第一篇:北師大初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)
很多八年級(jí)的學(xué)生之所以總是考不好數(shù)學(xué),是因?yàn)槠綍r(shí)缺乏思考,所以學(xué)過(guò)的知識(shí)要及時(shí)復(fù)習(xí),不懂的知識(shí)要多思考。以上就是小編為大家梳理歸納的知識(shí),希望能夠夠幫助到大家。
初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)北師
第一章 勾股定理
定義:如果直角三角形兩條直角邊分別為a,b,斜邊為c,即直角三角形兩直角邊的平方和等于斜邊的平方。
判定:如果三角形的三邊長(zhǎng)a,b,c滿足a +b = c,那么這個(gè)三角形是直角三角形。
定義:滿足a +b =c 的三個(gè)正整數(shù),稱為勾股數(shù)。
第二章 實(shí)數(shù)
定義:任何有限小數(shù)或無(wú)限循環(huán)小數(shù)都是有理數(shù)。無(wú)限不循環(huán)小數(shù)叫做無(wú)理數(shù)
(有理數(shù)總可以用有限小數(shù)或無(wú)限循環(huán)小數(shù)表示)
一般地,如果一個(gè)正數(shù)x的平方等于a,那么這個(gè)正數(shù)x就叫做a的算術(shù)平方根。
特別地,我們規(guī)定0的算術(shù)平方根是0。
一般地,如果一個(gè)數(shù)x的平方等于a,那么這個(gè)數(shù)x就叫做a的平方根(也叫二次方根)
一個(gè)正數(shù)有兩個(gè)平方根;0只有一個(gè)平方根,它是0本身;負(fù)數(shù)沒(méi)有平方根。
求一個(gè)數(shù)a的平方根的運(yùn)算,叫做開(kāi)平方,其中a叫做被開(kāi)方數(shù)。
一般地,如果一個(gè)數(shù)x的立方等于a,那么這個(gè)數(shù)x就叫做a的立方根(也叫做三次方根)。
正數(shù)的立方根是正數(shù);0的立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。
求一個(gè)數(shù)a的立方根的運(yùn)算,叫做開(kāi)立方,其中a叫做被開(kāi)方數(shù)。
有理數(shù)和無(wú)理數(shù)統(tǒng)稱為實(shí)數(shù),即實(shí)數(shù)可以分為有理數(shù)和無(wú)理數(shù)。
每一個(gè)實(shí)數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示;反過(guò)來(lái),數(shù)軸上的每一個(gè)點(diǎn)都表示一個(gè)實(shí)數(shù)。即實(shí)數(shù)和數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的。
在數(shù)軸上,右邊的點(diǎn)表示的數(shù)比左邊的點(diǎn)表示的數(shù)大。
第三章 圖形的平移與旋轉(zhuǎn)
定義:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)稱為平移。平移不改變圖形的形狀和大小。
經(jīng)過(guò)平移,對(duì)應(yīng)點(diǎn)所連的線段平行也相等;對(duì)應(yīng)線段平行且相等,對(duì)應(yīng)角相等。
在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn),這個(gè)定點(diǎn)稱旋轉(zhuǎn)中心,轉(zhuǎn)動(dòng)的角稱為旋轉(zhuǎn)角。旋轉(zhuǎn)不改變圖形的大小和形狀。
任意一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。
第四章、三角形
一、知識(shí)框架:
二、知識(shí)概念:
1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2.三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
3.高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。
4.中線:在三角形中,連接一個(gè)頂點(diǎn)和它對(duì)邊中點(diǎn)的線段叫做三角形的中線。
5.角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線。
6.三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫三角形的穩(wěn)定性。
7.多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。
8.多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。
9.多邊形的外角:多邊形的一邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角。
10.多邊形的對(duì)角線:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線。
11.正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫正多邊形。
12.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做多邊形覆蓋平面(平面鑲嵌)。鑲嵌的條件:當(dāng)圍繞一點(diǎn)拼在一起的幾個(gè)多邊形的內(nèi)角加在一起恰好組成一個(gè)時(shí),就能拼成一個(gè)平面圖形。
13.公式與性質(zhì):
⑴三角形的內(nèi)角和:三角形的內(nèi)角和為180°
⑵三角形外角的性質(zhì):
性質(zhì)1:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和。
性質(zhì)2:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角。
⑶多邊形內(nèi)角和公式:邊形的內(nèi)角和等于·180°
⑷多邊形的外角和:多邊形的外角和為360°。
⑸多邊形對(duì)角線的條數(shù):①?gòu)倪呅蔚囊粋€(gè)頂點(diǎn)出發(fā)可以引條對(duì)角線,把多邊形分成個(gè)三角形.②邊形共有條對(duì)角線。
第五章:軸對(duì)稱
1.基本概念:
⑴軸對(duì)稱圖形:如果一個(gè)圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形就叫做軸對(duì)稱圖形。
⑵兩個(gè)圖形成軸對(duì)稱:把一個(gè)圖形沿某一條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這條直線對(duì)稱。
⑶線段的垂直平分線:經(jīng)過(guò)線段中點(diǎn)并且垂直于這條線段的直線,叫做這條線段的垂直平分線。
⑷等腰三角形:有兩條邊相等的三角形叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角。
⑸等邊三角形:三條邊都相等的三角形叫做等邊三角形。
2.基本性質(zhì):
⑴對(duì)稱的性質(zhì):
①不管是軸對(duì)稱圖形還是兩個(gè)圖形關(guān)于某條直線對(duì)稱,對(duì)稱軸都是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。
②對(duì)稱的圖形都全等。
⑵線段垂直平分線的性質(zhì):
①線段垂直平分線上的點(diǎn)與這條線段兩個(gè)端點(diǎn)的距離相等。
②與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上。
⑶關(guān)于坐標(biāo)軸對(duì)稱的點(diǎn)的坐標(biāo)性質(zhì)。
⑷等腰三角形的性質(zhì):
①等腰三角形兩腰相等。
②等腰三角形兩底角相等(等邊對(duì)等角)。
③等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合。
④等腰三角形是軸對(duì)稱圖形,對(duì)稱軸是三線合一(1條)。
⑸等邊三角形的性質(zhì):
①等邊三角形三邊都相等。
②等邊三角形三個(gè)內(nèi)角都相等,都等于60°
③等邊三角形每條邊上都存在三線合一。
④等邊三角形是軸對(duì)稱圖形,對(duì)稱軸是三線合一(3條)。
3.基本判定:
⑴等腰三角形的判定:
①有兩條邊相等的三角形是等腰三角形。
②如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)。
⑵等邊三角形的判定:
①三條邊都相等的三角形是等邊三角形。
②三個(gè)角都相等的三角形是等邊三角形。
③有一個(gè)角是60°的等腰三角形是等邊三角形。
4.基本方法:
⑴做已知直線的垂線:
⑵做已知線段的垂直平分線:
⑶作對(duì)稱軸:連接兩個(gè)對(duì)應(yīng)點(diǎn),作所連線段的垂直平分線。
⑷作已知圖形關(guān)于某直線的對(duì)稱圖形:
⑸在直線上做一點(diǎn),使它到該直線同側(cè)的兩個(gè)已知點(diǎn)的距離之和最短。
初二數(shù)學(xué)上冊(cè)知識(shí)點(diǎn)北師
第二篇:初二數(shù)學(xué)知識(shí)點(diǎn)
初二知識(shí)點(diǎn)總結(jié) ★平行四邊形性質(zhì):
1.平行四邊形的對(duì)邊平行且相等 2.平行四邊形的對(duì)角相等
3.平行四邊形的兩條對(duì)角線互相平分 4.平行四邊形的對(duì)角相等,兩鄰角互補(bǔ) 5.平行四邊形是中心對(duì)稱圖形,對(duì)稱中心是兩對(duì)角線的交點(diǎn)
7.過(guò)平行四邊形對(duì)角線交點(diǎn)的直線將平行四邊形分成全等的兩部分圖形
8.由定義:平行四邊行的兩組對(duì)邊分別平行 ★平行四邊形判定:
1兩組對(duì)邊分別相等的四邊形是平行四邊形 2.對(duì)角線互相平分的四邊形是平行四邊形 3.一組對(duì)邊平行且相等的四邊形是平行四邊形
4.兩組對(duì)角分別相等的四邊形是平行四邊形
★矩形性質(zhì):
1.矩形的四個(gè)角都是直角 2.矩形的對(duì)角線相等且互相平分 3.對(duì)邊相等且平行
4.矩形所在平面內(nèi)任一點(diǎn)到其兩對(duì)角線端點(diǎn)的距離的平方和相等
5.矩形是軸對(duì)稱圖形,對(duì)稱軸是任何一組對(duì)邊中點(diǎn)的連線 ★矩形判定:
1.有一個(gè)角是直角的平行四邊形是矩形 2.對(duì)角線相等的平行四邊形是矩形 3.有三個(gè)角是直角的四邊形是矩形 4.四個(gè)內(nèi)角都相等的四邊形為矩形 5.關(guān)于任何一組對(duì)邊中點(diǎn)的連線成軸對(duì)稱圖形的平行四邊形是矩形
6.【注】依次連接四邊形各邊中點(diǎn)所得的四邊形稱為中點(diǎn)四邊形。不管原四邊形的形狀怎樣改變,中點(diǎn)四邊形的形狀始終是平行四邊形。矩形的中點(diǎn)四邊形是菱形?!锪庑涡再|(zhì)
1.對(duì)角線互相垂直且平分;2.四條邊都相等; 3.對(duì)角相等,鄰角互補(bǔ); 4.每條對(duì)角線平分一組對(duì)角.
