久久99精品久久久久久琪琪,久久人人爽人人爽人人片亞洲,熟妇人妻无码中文字幕,亚洲精品无码久久久久久久

高一數(shù)學九大解題技巧(五篇范文)

時間:2020-12-23 10:41:46下載本文作者:會員上傳
簡介:寫寫幫文庫小編為你整理了多篇相關(guān)的《高一數(shù)學九大解題技巧》,但愿對你工作學習有幫助,當然你在寫寫幫文庫還可以找到更多《高一數(shù)學九大解題技巧》。

第一篇:高一數(shù)學九大解題技巧

高一數(shù)學并不是簡簡單單就能學好,升入高中以后,高中數(shù)學變得更抽象了,很多知識同學們理解起來開始有困難了。下面給大家分享一些關(guān)于高一數(shù)學九大解題技巧,希望對大家有所幫助。

高一數(shù)學九大解題技巧

1、配法

通過把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式解決數(shù)學問題的方法,叫配方法。配方法用的最多的是配成完全平方式,它是數(shù)學中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。

2、因式分解法

因式分解,就是把一個多項式化成幾個整式乘積的形式,是恒等變形的基礎(chǔ),它作為數(shù)學的一個有力工具、一種數(shù)學方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。

3、換元法

換元法是數(shù)學中一個非常重要而且應(yīng)用十分廣泛的解題方法。通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復雜的數(shù)學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。

4、判別式法與韋達定理

一元二次方程ax2bxc=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應(yīng)用。

韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應(yīng)用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應(yīng)用。

5、待定系數(shù)法

在解數(shù)學問題時,若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學問題,這種解題方法稱為待定系數(shù)法。它是中學數(shù)學中常用的方法之一。

6、構(gòu)造法

在解題時,我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學方法,我們稱為構(gòu)造法。運用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學知識互相滲透,有利于問題的解決。

7、面積法

平面幾何中講的面積公式以及由面積公式推出的與面積計算有關(guān)的性質(zhì)定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關(guān)系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。

用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運算達到求證的結(jié)果。所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。

8、幾何變換法

在數(shù)學問題的研究中,常常運用變換法,把復雜性問題轉(zhuǎn)化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數(shù)學中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數(shù)學教學中。將圖形從相等靜止條件下的研究和運動中的研究結(jié)合起來,有利于對圖形本質(zhì)的認識。

幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對稱。

9、反證法

反證法是一種間接證法,它是先提出一個與命題的結(jié)論相反的假設(shè),然后,從這個假設(shè)出發(fā),經(jīng)過正確的推理,導致矛盾,從而否定相反的假設(shè),達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。

反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。

歸謬是反證法的關(guān)鍵,導出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。

高一數(shù)學基礎(chǔ)差該怎么學習

一、快速掌握基礎(chǔ)知識

對于基礎(chǔ)薄弱的同學來說,課本就是他們第一步需要掌握的提分法寶。想要提高數(shù)學成績,你需要記熟數(shù)學課本里的每一個知識點,看懂每一個例題,一章一章的進行掌握。

你可以先記公式,背熟之后在接著研究例題,最后去看課后習題,用例題和習題去思考該怎么解,不要急著去計算,先想就好,然后在翻看課本看公式定理是怎么推導的,尤其是過程和應(yīng)用案例。對于課本中的典型問題,更是要深刻的理解,并學會解題后反思。這樣才能夠深刻理解這個問題,跳出題海這個怪圈。

做好錯題筆記,記錄容易犯的錯誤,分析錯誤的原因,找到正確的辦法。不要盲目的去做題,必須要在搞清楚概念的基礎(chǔ)上做這些才是有用的。

二、學會運用基礎(chǔ)知識

在掌握數(shù)學基礎(chǔ)知識的同時,要學會知識的運用,這樣你才能在考試中拿到分數(shù)。高中數(shù)學學習的特點是:速度快、容量大、方法多。而這對于基礎(chǔ)差的同學來說,有時聽了會記不住,或是記住了卻不會解題。這時候就需要我們把筆記記好,不需要一字不落的記下老師說的話,只需要把關(guān)鍵的思路和結(jié)論記下來就可以了,課后在去整理、回看筆記,這也是再學習的一個過程。

