數比大客車多1/6,小汽車有多少輛? ② 停車場有8輛大客車,大客車的輛數比小汽車少1/7,小汽車有多少輛? ③ 停車場有21輛小汽車,大客車的輛數比小汽車少1/7,大客車有多少輛 ④ 停車場有21輛小汽車,小汽車的輛數比大客車多1/6,大客車有多少輛?
(1)學生獨立畫線段圖,分析,解答。
(2)對比:
1、2兩題有什么異同?
3、4兩題呢?你是怎樣分析的,如何區別的?
(3)解答稍復雜的分數乘除法應用題有規律嗎?規律是什么?
引導學生歸納出:
㈠ 分析“分率句”,判斷單位“1”是哪個數量? ㈡ 畫出線段圖,找出“量”和“率”的對應關系。
㈢ 確定已知單位“1”用乘法,求單位“1”用除法或用方程解。
三、課堂練習:
1、第53頁“整理和復習”的第4題(根據題目的條件應該確定把誰看作單位“1”? 單位“1”已知還是未
知?)
2、練習十三第4、5題,獨立完成,集體訂正。
四、作業: 練習十四的第6--10題