5.菱形是軸對(duì)稱圖形,對(duì)稱軸是兩條對(duì)角線 ★菱形判定
1.一組鄰邊相等的平行四邊形是菱形 2.對(duì)角線互相垂直平分的四邊形是菱形 3.四邊相等的四邊形是菱形
4.關(guān)于兩條對(duì)角線都成軸對(duì)稱的四邊形是菱形
5.【注】依次連接四邊形各邊中點(diǎn)所得的四邊形稱為中點(diǎn)四邊形。不管原四邊形的形狀怎樣改變,中點(diǎn)四形的形狀始終是平行四邊形。菱形的中點(diǎn)四邊形是矩形。★正方形性質(zhì):
邊:兩組對(duì)邊分別平行;四條邊都相等;相鄰邊互相垂直
內(nèi)角:四個(gè)角都是90°;
對(duì)角線:對(duì)角線互相垂直;對(duì)角線相等且互相平分;每條對(duì)角線平分一組對(duì)角?!镎叫闻卸ǎ?/p>
1:對(duì)角線相等的菱形是正方形
2:對(duì)角線互相垂直的矩形是正方形,正方形是一種特殊的矩形
3:四邊相等,有三個(gè)角是直角的四邊形是正方形
4:一組鄰邊相等的矩形是正方形 5:一組鄰邊相等且有一個(gè)角是直角的平行四邊形是正方形
6:四邊均相等,對(duì)角線互相垂直平分且相等的平面四邊形
依次連接四邊形各邊中點(diǎn)所得的四邊形稱為中點(diǎn)四邊形。不管原四邊形的形狀怎樣改變,中點(diǎn)四邊形的形狀始終是平行四邊形。正方形的中點(diǎn)四邊形是正方形?!锏妊切涡再|(zhì)等腰三角形的兩底角相等
等腰三角形頂角的平分線平分底邊并且垂直于底邊
等邊三角形的各角都相等,并且每一個(gè)角等于60°
★等腰梯形性質(zhì)定理
1:等腰梯形在同一底上的兩個(gè)角相等 2:等腰梯形的兩條對(duì)角線相等
★三角形全等【SSS.SAS.ASA.AAS.HL】
第三篇:初二下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)
初二下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)有哪些你知道嗎?初二是學(xué)習(xí)數(shù)學(xué)的一個(gè)關(guān)鍵時(shí)期,想要學(xué)好數(shù)學(xué)需要有一個(gè)好的學(xué)習(xí)方法,其實(shí)最簡(jiǎn)單又有效的學(xué)習(xí)方法就是對(duì)知識(shí)點(diǎn)進(jìn)行歸納總結(jié)了。一起來(lái)看看初二下冊(cè)數(shù)學(xué)知識(shí)點(diǎn),歡迎查閱!
初二下冊(cè)數(shù)學(xué)總結(jié)
第一章分式
1分式及其基本性質(zhì)分式的分子和分母同時(shí)乘以(或除以)一個(gè)不等于零的整式,分式的只不變
2分式的運(yùn)算
(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
(2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變?yōu)橥帜傅姆质?,再加減
3整數(shù)指數(shù)冪的加減乘除法
4分式方程及其解法
第二章反比例函數(shù)
1反比例函數(shù)的表達(dá)式、圖像、性質(zhì)
圖像:雙曲線
表達(dá)式:y=k/x(k不為0)
性質(zhì):兩支的增減性相同;
2反比例函數(shù)在實(shí)際問(wèn)題中的應(yīng)用
第三章勾股定理
1勾股定理:直角三角形的`兩個(gè)直角邊的平方和等于斜邊的平方
2勾股定理的逆定理:如果一個(gè)三角形中,有兩個(gè)邊的平方和等于第三條邊的平方,那么這個(gè)三角形是直角三角形
第四章四邊形
1平行四邊形
性質(zhì):對(duì)邊相等;對(duì)角相等;對(duì)角線互相平分。
判定:兩組對(duì)邊分別相等的四邊形是平行四邊形;
兩組對(duì)角分別相等的四邊形是平行四邊形;
對(duì)角線互相平分的四邊形是平行四邊形;
一組對(duì)邊平行而且相等的四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,并且等于第三邊的一半。
2特殊的平行四邊形:矩形、菱形、正方形
(1)矩形
性質(zhì):矩形的四個(gè)角都是直角;
矩形的對(duì)角線相等;
矩形具有平行四邊形的所有性質(zhì)
判定:有一個(gè)角是直角的平行四邊形是矩形;對(duì)角線相等的平行四邊形是矩形;
推論:直角三角形斜邊的中線等于斜邊的一半。
(2)菱形性質(zhì):菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形具有平行四邊形的一切性質(zhì)
判定:有一組鄰邊相等的平行四邊形是菱形;對(duì)角線互相垂直的平行四邊形是菱形;四邊相等的四邊形是菱形。
(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質(zhì)。
3梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底邊上的兩個(gè)角相等;等腰梯形的兩條對(duì)角線相等;同一個(gè)底上的兩個(gè)角相等的梯形是等腰梯形。
第五章數(shù)據(jù)的分析
加權(quán)平均數(shù)、中位數(shù)、眾數(shù)、極差、方差
初二必備數(shù)學(xué)知識(shí)
位置與坐標(biāo)
1、確定位置
在平面內(nèi),確定物體的位置一般需要兩個(gè)數(shù)據(jù)。
2、平面直角坐標(biāo)系及有關(guān)概念
①平面直角坐標(biāo)系
在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸,組成平面直角坐標(biāo)系。其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統(tǒng)稱坐標(biāo)軸。它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。
②坐標(biāo)軸和象限
為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個(gè)部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(diǎn)(坐標(biāo)軸上的點(diǎn)),不屬于任何一個(gè)象限。
③點(diǎn)的坐標(biāo)的概念
對(duì)于平面內(nèi)任意一點(diǎn)P,過(guò)點(diǎn)P分別x軸、y軸向作垂線,垂足在上x(chóng)軸、y軸對(duì)應(yīng)的數(shù)a,b分別叫做點(diǎn)P的橫坐標(biāo)、縱坐標(biāo),有序數(shù)對(duì)(a,b)叫做點(diǎn)P的坐標(biāo)。
點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開(kāi),橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對(duì),(a,b)和(b,a)是兩個(gè)不同點(diǎn)的坐標(biāo)。
平面內(nèi)點(diǎn)的與有序?qū)崝?shù)對(duì)是一一對(duì)應(yīng)的。
④不同位置的點(diǎn)的坐標(biāo)的特征
a、各象限內(nèi)點(diǎn)的坐標(biāo)的特征
點(diǎn)P(x,y)在第一象限→ x>0,y>0
點(diǎn)P(x,y)在第二象限 → x<0,y>0
點(diǎn)P(x,y)在第三象限 → x<0,y<0
點(diǎn)P(x,y)在第四象限 → x>0,y<0
b、坐標(biāo)軸上的點(diǎn)的特征
點(diǎn)P(x,y)在x軸上 → y=0,x為任意實(shí)數(shù)
點(diǎn)P(x,y)在y軸上 → x=0,y為任意實(shí)數(shù)
點(diǎn)P(x,y)既在x軸上,又在y軸上→ x,y同時(shí)為零,即點(diǎn)P坐標(biāo)為(0,0)即原點(diǎn)
c、兩條坐標(biāo)軸夾角平分線上點(diǎn)的坐標(biāo)的特征
點(diǎn)P(x,y)在第一、三象限夾角平分線(直線y=x)上 → x與y相等
點(diǎn)P(x,y)在第二、四象限夾角平分線上 → x與y互為相反數(shù)
d、和坐標(biāo)軸平行的.直線上點(diǎn)的坐標(biāo)的特征
位于平行于x軸的直線上的各點(diǎn)的縱坐標(biāo)相同。
位于平行于y軸的直線上的各點(diǎn)的橫坐標(biāo)相同。
e、關(guān)于x軸、y軸或原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)的特征
點(diǎn)P與點(diǎn)p’關(guān)于x軸對(duì)稱 橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于x軸的對(duì)稱點(diǎn)為P’(x,-y)
點(diǎn)P與點(diǎn)p’關(guān)于y軸對(duì)稱 縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù),即點(diǎn)P(x,y)關(guān)于y軸的對(duì)稱點(diǎn)為P’(-x,y)
點(diǎn)P與點(diǎn)p’關(guān)于原點(diǎn)對(duì)稱,橫、縱坐標(biāo)均互為相反數(shù),即點(diǎn)P(x,y)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為P’(-x,-y)
f、點(diǎn)到坐標(biāo)軸及原點(diǎn)的距離
點(diǎn)P(x,y)到坐標(biāo)軸及原點(diǎn)的距離:
點(diǎn)P(x,y)到x軸的距離等于 ?y?