想要學好數(shù)學題就必須要多做題,只有做了一定題目才能學好數(shù)學,而且做題是高中數(shù)學學習的主旋律。但是這里的做題不是盲目做題,而是要看題思考,學會思考、反思、總結(jié)才是學習數(shù)學的王道。

其實數(shù)學解題并不難,分析題干,挖掘已知條件,尋找這些條件之間有什么關(guān)系,得出一個有用的結(jié)論,這個結(jié)論是我們所要用來解決問題的關(guān)鍵,這就是數(shù)學解題的形式。所以想要學好數(shù)學,主要靠的是答題的思路,而不是作出某道題的方法。

高一數(shù)學提分技巧

一、預習是聰明的選擇

最好老師指定預習內(nèi)容,每天不超過十分鐘,預習的目的就是強制記憶基本概念。

二、基本概念是根本

基本概念要一個字一個字理解并記憶,要準確掌握基本概念的內(nèi)涵外延。只有思維鉆進去才能了解內(nèi)涵,思維要發(fā)散才能了解外延。只有概念過關(guān),作題才能又快又準。

三、作業(yè)可鞏固所學知識

作業(yè)一定要認真做,不要為節(jié)約時間省步驟,作業(yè)不要自檢,全面暴露存在的問題是好事。

四、難題要獨立完成想得高分一定要過難題關(guān),難題的關(guān)鍵是學會三種語言的熟練轉(zhuǎn)換。(文字語言、符號語言、圖形語言)

五、加倍遞減訓練法

通過訓練,從心理上、精力上、準確度上逐漸調(diào)整到考試的最佳狀態(tài),該訓練一定要在專業(yè)人員指導下進行,否則達不到效果。

六、考前不要做新題

考前找到你近期做過的試卷,把錯的題重做一遍,這才是有的放矢的復習方法。

七、良好心態(tài)

考生要自信,要有客觀的考試目標。追求正常發(fā)揮,而不要期望自己超長表現(xiàn),這樣心態(tài)會放的很平和。沉著冷靜的同時也要適度緊張,要使大腦處于最佳活躍狀態(tài)

八、考試從審題開始

審題要避免“猜”、“漏”兩種不良習慣,為此審題要從字到詞再到句。

九、學會使用演算紙

要把演算紙看成是試卷的一部分,要工整有序,為了方便檢查要寫上題號。

十、正確對待難題

難題是用來拉開分數(shù)的,不管你水平高低,都應(yīng)該學會繞開難題最后做,不要被難題搞亂思緒,只有這樣才能保證無論什么考試,你都能排前幾名。

第二篇:高一的數(shù)學九大解題技巧

上了高一,我的數(shù)學怎么了?我想這可能是很多同學心頭都有的大大疑惑,同時也是各位家長深感無助的問題,初中和高中的數(shù)學還是有些許不同的,下面給大家分享一些關(guān)于高一的數(shù)學九大解題技巧,希望對大家有所幫助。

高一的數(shù)學九大解題技巧

1、配法

通過把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式解決數(shù)學問題的方法,叫配方法。配方法用的最多的是配成完全平方式,它是數(shù)學中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。

2、因式分解法

因式分解,就是把一個多項式化成幾個整式乘積的形式,是恒等變形的基礎(chǔ),它作為數(shù)學的一個有力工具、一種數(shù)學方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。

3、換元法

換元法是數(shù)學中一個非常重要而且應(yīng)用十分廣泛的解題方法。通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復雜的數(shù)學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。

4、判別式法與韋達定理

一元二次方程ax2bxc=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應(yīng)用。

韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應(yīng)用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應(yīng)用。

5、待定系數(shù)法

在解數(shù)學問題時,若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學問題,這種解題方法稱為待定系數(shù)法。它是中學數(shù)學中常用的方法之一。

6、構(gòu)造法

在解題時,我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學方法,我們稱為構(gòu)造法。運用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學知識互相滲透,有利于問題的解決。