點(diǎn)P(x,y)到y(tǒng)軸的距離等于 ?x?
點(diǎn)P(x,y)到原點(diǎn)的距離等于 √x2+y2
初二數(shù)學(xué)??贾R(shí)
一次函數(shù)
1、函數(shù)
一般地,在某一變化過(guò)程中有兩個(gè)變量x與y,如果給定一個(gè)x值,相應(yīng)地就確定了一個(gè)y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。
2、自變量取值范圍
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。一般從整式(取全體實(shí)數(shù)),分式(分母不為0)、二次根式(被開(kāi)方數(shù)為非負(fù)數(shù))、實(shí)際意義幾方面考慮。
3、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)
關(guān)系式(解析)法兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做關(guān)系式(解析)法。
列表法把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來(lái)表示函數(shù)關(guān)系,這種表示法叫做列表法。
圖象法用圖象表示函數(shù)關(guān)系的方法叫做圖象法。
4、由函數(shù)關(guān)系式畫(huà)其圖像的一般步驟
列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值。
描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)。
連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來(lái)。
5、正比例函數(shù)和一次函數(shù)
①正比例函數(shù)和一次函數(shù)的概念
一般地,若兩個(gè)變量x,y間的關(guān)系可以表示成y=kx+b(k,b為常數(shù),k不等于 0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。
特別地,當(dāng)一次函數(shù)y=kx+b中的b=0時(shí)(k為常數(shù),k 不等于0),稱y是x的正比例函數(shù)。②一次函數(shù)的圖像:
所有一次函數(shù)的圖像都是一條直線。
③一次函數(shù)、正比例函數(shù)圖像的主要特征
一次函數(shù)y=kx+b的圖像是經(jīng)過(guò)點(diǎn)(0,b)的直線;
第四篇:北師大版小學(xué)數(shù)學(xué)知識(shí)點(diǎn)總結(jié) (上冊(cè))
Y.E.S.教育金牌學(xué)案
一年級(jí)
第一冊(cè) 一單元 生活中的數(shù)
一、數(shù)數(shù)
二、識(shí)數(shù),認(rèn)識(shí)阿拉伯?dāng)?shù)字
三、寫(xiě)阿拉伯?dāng)?shù)字
第二單元 比較
一、介紹等號(hào),大于符號(hào),小于符號(hào),以及其表示的意義
二、比較數(shù)的大小
三、從數(shù)的大小到生活中各類事物的大小,多少,高矮,輕重的比較
第三單元 加減法
一、介紹加法符號(hào),以及十以內(nèi)的無(wú)進(jìn)位的加法。加法交換律的初步認(rèn)識(shí)
二、介紹減法符號(hào),減法的意義,十以內(nèi)數(shù)字的減法
三、加法與減法的內(nèi)在聯(lián)系,進(jìn)一步理解減法的意義
第四單元 分類
一、對(duì)事物進(jìn)行簡(jiǎn)單的歸類,根據(jù)歸類進(jìn)行分類。
第五單元 位置與順序
一、前后順序,位置的前后給事物排序
二、大小順序,數(shù)的大小排序
三、上下順序
四、左右順序
五、將各種順序與生活中的實(shí)際情況相聯(lián)系
第六單元 認(rèn)識(shí)物體
一、從實(shí)際出發(fā)認(rèn)識(shí)幾何物體
二、從直觀上認(rèn)識(shí)正方體,長(zhǎng)方體,圓柱體,球體
第七單元 加減法
(二)一、十以上的數(shù)的認(rèn)識(shí),數(shù)位的初步的認(rèn)識(shí)
二、加數(shù)有十以上,和為二十以下無(wú)進(jìn)位的加法 三、二十以內(nèi)無(wú)借位的減法 四、二十以內(nèi)有進(jìn)位的加法 五、二十以內(nèi)有借位的減法
第八單元 認(rèn)識(shí)鐘表
一、認(rèn)識(shí)鐘表的各組成部分,時(shí)針,分針的認(rèn)識(shí),以及其代表的意義
二、從時(shí)針,分針?lè)植嫉奈恢么笾碌呐袛鄷r(shí)間
第九單元 統(tǒng)計(jì)
/1
Y.E.S.教育金牌學(xué)案
一、分類統(tǒng)計(jì)基礎(chǔ),認(rèn)識(shí)條形統(tǒng)計(jì)圖,學(xué)畫(huà)條形統(tǒng)計(jì)圖
二、統(tǒng)計(jì)圖的運(yùn)用,根據(jù)統(tǒng)計(jì)圖比較統(tǒng)計(jì)中各項(xiàng)的大小
三、總復(fù)習(xí)
二年級(jí)
第一單元 數(shù)一數(shù)與乘法
一、從幾個(gè)相同的數(shù)相加,引出乘法的定義。乘法的符號(hào),乘法算式的讀法
二、用乘法表示幾個(gè)相同的數(shù)相加,列乘法算式
三、進(jìn)一步了解乘法算式意義,體會(huì)乘法與加法的聯(lián)系
第二單元 乘法口訣 一、五的乘法口訣 二、二的乘法口訣 三、三的乘法口訣
四、復(fù)習(xí)五,二,三的乘法口訣
第三單元 觀察物體
一、認(rèn)識(shí)觀察物體的不同方面,上面,正面,左右面
二、從不同方面觀察物體,能分辨是從哪個(gè)方面觀察的圖形
第四單元 分一分與除法
一、從均分東西引出除法的概念,認(rèn)識(shí)除法的意義
二、對(duì)除法進(jìn)行介紹,除法符號(hào),算式的讀法,算式中各項(xiàng)的名稱
三、理解除法與乘法之間的聯(lián)系,通過(guò)乘法口訣求商
四、倍的概念,理解什么是倍,用除法求倍數(shù)
第五單元 方向與位置
一、認(rèn)識(shí)方向,東南西北
二、認(rèn)識(shí)路線圖,辨認(rèn)方向,上北下南,左西右東 第六單元 時(shí)分秒
一、認(rèn)識(shí)鐘面,鐘面的刻度,以及時(shí)分秒針
二、計(jì)時(shí)單位時(shí)分秒的認(rèn)識(shí),以及單位之間的換算
第七單元 乘法口訣
(二)一、六的乘法口訣 二、七的乘法口訣 三、八的乘法口訣 四、九的乘法口訣
五、整理與復(fù)習(xí)乘法口訣
第八單元 除法
/2
Y.E.S.教育金牌學(xué)案
一、利用乘法口訣做除法,進(jìn)一步了解乘除法之間的關(guān)系
二、用除法解決實(shí)際問(wèn)題 第九單元 統(tǒng)計(jì)與猜想
一、數(shù)據(jù)的調(diào)查,整理
二、通過(guò)顯示活動(dòng)進(jìn)行初步統(tǒng)計(jì)
三年級(jí)
第一單元 乘除法
一、整
十、整百、整千數(shù)乘以一位數(shù)的乘法
二、兩位數(shù)與一位數(shù)的乘法 三、一位數(shù)除整
十、整百、整千數(shù)的除法
四、除數(shù)是一位數(shù)的除法
第二單元 觀察物體
一、從不同方向觀察立體圖形,二、能區(qū)別從不同方向觀察到的立體圖形
第三單元 千克、克、噸
一、結(jié)合實(shí)際了解克、千克的重量
二、介紹一千克與克之間的關(guān)系,克、克進(jìn)行換算
三、結(jié)合實(shí)際了解噸的重量
四、介紹噸與千克之間的關(guān)系,對(duì)噸、千克、克進(jìn)行換算
五、搭配,初步的排列、組合
第四單元 乘法
一、兩、三位數(shù)乘一位數(shù)的乘法,無(wú)進(jìn)位
二、有零的乘法
三、因數(shù)中間或末尾有零的乘法
四、連乘
五、黃豆問(wèn)題,結(jié)合實(shí)際的估算