7、面積法

平面幾何中講的面積公式以及由面積公式推出的與面積計算有關(guān)的性質(zhì)定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關(guān)系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。

用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運算達到求證的結(jié)果。所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。

8、幾何變換法

在數(shù)學問題的研究中,常常運用變換法,把復雜性問題轉(zhuǎn)化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數(shù)學中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數(shù)學教學中。將圖形從相等靜止條件下的研究和運動中的研究結(jié)合起來,有利于對圖形本質(zhì)的認識。

幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對稱。

9、反證法

反證法是一種間接證法,它是先提出一個與命題的結(jié)論相反的假設(shè),然后,從這個假設(shè)出發(fā),經(jīng)過正確的推理,導致矛盾,從而否定相反的假設(shè),達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。

反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。

歸謬是反證法的關(guān)鍵,導出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。

高一怎么學好數(shù)學

理解老師講解的內(nèi)容

學生對教師所講的內(nèi)容的理解,還沒能達到教師所要求的層次。因此,每天在做作業(yè)之前,一定要把課本的有關(guān)內(nèi)容和當天的課堂筆記先看一看。能否堅持如此,常常是好學生與差學生的最大區(qū)別。尤其練習題不太配套時,作業(yè)中往往沒有老師剛剛講過的題目類型,因此不能對比消化。如果自己又不注意對此落實,天長日久,就會造成極大損失。

學會做題

要把課本,筆記,區(qū)單元測驗試卷,校周末測驗試卷,都從頭到尾閱讀一遍。要一邊讀,一邊做標記,標明哪些是過一會兒要摘錄的。要養(yǎng)成一個習慣,在讀材料時隨時做標記,告訴自己下次再讀這份材料時的閱讀重點。長期保持這個習慣,學生就能由博反約,把厚書讀成薄書。積累起自己的獨特的,也就是最適合自己進行復習的材料。這樣積累起來的資料才有活力,才能用的上。

整理資料

要注意積累復習資料。把課堂筆記,練習,區(qū)單元測驗,各種試卷,都分門別類按時間順序整理好。每讀一次,就在上面標記出自己下次閱讀時的重點內(nèi)容。這樣,復習資料才能越讀越精,一目了然。

高一提高數(shù)學成績?nèi)竺罘?/p>

一、思路思想提煉法:催生解題靈感沒有解題思想,就沒有解題靈感。有了解題思想,解題思如泉涌。但解題思想對很多學生來說是既熟悉又陌生。熟悉是因為教師每天掛在嘴邊,陌生就是說不請它究竟是什么。在老師的指導下,結(jié)合典型的數(shù)學題目,可以快速掌握。

二、典型題型精熟法:抓準重點考點管理學的二八法則說:20%的重要工作產(chǎn)生80%的效果,而80%的瑣碎工作只產(chǎn)生20%的效果。數(shù)學學習上也有同樣現(xiàn)象:20%的題目(重點、考點集中的題目)對于考試成績起到了80%的貢獻。因此,提高數(shù)學成績,必須優(yōu)先抓住那20%的題目。針對許多學生題目解答多,研究得不透的現(xiàn)象,當通過科學用腦,達到每個章節(jié)的典型題型都胸有成竹時,解起題來就得心應(yīng)手。

三、逐步深入糾錯法:鞏固薄弱環(huán)節(jié)管理學上的木桶理論說:一只水桶盛水多少由最短板決定,而不是由最長板決定。學數(shù)學也是這樣,數(shù)學考試成績往往會因為某些薄弱環(huán)節(jié)大受影響。因此鞏固某個薄弱環(huán)節(jié),比做對一百道題更重要。

第三篇:高一數(shù)學解題技巧

高一數(shù)學解題技巧:巧用知識點解題口訣

二、《立體幾何》

點線面三位一體,柱錐臺球為代表。距離都從點出發(fā),角度皆為線線成。垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環(huán)現(xiàn)。方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。立體幾何輔助線,常用垂線和平面。射影概念很重要,對于解題最關(guān)鍵。異面直線二面角,體積射影公式活。公理性質(zhì)三垂線,解決問題一大片。

三、《平面解析幾何》

有向線段直線圓,橢圓雙曲拋物線,參數(shù)方程極坐標,數(shù)形結(jié)合稱典范。笛卡爾的觀點對,點和有序?qū)崝?shù)對,兩者—一來對應(yīng),開創(chuàng)幾何新途徑。兩種思想相輝映,化歸思想打前陣;都說待定系數(shù)法,實為方程組思想。三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關(guān)系判。四件工具是法寶,坐標思想?yún)?shù)好;平面幾何不能丟,旋轉(zhuǎn)變換復數(shù)求。解析幾何是幾何,得意忘形學不活。圖形直觀數(shù)入微,數(shù)學本是數(shù)形學。

第四篇:高一數(shù)學函數(shù)值域解題技巧

一.觀察法

通過對函數(shù)定義域、性質(zhì)的觀察,結(jié)合函數(shù)的解析式,求得函數(shù)的值域。例1求函數(shù)y=3+√(2-3x)的值域。

點撥:根據(jù)算術(shù)平方根的性質(zhì),先求出√(2-3x)的值域。解:由算術(shù)平方根的性質(zhì),知√(2-3x)≥0,故3+√(2-3x)≥3。∴函數(shù)的知域為.點評:算術(shù)平方根具有雙重非負性,即:(1)被開方數(shù)的非負性,(2)值的非負性。

本題通過直接觀察算術(shù)平方根的性質(zhì)而獲解,這種方法對于一類函數(shù)的值域的求法,簡捷明了,不失為一種巧法。

練習:求函數(shù)y=[x](0≤x≤5)的值域。(答案:值域為:{0,1,2,3,4,5})二.反函數(shù)法

當函數(shù)的反函數(shù)存在時,則其反函數(shù)的定義域就是原函數(shù)的值域。例2求函數(shù)y=(x+1)/(x+2)的值域。

點撥:先求出原函數(shù)的反函數(shù),再求出其定義域。

解:顯然函數(shù)y=(x+1)/(x+2)的反函數(shù)為:x=(1-2y)/(y-1),其定義域為y≠1的實數(shù),故函數(shù)y的值域為{y∣y≠1,y∈R}。點評:利用反函數(shù)法求原函數(shù)的定義域的前提條件是原函數(shù)存在反函數(shù)。這種方法體現(xiàn)逆向思維的思想,是數(shù)學解題的重要方法之一。

練習:求函數(shù)y=(10x+10-x)/(10x-10-x)的值域。(答案:函數(shù)的值域為{y∣y<-1或y>1})三.配方法

當所給函數(shù)是二次函數(shù)或可化為二次函數(shù)的復合函數(shù)時,可以利用配方法求函數(shù)值域

例3:求函數(shù)y=√(-x2+x+2)的值域。

點撥:將被開方數(shù)配方成完全平方數(shù),利用二次函數(shù)的最值求。

解:由-x2+x+2≥0,可知函數(shù)的定義域為x∈[-1,2]。此時-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函數(shù)的值域是[0,3/2] 點評:求函數(shù)的值域不但要重視對應(yīng)關(guān)系的應(yīng)用,而且要特別注意定義域?qū)χ涤虻闹萍s作用。配方法是數(shù)學的一種重要的思想方法。

練習:求函數(shù)y=2x-5+√15-4x的值域.(答案:值域為{y∣y≤3})四.判別式法

若可化為關(guān)于某變量的二次方程的分式函數(shù)或無理函數(shù),可用判別式法求函數(shù)的值域。

例4求函數(shù)y=(2x2-2x+3)/(x2-x+1)的值域。

點撥:將原函數(shù)轉(zhuǎn)化為自變量的二次方程,應(yīng)用二次方程根的判別式,從而確定出原函數(shù)的值域。

解:將上式化為(y-2)x2-(y-2)x+(y-3)=0(*)

當y≠2時,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2<x≤10/3 當y=2時,方程(*)無解。∴函數(shù)的值域為2<y≤10/3。