第五單元 周長(zhǎng)
一、周長(zhǎng)的概念,介紹什么是周長(zhǎng)
二、測(cè)算三角形,平行四邊形,梯形的周長(zhǎng)
三、正方形,長(zhǎng)方形的周長(zhǎng)計(jì)算公式
四、利用周長(zhǎng),乘除法解決生活中的問(wèn)題
第六單元 除法
一、兩位數(shù)除以一位數(shù)
二、零作為被除數(shù)的除法
三、兩位數(shù)除以一位數(shù),商中間或末尾有零的除法 四、三位數(shù)除以一位數(shù)的除法,被除數(shù)最高位上的數(shù)小于除數(shù)的除法
/3
Y.E.S.教育金牌學(xué)案
五、連乘,除混合運(yùn)算
第七單元 年月日
一、年月日的認(rèn)識(shí),閏年,平年,大月,小月
二、認(rèn)識(shí)日歷 三、二十四小時(shí)與上十二小時(shí)時(shí)制之間的換算 第八單元 可能性
一、從實(shí)際除法,了解事物發(fā)生的可能性??赡苄缘南嚓P(guān)概念,了解可能性的大小
二、對(duì)生活中的現(xiàn)象進(jìn)行推理、判斷
四年級(jí)
第一單元 認(rèn)識(shí)更大的數(shù)
第一節(jié) 數(shù)一數(shù) 通過(guò)實(shí)例體會(huì)更大的數(shù)的必要性,介紹什么是更大的數(shù) 第二節(jié) 人口普查 估計(jì)多位數(shù),正確的讀寫(xiě)多位數(shù) 第三節(jié)
國(guó)土面積 數(shù)據(jù)改寫(xiě)的必要性,數(shù)據(jù)改寫(xiě)的方法 第四節(jié) 森林面積近似數(shù) 四舍五入法求近似數(shù)
第二單元 線與角
第一節(jié) 顯得認(rèn)識(shí) 介紹直線,線段,射線的相關(guān)概念,用字母表示自限,線段,射線的方法 第二節(jié)平移與平行平行線,平移的概念,用三角板、直尺作平行線的方法
第三節(jié) 相交與垂直 相交與垂直的認(rèn)識(shí),用三角尺畫(huà)垂線的方法,垂直的記法,殿宇線段之間垂線最短的介紹
第四節(jié) 旋轉(zhuǎn)與角平角、周角的介紹,角度的認(rèn)識(shí),用工具畫(huà)角、量角
第三單元 乘法
第一節(jié) 衛(wèi)星運(yùn)行時(shí)間,三位數(shù)乘兩位數(shù)的計(jì)算方法,列豎式計(jì)算 第二節(jié) 體育場(chǎng) 三位數(shù)乘兩位數(shù)的估算
第三節(jié) 神奇的計(jì)算器 電子計(jì)算器 運(yùn)用計(jì)算器進(jìn)行四則運(yùn)算,探索計(jì)算規(guī)律 第四節(jié) 鞏固計(jì)算器的運(yùn)用,探索數(shù)學(xué)規(guī)律
第五節(jié) 計(jì)算工具的演變 簡(jiǎn)要介紹一些計(jì)算工具的演變
第六節(jié) 乘法結(jié)合律、交換律 通過(guò)探索發(fā)現(xiàn)乘法結(jié)合律。并用字母將其表示。利用乘法結(jié)合律進(jìn)行簡(jiǎn)便計(jì)算
第七節(jié) 乘法分配律 探索乘法分配律,應(yīng)用乘法分配律進(jìn)行簡(jiǎn)便運(yùn)算 第四單元 圖形的變換
第一節(jié) 圖形的旋轉(zhuǎn) 圖形的旋轉(zhuǎn)和平移 圖形旋轉(zhuǎn)的三要素
第五單元 除法
第一節(jié) 買(mǎi)文具 除數(shù)是整十?dāng)?shù)的除法
第二節(jié) 路程、時(shí)間與速度 時(shí)間與路程、速度之間的關(guān)系。利用路程時(shí)間速度之間的關(guān)系解決問(wèn)題 第三節(jié) 參觀苗圃 桑拿位數(shù)除以兩位數(shù),有余數(shù)的除法 第四節(jié) 秋游 體會(huì)改商的過(guò)程
第五節(jié) 國(guó)家體育館 以億為單位的大數(shù)的認(rèn)識(shí)
/4
Y.E.S.教育金牌學(xué)案
第六節(jié) 商不變的規(guī)律 介紹商不變的規(guī)律
第七節(jié) 中括號(hào) 中括號(hào)的性質(zhì),運(yùn)算的優(yōu)先級(jí),四則運(yùn)算中的運(yùn)算順序 第六單元 方向與位置
第一節(jié) 確定位置 確定位置的方法,用數(shù)對(duì)確定位置
第二節(jié) 確定位置
(二)方向與距離對(duì)確定位置的作用,根據(jù)方向和距離確定位置,描述路線圖。
第七單元 生活中的負(fù)數(shù)
第一節(jié) 溫度 對(duì)零下溫度的介紹,讀寫(xiě)方法以及其兩個(gè)零下溫度的比較,直觀的理解負(fù)數(shù)的意義 第二節(jié) 正負(fù)數(shù) 從現(xiàn)實(shí)生活出發(fā)介紹負(fù)數(shù)的意義,并用負(fù)數(shù)表示生或中的問(wèn)題。第八單元 統(tǒng)計(jì)
第一節(jié) 栽蒜苗 條形統(tǒng)計(jì)圖中一格表示多個(gè)單位數(shù)字 第二節(jié) 栽蒜苗
(二)折現(xiàn)統(tǒng)計(jì)圖的認(rèn)識(shí) 總復(fù)習(xí)
五年級(jí)
第一單元 倍數(shù)和因數(shù)
第一節(jié) 數(shù)的世界 自然數(shù) 整數(shù)的的概念與區(qū)分。倍數(shù)和因數(shù),聯(lián)系乘法認(rèn)識(shí)倍數(shù)和因數(shù)
第二節(jié) 倍數(shù)的特征 認(rèn)識(shí)5、3、2等數(shù)的倍數(shù)及其特征
第三節(jié) 找因數(shù) 用小正方形拼長(zhǎng)方形的活動(dòng)體會(huì)找因數(shù)的方法,在一到一百之內(nèi)找出所有自然數(shù)的因數(shù) 第四節(jié) 找質(zhì)數(shù) 由長(zhǎng)方形分解為小正方西的活動(dòng)體會(huì)找質(zhì)數(shù)與合數(shù) 第五節(jié) 數(shù)的奇偶性 奇數(shù),偶數(shù)的性質(zhì),特征
第二單元 圖形的面積
第一節(jié) 面積的意義,借助方格紙估計(jì)圖形的面積
第二節(jié) 地毯上的圖形面積 直接在方格圖上數(shù)出面積,介紹分割的方法,將復(fù)雜的圖形轉(zhuǎn)換為簡(jiǎn)單的圖形 第三節(jié) 動(dòng)手做 介紹平行四邊形的面積,平行四面形底和高的認(rèn)識(shí) 第四節(jié)平行四邊形的面積平行四邊形的面積公式和推導(dǎo)過(guò)程 第五節(jié) 三角形的面積 三角形的面積公式 第六節(jié) 梯形的面積公式
第三單元 分?jǐn)?shù)
第一節(jié) 分?jǐn)?shù)的再認(rèn)識(shí),進(jìn)一步認(rèn)識(shí)分?jǐn)?shù),理解分?jǐn)?shù)的意義
第二節(jié) 分餅 真分?jǐn)?shù),假分?jǐn)?shù),帶分?jǐn)?shù)的認(rèn)識(shí),會(huì)讀寫(xiě)帶分?jǐn)?shù),加假分?jǐn)?shù)化作帶分?jǐn)?shù) 第三節(jié) 分?jǐn)?shù)與除法 分?jǐn)?shù)與除法的關(guān)系 用分?jǐn)?shù)表示兩數(shù)相除的商,利用分?jǐn)?shù)與除法的關(guān)系,進(jìn)行假分?jǐn)?shù)的與帶分?jǐn)?shù)的互化
第四節(jié)
分?jǐn)?shù)的基本性質(zhì) 理解分?jǐn)?shù)的性質(zhì),分?jǐn)?shù)的分子分母同時(shí)乘除零以外的數(shù),分?jǐn)?shù)的大小不變
第五節(jié) 找最大公因數(shù),一輛額數(shù)找公因數(shù),介紹公因數(shù)和最大公因數(shù)的意義,找公因數(shù)和最大公因數(shù)的方法
第六節(jié)
約分 介紹約分的含義,以及約分的方法,并通過(guò)約分將分?jǐn)?shù)化為最簡(jiǎn)分?jǐn)?shù)