點評:把函數(shù)關(guān)系化為二次方程F(x,y)=0,由于方程有實數(shù)解,故其判別式為非負數(shù),可求得函數(shù)的值域。常適應(yīng)于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函數(shù)。

練習:求函數(shù)y=1/(2x2-3x+1)的值域。(答案:值域為y≤-8或y>0)。五.最值法

對于閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),可求出y=f(x)在區(qū)間[a,b]內(nèi)的極值,并與邊界值f(a).f(b)作比較,求出函數(shù)的最值,可得到函數(shù)y的值域。

例5已知(2x2-x-3)/(3x2+x+1)≤0,且滿足x+y=1,求函數(shù)z=xy+3x的值域。

點撥:根據(jù)已知條件求出自變量x的取值范圍,將目標函數(shù)消元、配方,可求出函數(shù)的值域。

解:∵3x2+x+1>0,上述分式不等式與不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,將y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2),∴z=-(x-2)2+4且x∈[-1,3/2],函數(shù)z在區(qū)間[-1,3/2]上連續(xù),故只需比較邊界的大小。

當x=-1時,z=-5;當x=3/2時,z=15/4。∴函數(shù)z的值域為{z∣-5≤z≤15/4}。

點評:本題是將函數(shù)的值域問題轉(zhuǎn)化為函數(shù)的最值。對開區(qū)間,若存在最值,也可通過求出最值而獲得函數(shù)的值域。

練習:若√x為實數(shù),則函數(shù)y=x2+3x-5的值域為()

A.(-∞,+∞)B.[-7,+∞] C.[0,+∞)D.[-5,+∞)(答案:D)。六.圖象法

通過觀察函數(shù)的圖象,運用數(shù)形結(jié)合的方法得到函數(shù)的值域。例6求函數(shù)y=∣x+1∣+√(x-2)2 的值域。

點撥:根據(jù)絕對值的意義,去掉符號后轉(zhuǎn)化為分段函數(shù),作出其圖象。解:原函數(shù)化為 -2x+1(x≤1)y= 3(-12)它的圖象如圖所示。

顯然函數(shù)值y≥3,所以,函數(shù)值域[3,+∞]。

點評:分段函數(shù)應(yīng)注意函數(shù)的端點。利用函數(shù)的圖象

求函數(shù)的值域,體現(xiàn)數(shù)形結(jié)合的思想。是解決問題的重要方法。

求函數(shù)值域的方法較多,還適應(yīng)通過不等式法、函數(shù)的單調(diào)性、換元法等方法求函數(shù)的值域。七.單調(diào)法

利用函數(shù)在給定的區(qū)間上的單調(diào)遞增或單調(diào)遞減求值域。例1求函數(shù)y=4x-√1-3x(x≤1/3)的值域。

點撥:由已知的函數(shù)是復合函數(shù),即g(x)= -√1-3x,y=f(x)+g(x),其定義域為x≤1/3,在此區(qū)間內(nèi)分別討論函數(shù)的增減性,從而確定函數(shù)的值域。

解:設(shè)f(x)=4x,g(x)= -√1-3x ,(x≤1/3),易知它們在定義域內(nèi)為增函數(shù),從而y=f(x)+g(x)= 4x-√1-3x

在定義域為x≤1/3上也為增函數(shù),而且y≤f(1/3)+g(1/3)=4/3,因此,所求的函數(shù)值域為{y|y≤4/3}。

點評:利用單調(diào)性求函數(shù)的值域,是在函數(shù)給定的區(qū)間上,或求出函數(shù)隱含的區(qū)間,結(jié)合函數(shù)的增減性,求出其函數(shù)在區(qū)間端點的函數(shù)值,進而可確定函數(shù)的值域。練習:求函數(shù)y=3+√4-x 的值域。(答案:{y|y≥3})八.換元法