第七節(jié) 找最大公倍數(shù) 介紹公倍數(shù)和最小公倍數(shù)的意義以及其相關(guān)應(yīng)用,找公倍數(shù)和最小公倍數(shù)的方法 第八節(jié) 分?jǐn)?shù)的大小 分?jǐn)?shù)大小的比較方法 不同分母的分?jǐn)?shù)的大小比較方法,就愛(ài)那個(gè)不同分母的數(shù)化作同分母
/5
Y.E.S.教育金牌學(xué)案
第九節(jié) 數(shù)學(xué)與交通 利用所學(xué)知識(shí)列方程解決問(wèn)題
第十節(jié)
旅游費(fèi)用,利用所學(xué)知識(shí)從給定條件中選擇最佳方案 第十一節(jié) 看圖找關(guān)系 數(shù)量關(guān)系,圖表的認(rèn)識(shí)
地四單元 分?jǐn)?shù)的加減
第一節(jié) 折紙 介紹異分母分?jǐn)?shù)的加減法則
第二節(jié) 星期日的安排 分?jǐn)?shù)的加減混合運(yùn)算法則
第三節(jié) 看課外書(shū)時(shí)間 分?jǐn)?shù)與小數(shù)的比較,分?jǐn)?shù)小數(shù)的互化方法
第五單元 圖形的面積
(二)第一節(jié) 組合圖形面積 將組合圖形分為簡(jiǎn)單圖形,組合圖形面積的計(jì)算方法
第二節(jié)
成長(zhǎng)的腳印 不規(guī)則圖形的面積的估算,用數(shù)格子的方法計(jì)算不規(guī)則的圖形的面積 第三節(jié)
雞兔同籠 用列表、作圖的方法解決雞兔同籠的問(wèn)題 第四節(jié) 點(diǎn)陣中的規(guī)律,長(zhǎng)日常現(xiàn)象中法相特殊規(guī)律
第六單元 可能性的大小
第一節(jié) 摸求游戲 數(shù)據(jù)表達(dá)可能性
第二節(jié)
設(shè)計(jì)活動(dòng)方案 分?jǐn)?shù)表示可能性 第三節(jié) 迎新年 從圖表中獲取信息
第四節(jié) 鋪地磚 運(yùn)用面積公司,方程解決問(wèn)題
六年級(jí)
第一單元 圓
第一節(jié) 圓的認(rèn)識(shí) 圓的特征,圓周率。會(huì)用圓規(guī)畫(huà)圓 第二節(jié) 圓的認(rèn)識(shí)
(二)圓心,半徑,直徑的認(rèn)識(shí)
第三節(jié) 圓的周長(zhǎng) 圓的周長(zhǎng)與直徑的關(guān)系,圓的周長(zhǎng)公式 第四節(jié) 圓的面積 圓的面積公式,能計(jì)算圓的面積
第二單元 百分?jǐn)?shù)的應(yīng)用
第一節(jié) 百分?jǐn)?shù)的應(yīng)用
(一)一個(gè)數(shù)比另一個(gè)數(shù)多少百分之幾的認(rèn)識(shí),及其相關(guān)應(yīng)用題 第二節(jié) 百分?jǐn)?shù)的應(yīng)用
(二)增加,減少了百分之幾的認(rèn)識(shí)及其應(yīng)用題
第三節(jié) 百分?jǐn)?shù)的應(yīng)用
(三)一個(gè)數(shù)占總數(shù)的百分之幾的認(rèn)識(shí)及其相關(guān)應(yīng)用題 第四節(jié) 百分?jǐn)?shù)的應(yīng)用
(四)銀行利率,及其相關(guān)應(yīng)用題
第三單元 圖形的變換
第一節(jié) 圖形的變換 利用平移,旋轉(zhuǎn),軸對(duì)稱等知識(shí)對(duì)圖形進(jìn)行變換 第二節(jié) 圖形的設(shè)計(jì) 進(jìn)一步利用平移,旋轉(zhuǎn)和軸對(duì)稱知識(shí)對(duì)圖形進(jìn)行變換 第三節(jié) 數(shù)學(xué)欣賞 對(duì)簡(jiǎn)單圖形,利用平移,旋轉(zhuǎn)后組成復(fù)雜圖形 第四節(jié) 數(shù)學(xué)與體育 簡(jiǎn)單的排列組合 第五節(jié) 起跑線 半徑不同圓的周長(zhǎng)和運(yùn)用
/6
Y.E.S.教育金牌學(xué)案
第四單元 比的知識(shí)
第一節(jié) 生活中的比,從生活中的現(xiàn)象了解比的含義,認(rèn)識(shí)比與除法的聯(lián)系,比的讀寫(xiě),比的性質(zhì) 第二節(jié) 比的化簡(jiǎn) 比的化簡(jiǎn) 應(yīng)用公約數(shù)將比化簡(jiǎn)
第三節(jié) 比的應(yīng)用 應(yīng)用比的性質(zhì),解決按照一定比例進(jìn)行分配的問(wèn)題
第五單元 統(tǒng)計(jì)
第一節(jié) 復(fù)式條形統(tǒng)計(jì)圖 認(rèn)識(shí)復(fù)式條形統(tǒng)計(jì)圖的特點(diǎn),理解單式與復(fù)式統(tǒng)計(jì)圖的異同,用其表示相應(yīng)數(shù)據(jù),用統(tǒng)計(jì)圖進(jìn)行判斷和預(yù)測(cè)
第二節(jié) 復(fù)式折線統(tǒng)計(jì)圖認(rèn)識(shí)復(fù)式折線統(tǒng)計(jì)圖,了解折現(xiàn)統(tǒng)計(jì)圖的特點(diǎn),從統(tǒng)計(jì)圖中獲取信息 第三節(jié) 生活中的數(shù) 對(duì)估計(jì)的數(shù)進(jìn)行計(jì)算
第四節(jié) 正負(fù)數(shù)
(一)理解負(fù)數(shù)的意義,相反數(shù)的初步認(rèn)識(shí) 第五節(jié) 正負(fù)數(shù)
(二)正負(fù)數(shù)在額很能夠或中的應(yīng)用
第六單元 觀察物體
第一節(jié) 搭一搭 下哦那個(gè)不同方面觀察立體物體,根據(jù)各方面觀察的圖形,還原立體圖形 第二節(jié) 觀察的范圍 結(jié)合實(shí)際將眼睛視線與觀察的范圍抽象為點(diǎn)線區(qū)域的過(guò)程
/7
第五篇:五年級(jí)數(shù)學(xué)北師大版上冊(cè)單元知識(shí)點(diǎn)
第一單元小數(shù)除法.1、除數(shù)是整數(shù)的小數(shù)除法計(jì)算法則:除數(shù)是整數(shù)的小數(shù)除法,按照整數(shù)除法的法則去除,商的小數(shù)點(diǎn)要和被除數(shù)的小數(shù)點(diǎn)對(duì)齊;如果除到被除數(shù)的末尾仍有余數(shù),就在余數(shù)后面添0再繼續(xù)除。
2、除數(shù)是小數(shù)的小數(shù)除法計(jì)算法則:除數(shù)是小數(shù)的除法,先移動(dòng)除數(shù)的小數(shù)點(diǎn),使它變成整數(shù);除數(shù)的小數(shù)點(diǎn)向右移動(dòng)幾位,被除數(shù)的小數(shù)點(diǎn)也向右移動(dòng)幾位(位數(shù)不夠的,在被除數(shù)末尾用0補(bǔ)足),然后按照除數(shù)是整數(shù)的小數(shù)除法進(jìn)行計(jì)算。
3、連除的算式可以寫(xiě)成被除數(shù)除以幾個(gè)數(shù)的積,但除以幾個(gè)數(shù)的積時(shí),必須給這個(gè)相乘的式子加上小括號(hào)。
4、在小數(shù)除法中的發(fā)現(xiàn): ①當(dāng)除數(shù)不為0時(shí),除數(shù)大于1時(shí),商小于被除數(shù)。②當(dāng)除數(shù)不為0時(shí),除數(shù)小于1時(shí),商大于被除數(shù)。當(dāng)除數(shù)不為0時(shí),除數(shù)等于1時(shí),商等于被除數(shù)。小數(shù)除法的驗(yàn)算方法: ①商x除數(shù)=被除數(shù)(通用)②被除數(shù)亡商=除數(shù)
6、商的近似數(shù):根據(jù)要求要保留的小數(shù)位數(shù),決定商要除出幾位小數(shù),再根據(jù)“四舍五入”法保留一定的小數(shù)位數(shù),求出商的近似數(shù)。例如:要求保留一位小數(shù)的,商除到第二位小數(shù)可停下來(lái);要求保留兩位小數(shù)的,商除到第三位小數(shù)停下來(lái)...如此類推。