以新變量代替函數(shù)式中的某些量,使函數(shù)轉(zhuǎn)化為以新變量為自變量的函數(shù)形式,進而求出值域。

例2求函數(shù)y=x-3+√2x+1 的值域。

點撥:通過換元將原函數(shù)轉(zhuǎn)化為某個變量的二次函數(shù),利用二次函數(shù)的最值,確定原函數(shù)的值域。

解:設(shè)t=√2x+1(t≥0),則 x=1/2(t2-1)。

于是 y=1/2(t2-1)-3+t=1/2(t+1)2-4≥1/2-4=-7/2.所以,原函數(shù)的值域為{y|y≥-7/2}。

點評:將無理函數(shù)或二次型的函數(shù)轉(zhuǎn)化為二次函數(shù),通過求出二次函數(shù)的最值,從而確定出原函數(shù)的值域。這種解題的方法體現(xiàn)換元、化歸的思想方法。它的應(yīng)用十分廣泛。

練習:求函數(shù)y=√x-1 –x的值域。(答案:{y|y≤-3/4} 九.構(gòu)造法

根據(jù)函數(shù)的結(jié)構(gòu)特征,賦予幾何圖形,數(shù)形結(jié)合。例3求函數(shù)y=√x2+4x+5+√x2-4x+8 的值域。

點撥:將原函數(shù)變形,構(gòu)造平面圖形,由幾何知識,確定出函數(shù)的值域。解:原函數(shù)變形為f(x)=√(x+2)2+1+√(2-x)2+22 作一個長為

4、寬為3的矩形ABCD,再切割成12個單位 正方形。設(shè)HK=x,則ek=2-x,KF=2+x,AK=√(2-x)2+22 , KC=√(x+2)2+1。

由三角形三邊關(guān)系知,AK+KC≥AC=5。當A、K、C三點共 線時取等號。

∴原函數(shù)的知域為{y|y≥5}。

點評:對于形如函數(shù)y=√x2+a ±√(c-x)2+b(a,b,c均為正數(shù)),均可通過構(gòu)造幾何圖形,由幾何的性質(zhì),直觀明了、方便簡捷。這是數(shù)形結(jié)合思想的體現(xiàn)。

練習:求函數(shù)y=√x2+9 +√(5-x)2+4的值域。(答案:{y|y≥5√2})十.比例法

對于一類含條件的函數(shù)的值域的求法,可將條件轉(zhuǎn)化為比例式,代入目標函數(shù),進而求出原函數(shù)的值域。

例4已知x,y∈R,且3x-4y-5=0,求函數(shù)z=x2+y2的值域。

點撥:將條件方程3x-4y-5=0轉(zhuǎn)化為比例式,設(shè)置參數(shù),代入原函數(shù)。解:由3x-4y-5=0變形得,(x3)/4=(y-1)/3=k(k為參數(shù))∴x=3+4k,y=1+3k, ∴z=x2+y2=(3+4k)2+(14+3k)2=(5k+3)2+1。當k=-3/5時,x=3/5,y=-4/5時,zmin=1。函數(shù)的值域為{z|z≥1}.點評:本題是多元函數(shù)關(guān)系,一般含有約束條件,將條件轉(zhuǎn)化為比例式,通過設(shè)參數(shù),可將原函數(shù)轉(zhuǎn)化為單函數(shù)的形式,這種解題方法體現(xiàn)諸多思想方法,具有一定的創(chuàng)新意識。

練習:已知x,y∈R,且滿足4x-y=0,求函數(shù)f(x,y)=2x2-y的值域。(答案:{f(x,y)|f(x,y)≥1})

十一.利用多項式的除法

例5求函數(shù)y=(3x+2)/(x+1)的值域。

點撥:將原分式函數(shù),利用長除法轉(zhuǎn)化為一個整式與一個分式之和。解:y=(3x+2)/(x+1)=3-1/(x+1)。∵1/(x+1)≠0,故y≠3。

∴函數(shù)y的值域為y≠3的一切實數(shù)。

點評:對于形如y=(ax+b)/(cx+d)的形式的函數(shù)均可利用這種方法。練習:求函數(shù)y=(x2-1)/(x-1)(x≠1)的值域。(答案:y≠2)十二.不等式法

例6求函數(shù)Y=3x/(3x+1)的值域。

點撥:先求出原函數(shù)的反函數(shù),根據(jù)自變量的取值范圍,構(gòu)造不等式。解:易求得原函數(shù)的反函數(shù)為y=log3[x/(1-x)], 由對數(shù)函數(shù)的定義知 x/(1-x)>0 1-x≠0