7、循環(huán)小數(shù): A、小數(shù)部分的位數(shù)是有限的小數(shù),叫做有限小數(shù)。如,0.37、1.4135等。
B、小數(shù)部分的位數(shù)是無(wú)限的小數(shù),叫做無(wú)限小數(shù)。如5.3...7.145145...等。
C、一個(gè)數(shù)的小數(shù)部分,從某位起,一個(gè)數(shù)字或者幾個(gè)數(shù)字依次不斷重復(fù)出現(xiàn),這樣的小數(shù)叫做循環(huán)小數(shù)。
D、一個(gè)循環(huán)小數(shù)的小數(shù)部分,依次不斷重復(fù)的數(shù)字,叫做小數(shù)的循環(huán)節(jié)。(如5.33...的循環(huán)節(jié)是3, 4.6767...的循環(huán)節(jié)是67,6.9258258...的循環(huán)節(jié)是258)8.除法中的變化規(guī)律: ①商不變性質(zhì):被除數(shù)和除數(shù)同時(shí)擴(kuò)大或縮小相同的倍數(shù)(0除外),商不變。②除數(shù)不變,被除數(shù)擴(kuò)大,商隨著擴(kuò)大。
③被除數(shù)不變,除數(shù)縮小,商擴(kuò)大。
10.小數(shù)的四則混合運(yùn)算順序與整數(shù)四則混合運(yùn)算的運(yùn)算順序相同。第二單元軸對(duì)稱和平移軸對(duì)稱:
1.軸對(duì)稱圖形:如果一個(gè)圖形沿著一條直線對(duì)折,兩側(cè)的圖形能夠完全重合,這個(gè)圖形就是軸對(duì)稱圖形,那條直線就叫做對(duì)稱軸。兩圖形重合時(shí)互相重合的點(diǎn)叫做對(duì)應(yīng)點(diǎn),也叫對(duì)稱點(diǎn)。
2.軸對(duì)稱圖形的性質(zhì):對(duì)應(yīng)點(diǎn)到對(duì)稱軸的距離相等,對(duì)應(yīng)點(diǎn)連線垂直于對(duì)稱軸。
3.軸對(duì)稱圖形具有對(duì)稱性。4.軸對(duì)稱圖形的畫(huà)法:(1)找出所給圖形的關(guān)鍵點(diǎn),如圖形的頂點(diǎn)、相交點(diǎn)、端點(diǎn)等;(2)數(shù)出或量出圖形關(guān)鍵點(diǎn)到對(duì)稱軸的距離;(3)在對(duì)稱軸的另一側(cè)找出關(guān)鍵點(diǎn)的對(duì)稱點(diǎn):(4)按照所給圖形的順序連接各點(diǎn),就畫(huà)出所給圖形的軸對(duì)稱圖形。平移: 1.平移的定義:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)稱為平移。2.平移的基本性質(zhì):(1)平移不改變圖形的形狀和大小,只改變圖形的位置。
(2)經(jīng)過(guò)平移,對(duì)應(yīng)線段,對(duì)應(yīng)角分別相等;對(duì)應(yīng)點(diǎn)所連的線段平行且相等。
3.平移圖形的畫(huà)法:(1)確定平移的方向與距離。
(2)將關(guān)鍵點(diǎn)按所需方向平移所需距離。
(3)按原來(lái)圖形的連接方式依次連接各對(duì)應(yīng)點(diǎn)并標(biāo)上相應(yīng)字母。設(shè)計(jì)圖案的基本方法:平移、對(duì)稱、旋轉(zhuǎn)。1.運(yùn)用旋轉(zhuǎn)設(shè)計(jì)圖案的方法:(1)選好基本圖案;(2)根據(jù)所選的基本圖案確定旋轉(zhuǎn)點(diǎn);(3)確定旋轉(zhuǎn)度數(shù);(4)依次沿每次旋轉(zhuǎn)后的基本圖形的邊緣畫(huà)圖。2.運(yùn)用對(duì)稱設(shè)計(jì)圖案的方法:(1)先選好基本圖案;(2)依據(jù)基本圖案的特點(diǎn)定好對(duì)稱軸;(3)畫(huà)出基本圖形的對(duì)稱圖形 第三單元倍數(shù)和因數(shù)(-)數(shù)的世界知識(shí)點(diǎn): 認(rèn)識(shí)自然數(shù)和整數(shù),聯(lián)系乘法認(rèn)識(shí)倍數(shù)與因數(shù)。像0,1,2,3,4,5,6,,這樣的數(shù)是自然數(shù)。: 像-3,-2,-1, 0, 1, 2, 3,.,這樣的數(shù)是整數(shù)。我們只在自 然數(shù)(零除外)范圍內(nèi)研究倍數(shù)和因數(shù)。倍數(shù)與因數(shù)是相互依存的關(guān)系,要說(shuō)清誰(shuí)是誰(shuí)的倍數(shù),誰(shuí)是誰(shuí)的因數(shù)。
補(bǔ)充知識(shí)點(diǎn): 一個(gè)數(shù)的倍數(shù)的個(gè)數(shù)是無(wú)限的。因數(shù)個(gè)數(shù)是有限的。一個(gè)數(shù)最小的因數(shù)是1,最大的因數(shù)是它本身:一個(gè)數(shù)最小的倍數(shù)是它本身,沒(méi)有最大的倍數(shù)。2,5的倍數(shù)的特征知識(shí)點(diǎn): 2的倍數(shù)的特征:個(gè)位上是0, 2, 4,6,8的數(shù)是2的倍數(shù)。5的倍數(shù)的特征:個(gè)位上是0或5的數(shù)是5的倍數(shù)。
偶數(shù)和奇數(shù)的定義:是2的倍數(shù)的數(shù)叫偶數(shù),不是2的倍數(shù)的數(shù)叫奇數(shù)。
補(bǔ)充知識(shí)點(diǎn):既是2的倍數(shù),又是5的倍數(shù)的特征:個(gè)位上是0的數(shù)既是2的倍數(shù),又是5的倍數(shù)。(既是2的倍數(shù),又是5的倍數(shù)都是整十?dāng)?shù),最小的兩位數(shù)是10,最小的三位數(shù)是100)(二)3的倍數(shù)的特征
一個(gè)數(shù)各個(gè)數(shù)位上的數(shù)字的和是3的倍數(shù),這個(gè)數(shù)就是3的倍數(shù)。同時(shí)是2和3的倍數(shù)的特征:_個(gè)位 上的數(shù)是0, 2, 4, 6, 8,并且各個(gè)數(shù)住上的數(shù)字的和是3的倍數(shù)的數(shù),既是2的倍數(shù),又是3的倍數(shù)。(同時(shí)是2和3的倍數(shù),一定是6的倍數(shù),最小的是6.)同時(shí)是3和5的倍數(shù)的特征:個(gè)位 上的數(shù)是0或5,并且各個(gè)數(shù)住上的數(shù)字的和是3的倍數(shù)的數(shù),既是3的倍數(shù),又是5的倍數(shù)。(同時(shí)是3和5的倍數(shù),一定是15的信數(shù),最小的是15。)同時(shí)是2,3和5的倍數(shù)的特征: 個(gè)位上的數(shù)是0,并且各個(gè)數(shù)位上的數(shù)字的和是3的信數(shù)的數(shù),既是2和5的倍數(shù),又是3的倍數(shù)。(同時(shí)是2, 3和5的倍數(shù),一定是30的倍數(shù),最小的兩位數(shù)是30,最小的三位數(shù)是120)9的倍數(shù)的特征:一個(gè)數(shù)各個(gè)數(shù)位上的數(shù)字的和是9的倍數(shù),這個(gè)數(shù)就是9的倍數(shù),它也一定是3的倍數(shù)。四找因數(shù)
在1~100的自然數(shù)中,找出某個(gè)自然數(shù)的所有因數(shù)。方法:
1、運(yùn)用乘法算式,思考:哪兩個(gè)數(shù)相乘等于這個(gè)自然數(shù),那么這兩個(gè)乘數(shù)就是這個(gè)數(shù)的因數(shù)。
2、運(yùn)用除法算式,思考這個(gè)數(shù)除以幾能整除,那么除數(shù)和商就是這個(gè)數(shù)的因數(shù)。補(bǔ)充知識(shí)點(diǎn): 一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的。其中最小的因數(shù)是1,最大的因數(shù)是它本身。找一個(gè)數(shù)的因數(shù),通常用列舉的方法,可一對(duì)一對(duì)的寫(xiě)出來(lái),也可按從小到大的順序來(lái)寫(xiě)。
一個(gè)數(shù)只有1和它本身兩個(gè)因數(shù),這個(gè)數(shù)叫作質(zhì)數(shù)。
一個(gè)數(shù)除了1和它本身以外還有別的因數(shù),這個(gè)數(shù)叫作合數(shù)。1既不是質(zhì)數(shù)也不是合數(shù)。
判斷一個(gè)數(shù)是質(zhì)數(shù)還是合數(shù)的方法:一般來(lái)說(shuō),首先可以用“2,5, 3的倍數(shù)的特征”判斷這個(gè)數(shù)是否有因數(shù)2, 5, 3;如果還無(wú)法判斷,則可以用7, 11 等比較小的質(zhì)數(shù)去試除,看有沒(méi)有因數(shù)7, 11等。只要找到一個(gè)1和它本身以外的因數(shù),就能肯定這個(gè)數(shù)是合數(shù)。如果除了1和它本身找不到其他因數(shù),這個(gè)數(shù)就是質(zhì)數(shù)。第四單元多邊形 面積(-)比較圖形的面積
借助方格紙,能直接判斷圖形面積的大小。平面圖形面積大小的比較有多種方法:根據(jù)圖形面積的大小,可以直接進(jìn)行比較;可以借助參照物進(jìn)行比較;可以運(yùn)用重疊的方法進(jìn)行比較;借助方格,利用數(shù)方格的的方法進(jìn)行比較;直接計(jì)算面積后再進(jìn)行比較等。圖形面積相同,其形狀可以是不同的。補(bǔ)充知識(shí)點(diǎn): 確定一個(gè)圖形面積的大小,不僅是根據(jù)圖形的形狀,更重要的是根據(jù)圖形所占格子的多少來(lái)確定。(C)地毯上的圖形面積知識(shí)點(diǎn): 根據(jù)地毯上所給圖案探求不規(guī)則圖案面積的計(jì)算方法。直接通過(guò)數(shù)方格的方法,得出答案的面積。將圖案進(jìn)行“化整為零”式的計(jì)算,即根據(jù)圖案的特點(diǎn),將整體的圖案分割為若千個(gè)相同面i積的小圖案,通過(guò)求小圖案的面積,得出整個(gè)圖案的面積。
采用“大面積減小面積”的方法,即通過(guò)計(jì)算相關(guān)圖形的面積,得到所求的面積。補(bǔ)充知識(shí)點(diǎn): 在解決問(wèn)題時(shí),策略和方法是多種多樣的。認(rèn)識(shí)平行四邊形、三角形與梯形的底和高。
從平行四邊形一邊的某一點(diǎn)到對(duì)邊畫(huà)垂直線段,這條垂直線段就是平行四邊形的高,這條對(duì)邊是平行四邊形的底。
三角形的一個(gè)頂點(diǎn)到對(duì)邊的垂直線段是三角形的高,這條對(duì)邊是三角形的底。
從梯形的兩條平行線中的一條上的某一點(diǎn)到對(duì)邊畫(huà)垂直線段,這條垂直線段就是梯形的高,這條對(duì)邊就是梯形的底。
用同樣的方法,畫(huà)出梯形兩條平行線之間的垂直線段,就是梯形的高。(一)平行四邊形的面積
平行四邊形的面積=拼成的長(zhǎng)方形的面積
長(zhǎng)方形的長(zhǎng)就是平行四邊形的底;長(zhǎng)方形的寬就是平行四邊形的高。因此:平行四邊形面積=底X高
如果用S表示平行四邊形的面積,用a和h分別表示平行四邊形的底和高,那么,平行四邊形的面積公式可以寫(xiě)成: S=a h 補(bǔ)充知識(shí)點(diǎn): 當(dāng)平行四邊形的底和高相同時(shí),其面積也是相同的。(二)三角形的面積
三角形面積=兩個(gè)相同三角形拼成的平行四邊形的面積:2三角形的底和高,也就是平行四邊形的底和高。
因此:三角形面積=平行四邊形的面積÷2=底×高÷2 如果用S表示三角形的面積,用a和h分別表示三角形的底和高,那么,三角形的面積公式可以寫(xiě)成: S=ah÷2 補(bǔ)充知識(shí)點(diǎn):;決定三角形面積的大小的因素不是圖形的形狀,而是三角形的底與高的長(zhǎng)度,只要底和高相同,不同形狀的三角形的面積也是相同的。(三)梯形的面積
梯形面積=兩個(gè)相同梯形拼成的平行四邊形的面積
梯形的上底與下底的和就是平行四邊形的底,梯形的高就是平行四邊形的高。因此:梯形面積=平行四邊形面積÷2=底×高=(上底+下底)×高÷2 如果用S表示梯形的面積,用a和b分別表示梯形的上底和下底,用h表示梯形的高,那么,梯形的面積公式可以寫(xiě)成: S=(a+b)h÷2補(bǔ)充知識(shí)點(diǎn): 決定梯形面積的大小的因素不是圖形的形狀,而是梯形的上、下底之和與高的長(zhǎng)度,只要上下底的和與高相同,不同形狀的梯形的面積也是相同的。等底等高的三角形的面積相等。等底等高的平行四邊形的面積相等。高和底的關(guān)系是對(duì)應(yīng)的。
第五單元
分?jǐn)?shù)的意義 ㈠分?jǐn)?shù)的再認(rèn)識(shí)
一、整體“1”的含義:一個(gè)物體或一些物體都可以看作一個(gè)整體,這個(gè)整體可以用自然數(shù)“1”來(lái)表示,通常叫做整體“1”。分?jǐn)?shù)的意義:把整體“1”平均分成若干份,其中的一份或幾份,可以用分?jǐn)?shù)表示。分母是幾,整體就被分成了幾份,分子是幾,就表示其中的幾份。
分?jǐn)?shù)對(duì)應(yīng)的“整體”不同,分?jǐn)?shù)所表示的部分的大小或具體數(shù)量也不一樣,即分?jǐn)?shù)具有相對(duì)性。同一個(gè)分?jǐn)?shù)對(duì)應(yīng)的整體大,表示的具體數(shù)量就大;對(duì)應(yīng)的整體小,表示的具體數(shù)量就小。
同一個(gè)分?jǐn)?shù)表示的具體數(shù)量大,對(duì)應(yīng)的整體就大;表示的具體數(shù)量小,對(duì)應(yīng)的整體就小。
二、真分?jǐn)?shù)與假分?jǐn)?shù)
理解真分?jǐn)?shù)、假分?jǐn)?shù)、帶分?jǐn)?shù)的意義。
真分?jǐn)?shù)特點(diǎn):分子都比分母小;分?jǐn)?shù)值小于1。假分?jǐn)?shù)特點(diǎn):分子比分母大,或者分子與分母相等;分?jǐn)?shù)值大于或等于1。帶分?jǐn)?shù)特點(diǎn):由整數(shù)和真分?jǐn)?shù)兩部分組成的;分?jǐn)?shù)值大于1。帶分?jǐn)?shù)的讀法: 讀作:二又四分之一?!镅a(bǔ)充知識(shí)點(diǎn): 分子是分母倍數(shù)的假分?jǐn)?shù)可以化成整數(shù);分子不是分母倍數(shù)的假分?jǐn)?shù)可以化成帶分?jǐn)?shù)。
三、分?jǐn)?shù)與除法
理解分?jǐn)?shù)與除法的關(guān)系:分?jǐn)?shù)的分母不能是0。因?yàn)樵诔ㄖ校?不能做除數(shù),因此根據(jù)分?jǐn)?shù)與除法的關(guān)系,分?jǐn)?shù)中的分母相當(dāng)于除法中的除數(shù),所以分母也不能是0??梢杂梅?jǐn)?shù)來(lái)表示兩數(shù)相除的商。分?jǐn)?shù)的分子相當(dāng)于除法中的被除數(shù)。分母相當(dāng)于除教,分?jǐn)?shù)線相當(dāng)于除號(hào),分?jǐn)?shù)的值相當(dāng)于商。
根據(jù)分?jǐn)?shù)與除法的關(guān)系把假分?jǐn)?shù)化成帶分?jǐn)?shù)的方法:用分子除以分母,把所得的商寫(xiě)在帶分?jǐn)?shù)的整數(shù)位置上,余數(shù)寫(xiě)在分?jǐn)?shù)部分的分子上,仍用原來(lái)的分母作分母。
把帶分?jǐn)?shù)化成假分?jǐn)?shù)的方法:將整數(shù)與分母相乘的積加上原來(lái)的分子作分子,分母不變。
四、分?jǐn)?shù)基本性質(zhì): 分?jǐn)?shù)的分子和分母都乘上或除以相同的數(shù)(O 除外),分?jǐn)?shù)的大小不變。分子相當(dāng)于被除數(shù),分母相當(dāng)于除數(shù),被除數(shù)和除數(shù)同時(shí)乘或除以相同的數(shù)(0除外),商不變。因此分?jǐn)?shù)的分子和分母都乘或除以相同的數(shù)(0除外),分?jǐn)?shù)的大小也是不變的。求一個(gè)數(shù)是另一個(gè)數(shù)的幾分之幾:一個(gè)數(shù)÷另一個(gè)數(shù),得到的商表示兩個(gè)數(shù)的關(guān)系,沒(méi)有單位名稱。