解得,0<x<1。

∴函數(shù)的值域(0,1)。

點評:考查函數(shù)自變量的取值范圍構(gòu)造不等式(組)或構(gòu)造重要不等式,求出函數(shù)定義域,進而求值域。不等式法是重要的解題工具,它的應(yīng)用非常廣泛。是數(shù)學解題的方法之一。

以下供練習選用:求下列函數(shù)的值域 1.Y=√(15-4x)+2x-5;({y|y≤3})2.Y=2x/(2x-1)。(y>1或y<0)

第五篇:高一數(shù)學立體幾何解題技巧口訣

高一數(shù)學解題技巧口訣

《立體幾何》

點線面三位一體,柱錐臺球為代表。距離都從點出發(fā),角度皆為線線成。

垂直平行是重點,證明須弄清概念。線線線面和面面、三對之間循環(huán)現(xiàn)。

方程思想整體求,化歸意識動割補。計算之前須證明,畫好移出的圖形。

立體幾何輔助線,常用垂線和平面。射影概念很重要,對于解題最關(guān)鍵。

異面直線二面角,體積射影公式活。公理性質(zhì)三垂線,解決問題一大片。《平面解析幾何》

有向線段直線圓,橢圓雙曲拋物線,參數(shù)方程極坐標,數(shù)形結(jié)合稱典范。

笛卡爾的觀點對,點和有序?qū)崝?shù)對,兩者—一來對應(yīng),開創(chuàng)幾何新途徑。

兩種思想相輝映,化歸思想打前陣;都說待定系數(shù)法,實為方程組思想。

三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關(guān)系判。

四件工具是法寶,坐標思想?yún)?shù)好;平面幾何不能丟,旋轉(zhuǎn)變換復數(shù)求。

解析幾何是幾何,得意忘形學不活。圖形直觀數(shù)入微,數(shù)學本是數(shù)形學。《集合與函數(shù)》

內(nèi)容子交并補集,還有冪指對函數(shù)。性質(zhì)奇偶與增減,觀察圖象最明顯。復合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,若要詳細證明它,還須將那定義抓。指數(shù)與對數(shù)函數(shù),兩者互為反函數(shù)。底數(shù)非1的正數(shù),1兩邊增減變故。函數(shù)定義域好求。分母不能等于0,偶次方根須非負,零和負數(shù)無對數(shù);正切函數(shù)角不直,余切函數(shù)角不平;其余函數(shù)實數(shù)集,多種情況求交集。兩個互為反函數(shù),單調(diào)性質(zhì)都相同;圖象互為軸對稱,Y=X是對稱軸;求解非常有規(guī)律,反解換元定義域;反函數(shù)的定義域,原來函數(shù)的值域。冪函數(shù)性質(zhì)易記,指數(shù)化既約分數(shù);函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù),奇母偶子偶函數(shù),偶母非奇偶函數(shù);圖象第一象限內(nèi),函數(shù)增減看正負。

下載高一數(shù)學九大解題技巧(五篇范文)word格式文檔
下載高一數(shù)學九大解題技巧(五篇范文).doc
將本文檔下載到自己電腦,方便修改和收藏,請勿使用迅雷等下載。
點此處下載文檔

文檔為doc格式


聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻自行上傳,本網(wǎng)站不擁有所有權(quán),未作人工編輯處理,也不承擔相關(guān)法律責任。如果您發(fā)現(xiàn)有涉嫌版權(quán)的內(nèi)容,歡迎發(fā)送郵件至:645879355@qq.com 進行舉報,并提供相關(guān)證據(jù),工作人員會在5個工作日內(nèi)聯(lián)系你,一經(jīng)查實,本站將立刻刪除涉嫌侵權(quán)內(nèi)容。

相關(guān)范文推薦

    高一數(shù)學解題思維和解題技巧(精選合集)

    學好數(shù)學,無論是對高考,還是對以后學習工作都起著重要作用,與此同時也要注意一下數(shù)學思維,下面給大家分享一些關(guān)于高一數(shù)學解題思維和解題技巧,希望對大家有所幫助。高一數(shù)學解題......