找最大公因數(shù): 幾個(gè)數(shù)公有的因數(shù)是這幾個(gè)數(shù)的公因數(shù),其中最大的一個(gè)是它們的最大公因數(shù)。找兩個(gè)數(shù)的公因數(shù)和最大公因數(shù)的方法: 其他找最大公因數(shù)的方法:
列舉法:運(yùn)用找因數(shù)的方法先分別找到兩個(gè)數(shù)各自的因數(shù),再找出兩個(gè)數(shù)的因數(shù)中相同的因數(shù),這些數(shù)就是兩個(gè)數(shù)的公因數(shù);再看看公因數(shù)中最大的是幾,這個(gè)數(shù)就是兩個(gè)數(shù)的最大公因教。
找兩個(gè)數(shù)的公因數(shù)和最大公因數(shù),可以先找出兩個(gè)數(shù)中較小的數(shù)的因數(shù),再看看這些因數(shù)中有哪些也是較大的數(shù)的因數(shù),那么這些數(shù)就是這兩個(gè)數(shù)的公因數(shù)。其中最大的就是這兩個(gè)數(shù)的最大公因數(shù)。例如:找15和50的公因數(shù)和最大公因數(shù):
可以先找出15的因數(shù):1,3,5,15。再判斷4個(gè)數(shù)中,哪幾個(gè)也是50的因數(shù),只有1和5,1和5就是15和50的公因數(shù)。5就是它們的最大公因數(shù)。
3、如果兩個(gè)數(shù)是不同的質(zhì)數(shù),那么這兩個(gè)數(shù)的公因數(shù)只有1。
4、如果兩個(gè)數(shù)是連續(xù)的自然數(shù)(0除外),那么這兩個(gè)數(shù)的公因數(shù)只有1。
5、如果兩個(gè)數(shù)具有倍數(shù)關(guān)系,那么較小的數(shù)就是這兩個(gè)數(shù)的最大公因數(shù)。
約分: 把一個(gè)分?jǐn)?shù)的分子、分母同時(shí)除以公因數(shù),分?jǐn)?shù)的值不變,這個(gè)過(guò)程叫做約分。
分子、分母公因數(shù)只有1了,不能再約分了,這樣的分?jǐn)?shù)是最簡(jiǎn)分?jǐn)?shù)。分子與分母是相鄰的自然數(shù)的分?jǐn)?shù)一定是最簡(jiǎn)分?jǐn)?shù);分子分母是兩個(gè)不同質(zhì)數(shù)的分?jǐn)?shù)一定是最簡(jiǎn)分?jǐn)?shù)。分子是“1”的分?jǐn)?shù)一定是最簡(jiǎn)分?jǐn)?shù)。
掌握約分的方法:約分的方法一般有兩種,一種是用兩個(gè)數(shù)的公因數(shù)一個(gè)一個(gè)去除,另一種是直接用兩個(gè)數(shù)的最大公因數(shù)去除。補(bǔ)充知識(shí)點(diǎn):比較分?jǐn)?shù)大小時(shí),分母相同的、分子相同的可以直接比較,有些時(shí)候分子分母都不相同可以采用約分后進(jìn)行比較的方法。兩個(gè)數(shù)公有的倍數(shù)叫做這兩個(gè)數(shù)的公倍數(shù),其中最小的一個(gè),叫做最小公倍數(shù)。
找兩個(gè)數(shù)的公倍數(shù)和最小公倍數(shù)的方法:先找出兩個(gè)數(shù)各自的倍數(shù)(限制一定的范圍內(nèi)),再找出公有的倍數(shù),找出兩個(gè)數(shù)公有的倍數(shù),看看這些公倍數(shù)中最小的是幾,這個(gè)數(shù)就是兩個(gè)數(shù)的最小公倍數(shù)。兩個(gè)數(shù)公倍數(shù)的個(gè)數(shù)是無(wú)限的,因此只有最小公信數(shù)沒(méi)有最大的公倍數(shù)。補(bǔ)充知識(shí)點(diǎn):
其他找公倍數(shù)和最小公倍數(shù)的方法:找兩個(gè)數(shù)的公倍數(shù)和最小公倍數(shù),可以先找出兩個(gè)數(shù)中較大的數(shù)的倍數(shù)(限制一定的范固內(nèi)),再看看這些倍數(shù)中有哪些也是較小的數(shù)的倍數(shù)那么這些數(shù)就是這兩個(gè)數(shù)的公倍數(shù)。其中最小的就是這兩個(gè)數(shù)的最小公信數(shù)。
例如:找6和9的公倍數(shù)和最小公倍數(shù)。(50以內(nèi))可以先找出9的倍數(shù)(50以內(nèi))有: 9,18,27, 36, 45,再?gòu)倪@些數(shù)中找出6的倍數(shù)18,36, 18 和36就是6和9的公倍數(shù),18是最小公倍數(shù)。
1、如果兩個(gè)數(shù)是不同的質(zhì)數(shù),那么這兩個(gè)數(shù)的最小公倍數(shù)是兩個(gè)數(shù)的乘積。
2、如果兩個(gè)數(shù)是連續(xù)的自然數(shù)(0 除外),那么這兩個(gè)數(shù)的最小公倍數(shù)是兩個(gè)數(shù)的乘積。
3、如果兩個(gè)數(shù)具有倍數(shù)關(guān)系,那么較大的數(shù)就是這兩個(gè)數(shù)的最小公倍數(shù)。
4、短除法求最小公倍數(shù)
★把分?jǐn)?shù)的大小把分母不相同的分?jǐn)?shù)化成和原來(lái)分?jǐn)?shù)相等、并且分母相同的分?jǐn)?shù),這個(gè)過(guò)程叫作通分。
★通分的兩個(gè)要點(diǎn):和原來(lái)分?jǐn)?shù)相等;分母相同。
分?jǐn)?shù)大小比較: 同分母分?jǐn)?shù)相比較,分子越大分?jǐn)?shù)越大。
同分子分?jǐn)?shù)相比較,分母越小分?jǐn)?shù)越大。
分子分母都不相同的分?jǐn)?shù)相比較的方法:用通分的方法把分母不相同的分?jǐn)?shù)化成和原來(lái)分?jǐn)?shù)相等、并且分母相同的分?jǐn)?shù),再比較大小。(把兩個(gè)分?jǐn)?shù)化成分子相同的分?jǐn)?shù),再比較大小)補(bǔ)充知識(shí)點(diǎn):通分一般以最小公信數(shù)作分母。第六單元組合圖形的面積組合圖形面積
知識(shí)點(diǎn):了解組合圖形:有幾個(gè)簡(jiǎn)單的圖形拼出來(lái)的圖形,我們把它們叫做組合圖形。計(jì)算組合圖形的面積的方法是多種多樣的。一般運(yùn)用的方法是“分割法”和“添補(bǔ)法”。分割法,即將這個(gè)圖形分割成幾個(gè)基本的圖形。分割圖形越簡(jiǎn)潔,其解題的方法也將越簡(jiǎn)單,同時(shí)又要考慮分割的圖形與所給條件的關(guān)系。添補(bǔ)法,即通過(guò)補(bǔ)上一個(gè)簡(jiǎn)單的圖形,使整個(gè)圖形變成一個(gè)大的規(guī)則圖形。探索活動(dòng):成長(zhǎng)的腳印
知識(shí)點(diǎn):能正確估計(jì)不規(guī)則圖形面積的大小。能用數(shù)格子的方法,計(jì)算不規(guī)則圖形的面積。
估計(jì)、計(jì)算不規(guī)則圖形面積的內(nèi)容主要是以方格圖作為背景進(jìn)行估計(jì)與計(jì)算的,所以借助方格圖能幫助建立估計(jì)與計(jì)算不規(guī)則圖形面積的方法。
數(shù)方格的方法:滿格記為1,少于半格記為0,大于半格記為1。嘗試與猜測(cè)
雞兔同籠知識(shí)點(diǎn):運(yùn)用列表的方法(逐一列表法、跳躍列表法、折中列表法)解決類似于“雞兔同籠”的問(wèn)題,也可用“方程”來(lái)解決。點(diǎn)陣中的規(guī)律知識(shí)點(diǎn):能 在觀察活動(dòng)中,發(fā)現(xiàn)點(diǎn)陣中隱含的規(guī)律,體會(huì)到圖形與數(shù)的聯(lián)系。在“點(diǎn)陣中的規(guī)律”的活動(dòng)中,通過(guò)觀察前后圖形中點(diǎn)的變化規(guī)律,推理出后續(xù)圖形中點(diǎn)的數(shù)量。