    高一英語完形填空解題技巧(范文大全)

    做完形填空試題,切忌邊看短文,邊選答案,因為這樣解題易脫離上下文孤立地看句子,從而產(chǎn)生錯誤,下面給大家分享一些關(guān)于高一英語完形填空解題技巧,希望對大家有所幫助。高一英語完形......

    高一語文九大學習方法(五篇模版)

    作為高一新生,特別是期中考試備考時,在學習語文需要知道以下九大定律,并且在今后的高中三年里,把這些定律用好。下面給大家分享一些關(guān)于高一語文九大學習方法,希望對大家有所幫助......

    數(shù)學證明題解題技巧(5篇范文)

    證明徐琛同學,系黃山學院文學院2012級專升本學生。該生在我院學習期間,表現(xiàn)良好,學習認真,2013至2014學年度被同學選為學習委員。其工作盡職盡責,深得全班學生和老師的認可。 特......

    2018考研:數(shù)學綜合題解題技巧

    2018考研:數(shù)學綜合題解題技巧 來源:智閱網(wǎng) 綜合題是考研數(shù)學中的一大題型,所占分值高,并且用到的解題方法和步驟較多,因此大家要予以重視,下面對綜合題的解題技巧和方法,進行了總......

    高考數(shù)學解題技巧(推薦閱讀)

    高考數(shù)學解題技巧 首先,你必須把經(jīng)常用到的公式、知識點、常考的題目類型爛熟于心,例如:解方程技巧,因式分解,因式化簡,不等式應(yīng)用等基本功練熟練。 再就是最重要的——做題。其實......

    中考數(shù)學解題技巧(精選五篇)

    中考數(shù)學名師揭秘基礎(chǔ)題和壓軸題解題技巧中考日漸臨近,在數(shù)學總復習的最后階段,如何有效應(yīng)對“容易題”和“綜合題”,提高復習的質(zhì)量和效率呢?針對當前中考復習中普遍存在的傾向......

    初中數(shù)學考前解題技巧總結(jié)

    初中數(shù)學考前解題技巧總結(jié) 考試前,尤其是面臨重要考試時,老師都會諄諄告誡莘莘學子們一條非常重要的答題方法--------會答的先答,不會答的后答。事實證明,這個方法是使考試獲得......

主站蜘蛛池模板: 国产成人av大片在线观看| 国产乱人伦真实精品视频| 日日噜噜夜夜狠狠视频无码日韩| 一本一本久久a久久精品综合| 亚洲成a人片在线观看你懂的| 国产欧美精品一区二区三区| 亚洲中文字幕久久精品无码va| 无码少妇精品一区二区免费动态| 国产一极内射視颍一| 国产熟睡乱子伦视频| 2019nv天堂香蕉在线观看| 苍井空浴缸大战猛男120分钟| 激情内射亚洲一区二区三区爱妻| 色偷拍 自怕 亚洲 10p| 国产96在线 | 亚洲| 国产在线无遮挡免费观看| 国内免费视频成人精品| 五月丁香综合缴情六月小说| 真实国产老熟女粗口对白| 99国产精品自在自在久久| 日本五月天婷久久网站| 熟女人妻少妇精品视频| 亚洲乱码国产乱码精品精| 亚洲熟妇无码另类久久久| 国产精品亚洲综合一区在线观看| 牛牛视频一区二区三区| 无码人妻视频一区二区三区| 中文字幕人妻被公上司喝醉506| 九九久久精品免费观看| 97久久久久人妻精品区一| 全黄激性性视频| 国产一区二区色婬影院| 欧美日韩精品成人网站二区| 国产中年熟女高潮大集合| 亚洲精品久久久中文字幕痴女| 亚洲五月天综合| 亚洲欧美洲成人一区二区| 亚洲va在线va天堂xxxx中文| 中文字幕人妻丝袜乱一区三区| 黑人强辱丰满的人妻熟女| 国产精品日韩欧美一区二区三区|